File "HL-paper2.html"
Path: /IB QUESTIONBANKS/4 Fourth Edition - PAPER/HTML/Chemistry/Topic 14/HL-paper2html
File size: 562.15 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-746ec5d03ead8d9e8b3bb7d32173f2b4e2e22a05f0c5278e086ab55b3c9c238e.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-3c91afd8a2942c18d21ed2700e1bdec14ada97f1d3788ae229315e1276d81453.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../index.html">Home</a>
</li>
<li class="active dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Questionbanks
<b class="caret"></b>
</a><ul class="dropdown-menu">
<li>
<a href="../../geography.html" target="_blank">DP Geography</a>
</li>
<li>
<a href="../../physics.html" target="_blank">DP Physics</a>
</li>
<li>
<a href="../../chemistry.html" target="_blank">DP Chemistry</a>
</li>
<li>
<a href="../../biology.html" target="_blank">DP Biology</a>
</li>
<li>
<a href="../../furtherMath.html" target="_blank">DP Further Mathematics HL</a>
</li>
<li>
<a href="../../mathHL.html" target="_blank">DP Mathematics HL</a>
</li>
<li>
<a href="../../mathSL.html" target="_blank">DP Mathematics SL</a>
</li>
<li>
<a href="../../mathStudies.html" target="_blank">DP Mathematical Studies</a>
</li>
</ul></li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="images/logo.jpg" alt="Ib qb 46 logo">
</div>
</div>
</div><h2>HL Paper 2</h2><div class="specification">
<p>Ozone, \({{\text{O}}_{\text{3}}}\), in the upper atmosphere prevents harmful UV radiation reaching the surface of the Earth.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the shape of the ozone molecule and estimate the bond angle.</p>
<p> </p>
<p>Shape:</p>
<p> </p>
<p>Bond angle:</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the hybridization of the central oxygen atom.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In terms of \(\sigma \) and \(\pi \) bonds, describe the two oxygen-oxygen bonds in the Lewis structure.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The two oxygen-oxygen bonds in ozone are in fact of equal length. Deduce why this is the case and how the length of these would compare to oxygen-oxygen bond lengths in hydrogen peroxide, \({{\text{H}}_{\text{2}}}{{\text{O}}_{\text{2}}}\), and in the oxygen molecule, \({{\text{O}}_{\text{2}}}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Two hydrides of nitrogen are ammonia and hydrazine, \({{\text{N}}_{\text{2}}}{{\text{H}}_{\text{4}}}\). One derivative of ammonia is methanamine whose molecular structure is shown below.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-09-20_om_11.35.47.png" alt="M17/4/CHEMI/HP2/ENG/TZ1/05"></p>
</div>
<div class="specification">
<p>Hydrazine is used to remove oxygen from water used to generate steam or hot water.</p>
<p>\[{{\text{N}}_{\text{2}}}{{\text{H}}_{\text{4}}}{\text{(aq)}} + {{\text{O}}_{\text{2}}}{\text{(aq)}} \to {{\text{N}}_{\text{2}}}{\text{(g)}} + {\text{2}}{{\text{H}}_{\text{2}}}{\text{O(l)}}\]</p>
<p>The concentration of dissolved oxygen in a sample of water is \(8.0 \times {10^{ - 3}}{\text{ g}}\,{\text{d}}{{\text{m}}^{ - 3}}\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate the H−N−H bond angle in methanamine using VSEPR theory.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the electron domain geometry around the nitrogen atom and its hybridization in methanamine.</p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Ammonia reacts reversibly with water.<br>\[{\text{N}}{{\text{H}}_{\text{3}}}{\text{(g)}} + {{\text{H}}_{\text{2}}}{\text{O(l)}} \rightleftharpoons {\text{NH}}_{\text{4}}^ + {\text{(aq)}} + {\text{O}}{{\text{H}}^ - }{\text{(aq)}}\]<br>Explain the effect of adding \({{\text{H}}^ + }{\text{(aq)}}\) ions on the position of the equilibrium.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hydrazine reacts with water in a similar way to ammonia. (The association of a molecule of hydrazine with a second H<sup>+</sup> is so small it can be neglected.)</p>
<p style="text-align: left;">\[{{\text{N}}_{\text{2}}}{{\text{H}}_{\text{4}}}{\text{(aq)}} + {{\text{H}}_{\text{2}}}{\text{O(l)}} \rightleftharpoons {{\text{N}}_{\text{2}}}{\text{H}}_{\text{5}}^ + {\text{(aq)}} + {\text{O}}{{\text{H}}^ - }{\text{(aq)}}\]</p>
<p style="text-align: left;">\[{\text{p}}{K_{\text{b}}}{\text{ (hydrazine)}} = 5.77\]</p>
<p style="text-align: left;">Calculate the pH of a \(0.0100{\text{ mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) solution of hydrazine.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest a suitable indicator for the titration of hydrazine solution with dilute sulfuric acid using section 22 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline, using an ionic equation, what is observed when magnesium powder is added to a solution of ammonium chloride.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the enthalpy change of reaction, \(\Delta H\), in kJ, when 1.00 mol of gaseous hydrazine decomposes to its elements. Use bond enthalpy values in section 11 of the data booklet.</p>
<p>\[{{\text{N}}_{\text{2}}}{{\text{H}}_{\text{4}}}{\text{(g)}} \to {{\text{N}}_{\text{2}}}{\text{(g)}} + {\text{2}}{{\text{H}}_{\text{2}}}{\text{(g)}}\]</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The standard enthalpy of formation of \({{\text{N}}_{\text{2}}}{{\text{H}}_{\text{4}}}{\text{(l)}}\) is \( + 50.6{\text{ kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\). Calculate the enthalpy of vaporization, \(\Delta {H_{{\text{vap}}}}\), of hydrazine in \({\text{kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\). \[{{\text{N}}_{\text{2}}}{{\text{H}}_{\text{4}}}{\text{(l)}} \to {{\text{N}}_{\text{2}}}{{\text{H}}_{\text{4}}}{\text{(g)}}\] (If you did not get an answer to (f), use \( - 85{\text{ kJ}}\) but this is not the correct answer.)</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate, showing your working, the mass of hydrazine needed to remove all the dissolved oxygen from \({\text{1000 d}}{{\text{m}}^{\text{3}}}\) of the sample.</p>
<div class="marks">[3]</div>
<div class="question_part_label">h.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the volume, in \({\text{d}}{{\text{m}}^{\text{3}}}\), of nitrogen formed under SATP conditions. (The volume of 1 mol of gas = \({\text{24.8 d}}{{\text{m}}^{\text{3}}}\) at SATP.)</p>
<div class="marks">[1]</div>
<div class="question_part_label">h.ii.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">An organic compound, <strong>X</strong>, with a molar mass of approximately \({\text{88 g}}\,{\text{mo}}{{\text{l}}^{ - 1}}\) contains 54.5% carbon, 36.3% oxygen and 9.2% hydrogen by mass.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Predict and explain the bond lengths and bond strengths of the carbon-oxygen bonds in \({\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{CO}}{{\text{O}}^ - }\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.vii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) State the meaning of the term <em>hybridization</em>.</p>
<p class="p1">(ii) Describe the hybridization of the carbon atom in methane and explain how the concept of hybridization can be used to explain the shape of the methane molecule.</p>
<p class="p1">(iii) Identify the hybridization of the carbon atoms in diamond and graphite and explain why graphite is an electrical conductor.</p>
<div class="marks">[7]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Aluminium chloride, \({\text{A}}{{\text{l}}_{\text{2}}}{\text{C}}{{\text{l}}_{\text{6}}}\), does not conduct electricity when molten but aluminium oxide, \({\text{A}}{{\text{l}}_{\text{2}}}{{\text{O}}_{\text{3}}}\), does. Explain this in terms of the structure and bonding of the two compounds.</p>
<p class="p1">\({\text{A}}{{\text{l}}_{\text{2}}}{\text{C}}{{\text{l}}_{\text{6}}}\):</p>
<p class="p1">\({\text{A}}{{\text{l}}_{\text{2}}}{{\text{O}}_{\text{3}}}\):</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.i.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Two groups of students (Group A and Group B) carried out a project* on the chemistry of some group 7 elements (the halogens) and their compounds.</p>
<p class="p1"> </p>
<p class="p1">* Adapted from J Derek Woollins, (2009), Inorganic Experiments and Open University, (2008), Exploring the Molecular World.</p>
</div>
<div class="specification">
<p class="p1">In this project the students explored several aspects of the chemistry of the halogens. In the original preparation of ICl(l), they observed the yellow-green colour of chlorine gas, Cl<sub><span class="s1">2</span></sub>(g), reacting with solid iodine, I<sub><span class="s1">2</span></sub>(s).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">When iodine reacts with excess chlorine, \({\text{IC}}{{\text{l}}_{\text{3}}}\) can form. Deduce the Lewis (electron dot) structure of \({\text{IC}}{{\text{l}}_{\text{3}}}\) and \({\text{ICl}}_2^ - \) and state the name of the shape of each species.</p>
<p class="p1"><img src="images/Schermafbeelding_2016-09-22_om_06.59.30.png" alt="N12/4/CHEMI/HP2/ENG/TZ0/01.e"></p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the <strong>full </strong>electron configuration of iodine \((Z = 53)\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">One important use of chlorine is in the synthesis of poly(chloroethene), PVC. Identify the monomer used to make PVC and state <strong>one </strong>of the uses of PVC.</p>
<p class="p2"> </p>
<p class="p1">Monomer:</p>
<p class="p2"> </p>
<p class="p1">Use:</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>Some physical properties of molecular substances result from the different types of forces between their molecules.</p>
</div>
<div class="specification">
<p>Resonance structures exist when a molecule can be represented by more than one Lewis structure.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Carbon dioxide can be represented by at least two resonance structures, I and II.</p>
<p><img src="images/Schermafbeelding_2018-08-08_om_16.23.50.png" alt="M18/4/CHEMI/HP2/ENG/TZ2/07.c.i_01"></p>
<p>Calculate the formal charge on each oxygen atom in the two structures.</p>
<p><img src="images/Schermafbeelding_2018-08-08_om_16.25.45.png" alt="M18/4/CHEMI/HP2/ENG/TZ2/07.c.i_02"></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce, giving a reason, the more likely structure.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Absorption of UV light in the ozone layer causes the dissociation of oxygen and ozone.</p>
<p>Identify, in terms of bonding, the molecule that requires a longer wavelength to dissociate.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Carbon and silicon are elements in group 14.</p>
<p>Explain why CO<sub>2</sub> is a gas but SiO<sub>2</sub> is a solid at room temperature.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Bonds can be formed in many ways.</p>
</div>
<div class="specification">
<p>Bonds can be formed in many ways.</p>
</div>
<div class="specification">
<p>The equilibrium for a mixture of NO<sub>2</sub> and N<sub>2</sub>O<sub>4</sub> gases is represented as:</p>
<p style="text-align: center;">2NO<sub>2</sub>(g) \( \rightleftharpoons \) N<sub>2</sub>O<sub>4</sub>(g)</p>
<p>At 100°C, the equilibrium constant, <em>K</em><sub>c</sub>, is 0.21.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Discuss the bonding in the resonance structures of ozone.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce one resonance structure of ozone and the corresponding formal charges on each oxygen atom.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The first six ionization energies, in kJ mol<sup>–1</sup>, of an element are given below.</p>
<p style="text-align: left;"><img src="images/Schermafbeelding_2017-09-21_om_08.29.16.png" alt="M17/4/CHEMI/HP2/ENG/TZ2/04.c"></p>
<p>Explain the large increase in ionization energy from IE<sub>3</sub> to IE<sub>4</sub>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>At a given time, the concentration of NO<sub>2</sub>(g) and N<sub>2</sub>O<sub>4</sub>(g) were 0.52 and \(0.10{\text{ mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) respectively.</p>
<p>Deduce, showing your reasoning, if the forward or the reverse reaction is favoured at this time.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Comment on the value of Δ<em>G</em> when the reaction quotient equals the equilibrium constant, <em>Q</em> = <em>K</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The element boron has two naturally occurring isotopes, \(^{{\text{10}}}{\text{B}}\) and \(^{{\text{11}}}{\text{B}}\).</p>
</div>
<div class="specification">
<p class="p1">Phosphorus forms two chlorides, \({\text{PC}}{{\text{l}}_{\text{3}}}\) and \({\text{PC}}{{\text{l}}_{\text{5}}}\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Apply the Aufbau principle to state the <strong>full </strong>electron configuration for an atom of phosphorus.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce the Lewis structures for \({\text{PC}}{{\text{l}}_{\text{3}}}\) and \({\text{PC}}{{\text{l}}_{\text{5}}}\).</p>
<p class="p1" style="text-align: center;">\({\text{PC}}{{\text{l}}_{\text{3}}}\)\(\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \)\({\text{PC}}{{\text{l}}_{\text{5}}}\)</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Predict the shapes and the bond angles in the two molecules.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-13_om_12.11.34.png" alt="M13/4/CHEMI/HP2/ENG/TZ1/06.c.iii"></p>
<div class="marks">[4]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Identify the type of hybridization present in \({\text{PC}}{{\text{l}}_{\text{3}}}\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Compare the melting points of \({\text{PC}}{{\text{l}}_{\text{3}}}\) and \({\text{PC}}{{\text{l}}_{\text{5}}}\) and explain the difference.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.v.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Define an <em>acid </em>according to the Lewis theory.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State and explain the acid–base character of \({\text{PC}}{{\text{l}}_{\text{3}}}\) according to the Lewis theory.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain the delocalization of \(\pi \) electrons using the \({{\text{O}}_{\text{3}}}\) molecule as an example, including <strong>two </strong>facts that support the delocalization.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Draw the Lewis structures, state the shape and predict the bond angles for the following species.</p>
</div>
<div class="specification">
<p class="p1">Consider the following Born-Haber cycle:</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-10-14_om_07.05.32.png" alt="M09/4/CHEMI/HP2/ENG/TZ1/06.b"></p>
<p class="p1">The magnitudes for each of the enthalpy changes (<strong>a </strong>to <strong>e</strong>) are given in \({\text{kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\) but their signs (+ or –) have been omitted.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>\({\text{PC}}{{\text{l}}_{\text{3}}}\)</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>\({\text{NH}}_2^ - \)</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>\({\text{Xe}}{{\text{F}}_{\text{4}}}\)</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the names for the enthalpy changes <strong>c </strong>and <strong>d</strong>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce which <strong>two </strong>of the enthalpy changes <strong>a </strong>to <strong>e </strong>have negative signs.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine the value for the enthalpy of formation of potassium bromide.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain why the quantitative value for the lattice enthalpy of calcium bromide is larger than the value for the lattice enthalpy of potassium bromide.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Compare the formation of a sigma \((\sigma )\) and a pi \((\pi )\) bond between two carbon atoms in a molecule.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Identify how many sigma and pi bonds are present in propene, \({{\text{C}}_{\text{3}}}{{\text{H}}_{\text{6}}}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce all the bond angles present in propene.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain how the concept of hybridization can be used to explain the bonding in the triple bond present in propyne.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.iv.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Ethanol is a primary alcohol that can be oxidized by acidified potassium dichromate(VI). Distinguish between the reaction conditions needed to produce ethanal and ethanoic acid.</p>
<p class="p1"> </p>
<p class="p1">Ethanal:</p>
<p class="p1"> </p>
<p class="p1"> </p>
<p class="p1">Ethanoic acid:</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine the oxidation number of carbon in ethanol and ethanal.</p>
<p class="p1"> </p>
<p class="p1">Ethanol:</p>
<p class="p1"> </p>
<p class="p1">Ethanal:</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce the half-equation for the oxidation of ethanol to ethanal.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce the overall redox equation for the reaction of ethanol to ethanal with acidified potassium dichromate(VI).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Ethanol can be made by reacting aqueous sodium hydroxide with bromoethane.</p>
<p class="p1">Explain the mechanism for this reaction, using curly arrows to represent the movement of electron pairs.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine the orders of reaction of the reactants and the overall rate expression for the reaction between 2-bromobutane and aqueous sodium hydroxide using the data in the table.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-08-03_om_07.27.54.png" alt="M15/4/CHEMI/HP2/ENG/TZ1/07.ci"></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine the rate constant, \(k\), with its units, using the data from experiment 3.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Identify the molecularity of the rate-determining step in this reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">2-bromobutane exists as optical isomers.</p>
<p class="p2">State the essential feature of optical isomers.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">2-bromobutane exists as optical isomers.</p>
<p class="p1">Outline how a polarimeter can distinguish between these isomers.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Describe the formation of \(\sigma \) and \(\pi \) <span class="s1">bonds in an alkene.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The two most abundant isotopes of bromine have the mass numbers 79 and 81.</p>
<p class="p1">Calculate the relative abundance of \(^{{\text{79}}}{\text{Br}}\) using table 5 of the data booklet, assuming the abundance of the other isotopes is negligible.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Carbon and silicon belong to the same group of the periodic table.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Describe the delocalization of pi (\(\pi \)) electrons and explain how this can account for the structure and stability of the carbonate ion, \({\text{CO}}_3^{2 - }\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain the meaning of the term <em>hybridization</em>. State the type of hybridization shown by the carbon atoms in carbon dioxide, diamond, graphite and the carbonate ion.</p>
<div class="marks">[5]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain the electrical conductivity of molten sodium oxide and liquid sulfur trioxide.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Samples of sodium oxide and solid sulfur trioxide are added to separate beakers of water. Deduce the equation for each reaction and predict the electrical conductivity of each of the solutions formed.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A sample of magnesium contains three isotopes: magnesium-24, magnesium-25 and magnesium-26, with abundances of 77.44%, 10.00% and 12.56% respectively.</p>
</div>
<div class="specification">
<p>A graph of the successive ionization energies of magnesium is shown below.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-21_om_17.46.25.png" alt="N14/4/CHEMI/HP2/ENG/TZ0/08.b"></p>
</div>
<div class="specification">
<p>The graph below shows pressure and volume data collected for a sample of carbon dioxide gas at 330 K.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-21_om_19.19.59.png" alt="N14/4/CHEMI/HP2/ENG/TZ0/08.e"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Calculate the relative atomic mass of this sample of magnesium correct to <strong>two</strong> decimal places.</p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p>(ii) Predict the relative atomic radii of the three magnesium isotopes, giving your reasons.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Explain the increase in ionization energy values from the 3rd to the 8th electrons.</p>
<p> </p>
<p> </p>
<p>(ii) Explain the sharp increase in ionization energy values between the 10th and 11th electrons.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Magnesium reacts with oxygen to form an ionic compound, magnesium oxide. Describe how the ions are formed, and the structure and bonding in magnesium oxide.</p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p>(ii) Carbon reacts with oxygen to form a covalent compound, carbon dioxide. Describe what is meant by a covalent bond.</p>
<p> </p>
<p> </p>
<p>(iii) State why magnesium and oxygen form an ionic compound while carbon and oxygen form a covalent compound.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Predict the type of hybridization of the carbon and oxygen atoms in \({\text{C}}{{\text{O}}_{\text{2}}}\).</p>
<p> </p>
<p> </p>
<p>(ii) Sketch the orbitals of an oxygen atom in \({\text{C}}{{\text{O}}_{\text{2}}}\) on the energy level diagram provided, including the electrons that occupy each orbital.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-21_om_19.10.24.png" alt="N14/4/CHEMI/HP2/ENG/TZ0/08.d.ii"></p>
<p>(iii) Define the term electronegativity.</p>
<p> </p>
<p> </p>
<p>(iv) Explain why oxygen has a larger electronegativity than carbon.</p>
<div class="marks">[7]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Draw a best-fit curve for the data on the graph.</p>
<p>(ii) Use the data point labelled <strong>X</strong> to determine the amount, in mol, of carbon dioxide gas in the sample.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Most indicators are weak acids. Describe qualitatively how indicators work.</p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p>(ii) Identify a suitable indicator for a titration between a weak acid and a strong base, using Table 16 of the Data Booklet.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Nitrogen and silicon belong to different groups in the periodic table.</p>
</div>
<div class="specification">
<p class="p1">Draw the Lewis structures, state the shapes and predict the bond angles for the following species.</p>
</div>
<div class="specification">
<p class="p1">Consider the molecule \({\text{HCON}}{{\text{H}}_{\text{2}}}\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Distinguish in terms of electronic structure, between the terms <em>group </em>and <em>period</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the maximum number of orbitals in the \(n = 2\) energy level.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>\({\text{SiF}}_6^{2 - }\)</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>\({\text{NO}}_2^ + \)</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain, using diagrams, why \({\text{N}}{{\text{O}}_{\text{2}}}\) is a polar molecule but \({\text{C}}{{\text{O}}_{\text{2}}}\) is a non-polar molecule.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain the term <em>hybridization</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Describe how \(\sigma \) and \(\pi \) bonds form.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the type of hybridization of the carbon and nitrogen atoms in \({\text{HCON}}{{\text{H}}_{\text{2}}}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.iv.</div>
</div>
<br><hr><br><div class="specification">
<p>Two chemistry students wished to determine the enthalpy of hydration of anhydrous magnesium sulfate. They measured the initial and the highest temperature reached when anhydrous magnesium sulfate, \({\text{MgS}}{{\text{O}}_{\text{4}}}{\text{(s)}}\), was dissolved in water. They presented their results in the table below.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-11_om_16.47.13.png" alt="M14/4/CHEMI/HP2/ENG/TZ1/01.a"></p>
</div>
<div class="specification">
<p>The students repeated the experiment using 6.16 g of solid hydrated magnesium sulfate, \({\text{MgS}}{{\text{O}}_{\text{4}}} \bullet {\text{7}}{{\text{H}}_{\text{2}}}{\text{O(s)}}\), and \({\text{50.0 c}}{{\text{m}}^{\text{3}}}\) of water. They found the enthalpy change, \(\Delta {H_2}\) , to be \( + {\text{18 kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\).</p>
<p>The enthalpy of hydration of solid anhydrous magnesium sulfate is difficult to determine experimentally, but can be determined using the diagram below.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-11_om_17.02.53.png" alt="M14/4/CHEMI/HP2/ENG/TZ1/01.b"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Calculate the amount, in mol, of anhydrous magnesium sulfate.</p>
<p> </p>
<p> </p>
<p>(ii) Calculate the enthalpy change, \(\Delta {H_1}\), for anhydrous magnesium sulfate dissolving in water, in \({\text{kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\). State your answer to the correct number of significant figures.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Determine the enthalpy change, \(\Delta H\), in \({\text{kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\), for the hydration of solid anhydrous magnesium sulfate, \({\text{MgS}}{{\text{O}}_{\text{4}}}\).</p>
<p> </p>
<p> </p>
<p>(ii) The literature value for the enthalpy of hydration of anhydrous magnesium sulfate is \( - 103{\text{ kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\). Calculate the percentage difference between the literature value and the value determined from experimental results, giving your answer to <strong>one </strong>decimal place. (If you did not obtain an answer for the experimental value in (b)(i) then use the value of \( - 100{\text{ kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\), but this is <strong>not </strong>the correct value.)</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Another group of students experimentally determined an enthalpy of hydration of \( - 95{\text{ kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\). Outline two reasons which may explain the variation between the experimental and literature values.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Magnesium sulfate is one of the products formed when acid rain reacts with dolomitic limestone. This limestone is a mixture of magnesium carbonate and calcium carbonate.</p>
<p>(i) State the equation for the reaction of sulfuric acid with magnesium carbonate.</p>
<p> </p>
<p> </p>
<p>(ii) Deduce the Lewis (electron dot) structure of the carbonate ion, giving the shape and the oxygen-carbon-oxygen bond angle.</p>
<p> </p>
<p>Lewis (electron dot) structure:</p>
<p> </p>
<p>Shape:</p>
<p> </p>
<p>Bond angle:</p>
<p> </p>
<p>(iii) There are three possible Lewis structures that can be drawn for the carbonate ion, which lead to a resonance structure. Explain, with reference to the electrons, why all carbon-oxygen bonds have the same length.</p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p>(iv) Deduce the hybridization of the carbon atom in the carbonate ion.</p>
<div class="marks">[6]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Phosphoryl chloride, \({\text{POC}}{{\text{l}}_{\text{3}}}\), is a dehydrating agent.</p>
</div>
<div class="specification">
<p class="p1">\({\text{POC}}{{\text{l}}_{\text{3}}}\left( {\text{g}} \right)\) decomposes according to the following equation.</p>
<p class="p1">\[{\text{2POC}}{{\text{l}}_3}{\text{(g)}} \to {\text{2PC}}{{\text{l}}_3}{\text{(g)}} + {{\text{O}}_2}{\text{(g)}}\]</p>
</div>
<div class="specification">
<p class="p1">POCl<sub><span class="s1">3 </span></sub>can be prepared by the reaction of phosphorus pentachloride, PCl<sub><span class="s1">5 </span></sub>, with tetraphosphorus decaoxide, P<sub><span class="s1">4</span></sub>O<sub><span class="s1">10</span></sub>.</p>
</div>
<div class="specification">
<p class="p1">PCl<sub><span class="s1">3 </span></sub>and Cl<sup>–</sup><span class="s1"> </span>can act as ligands in transition metal complexes such as Ni(PCl<sub><span class="s1">3</span></sub>)<sub><span class="s1">4 </span></sub>and [Cr(H<sub><span class="s1">2</span></sub>O)<sub><span class="s1">3</span></sub>Cl<sub><span class="s1">3</span></sub>].</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Predict and explain the sign of the entropy change, \(\Delta S\), for this reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the standard entropy change for the reaction, \(\Delta {S^\Theta }\), in \({\text{J}}\,{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}}\), using the data below.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-16_om_07.31.10.png" alt="M13/4/CHEMI/HP2/ENG/TZ2/05.a.ii"></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Define the term <em>standard enthalpy change of formation</em>, \(\Delta H_{\text{f}}^\Theta \).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the standard enthalpy change for the reaction, \(\Delta {H^\Theta }\), in \({\text{kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\), using the data below.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-16_om_07.42.10.png" alt="M13/4/CHEMI/HP2/ENG/TZ2/05.a.iv"></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine the standard free energy change for the reaction, \(\Delta {G^\Theta }\), in \({\text{kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\), at 298 K.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.v.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce the temperature, in K, at which the reaction becomes spontaneous.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.vi.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce the Lewis (electron dot) structure of POCl<sub><span class="s1">3 </span></sub>(with P as the central element) and PCl<sub><span class="s1">3 </span></sub>and predict the shape of each molecule, using the valence shell electron pair repulsion theory (VSEPR).</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State and explain the Cl–P–Cl bond angle in PCl<sub><span class="s1">3</span></sub>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce the Lewis (electron dot) structure of PCl<sub><span class="s1">5</span></sub>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Predict the shape of this molecule, using the valence shell electron pair repulsion theory (VSEPR).</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Identify all the different bond angles in PCl<sub><span class="s1">5</span></sub>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">PCl<sub><span class="s1">3</span></sub>Br<sub><span class="s1">2 </span></sub>has the same molecular shape as PCl<sub><span class="s1">5</span></sub>. Draw the three isomers of PCl<sub><span class="s1">3</span></sub>Br<sub><span class="s1">2 </span></sub>and deduce whether each isomer is polar or non-polar.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Define the term <em>ligand</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain why the complex [Cr(H<sub><span class="s1">2</span></sub>O)<sub><span class="s1">3</span></sub>Cl<sub><span class="s1">3</span></sub>] is coloured.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>In acidic solution, ions containing titanium can react according to the half-equation below.</p>
<p style="text-align: center;">\({\text{Ti}}{{\text{O}}^{2 + }}{\text{(aq)}} + {\text{2}}{{\text{H}}^ + }{\text{(aq)}} + {{\text{e}}^ - } \rightleftharpoons {\text{T}}{{\text{i}}^{3 + }}{\text{(aq)}} + {{\text{H}}_2}{\text{O(l)}}\) \({E^\Theta } = - 0.06{\text{ V}}\)</p>
</div>
<div class="specification">
<p>In the diagram below, <strong>A</strong> and <strong>B</strong> are inert electrodes and, in the aqueous solutions, all ions have a concentration of \({\text{1 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\).</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-25_om_08.07.03.png" alt="N13/4/CHEMI/HP2/ENG/TZ0/06.d"></p>
</div>
<div class="specification">
<p>Sodium, silicon and sulfur are elements in period 3 of the periodic table that all form oxides.</p>
</div>
<div class="specification">
<p>Although carbon and silicon both belong to group 4 of the periodic table, carbon dioxide and silicon dioxide are different in many ways.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Define the term <em>standard electrode potential</em>, \({E^\Theta }\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the initial and final oxidation numbers of titanium and hence deduce whether it is oxidized or reduced in this change.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-25_om_07.45.44.png" alt="N13/4/CHEMI/HP2/ENG/TZ0/06.b.i"></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Considering the above equilibrium, predict, giving a reason, how adding more acid would affect the strength of the \({\text{Ti}}{{\text{O}}^{2 + }}\) ion as an oxidizing agent.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In the two experiments below, predict whether a reaction would occur and deduce an equation for any reaction that takes place. Refer to Table 14 of the Data Booklet if necessary.</p>
<p> </p>
<p>KI(aq) is added to a solution containing \({\text{T}}{{\text{i}}^{3 + }}{\text{(aq)}}\) ions:</p>
<p> </p>
<p> </p>
<p>Zn (s) is added to a solution containing \({\text{Ti}}{{\text{O}}^{2 + }}{\text{(aq)}}\) and \({{\text{H}}^ + }{\text{(aq)}}\) ions:</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using Table 14 of the Data Booklet, state the balanced half-equation for the reaction that occurs at electrode <strong>A</strong> and whether it involves oxidation or reduction.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the cell potential in V.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On the diagram above label with an arrow</p>
<p>• the direction of electron flow in the wire</p>
<p>• the direction in which the positive ions flow in the salt bridge.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Compare the properties of the three oxides by completing the table below.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-25_om_08.18.33.png" alt="N13/4/CHEMI/HP2/ENG/TZ0/06.e.i"></p>
<div class="marks">[3]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sulfur dioxide is a significant contributor to acid deposition. Identify a major, man-made source of this pollutant.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>As well as the oxide above, sodium forms a peroxide that contains the peroxide ion, \({\text{O}}_2^{2 - }\). Draw the Lewis (electron dot) structure of the peroxide ion.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the differences in the hybridization of these group 4 elements and the precise nature of the bonds that they form with the oxygen atoms.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Xenon, although a noble gas, forms an oxide, \({\text{Xe}}{{\text{O}}_{\text{2}}}\), that has a structure related to that of \({\text{Si}}{{\text{O}}_{\text{2}}}\). Compare the geometry around the silicon atoms in \({\text{Si}}{{\text{O}}_{\text{2}}}\) with the geometry around the xenon atoms in \({\text{Xe}}{{\text{O}}_{\text{2}}}\), using the valence shell electron pair repulsion (VSEPR) theory.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.ii.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Consider the structure and bonding in \({\text{MgC}}{{\text{l}}_{\text{2}}}\) and \({\text{PC}}{{\text{l}}_{\text{3}}}\).</p>
</div>
<div class="specification">
<p class="p1">Consider the molecules \({\text{PB}}{{\text{r}}_{\text{3}}}\) and \({\text{S}}{{\text{F}}_{\text{4}}}\).</p>
</div>
<div class="specification">
<p class="p1">The structure of <em>cis</em>-but-2-ene-1,4-dioic acid is shown below.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-08-07_om_13.26.13.png" alt="M15/4/CHEMI/HP2/ENG/TZ2/09.d"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State and explain the electrical conductivities of these two chloride compounds in their liquid state.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Suggest, giving your reasons, the approximate pH values of the solutions formed by adding each chloride compound separately to distilled water.</p>
<p class="p2"> </p>
<p class="p1">\({\text{MgC}}{{\text{l}}_{\text{2}}}\)</p>
<p class="p2"> </p>
<p class="p2"> </p>
<p class="p2"> </p>
<p class="p1">\({\text{PC}}{{\text{l}}_{\text{3}}}\)</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Identify the acid-base character of the oxides of each of the elements from sodium to chlorine in period 3.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the equations for the separate reactions of sodium oxide and phosphorus(V) oxide with water.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce the Lewis (electron dot) structure of both molecules.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Predict the shapes of the two molecules, giving the Br–P–Br bond angle in \({\text{PB}}{{\text{r}}_{\text{3}}}\) and the F–S–F bond angles in \({\text{S}}{{\text{F}}_{\text{4}}}\).</p>
<p class="p1"><img src="images/Schermafbeelding_2016-08-07_om_13.18.11.png" alt="M15/4/CHEMI/HP2/ENG/TZ2/09.c.ii"></p>
<div class="marks">[4]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain why both \({\text{PB}}{{\text{r}}_{\text{3}}}\) and \({\text{S}}{{\text{F}}_{\text{4}}}\) are polar.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Describe the covalent bond between carbon and hydrogen in the molecule above and how it is formed.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce the hybridization of the oxygen atoms labelled \(\alpha \) and \(\beta \)<span class="s1">.</span></p>
<p class="p2"> </p>
<p class="p1">\(\alpha \)<span class="s1">:</span></p>
<p class="p2"> </p>
<p class="p1">\(\beta \)<span class="s1">:</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Describe sigma \((\sigma )\) and pi \((\pi )\) bonds between atoms.</p>
<p class="p2"> </p>
<p class="p1">\(\sigma \) bond:</p>
<p class="p2"> </p>
<p class="p2"> </p>
<p class="p1">\(\pi \) <span class="s1">bond:</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Identify the number of sigma \((\sigma )\) and pi \((\pi )\) <span class="s1">bonds present in a molecule of <em>cis</em>-but-2-ene-1,4-dioic acid.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d.iv.</div>
</div>
<br><hr><br><div class="specification">
<p>There is concern about damage done to the ozone layer in the stratosphere by jet-propelled aircraft.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Formulate two equations to show how nitrogen(II) oxide, NO, catalyses the destruction of ozone.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why the loss of ozone is an international environmental concern.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p class="p1">Draw the Lewis structures, predict the shape and deduce the bond angles for xenon tetrafluoride and the nitrate ion.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-11-01_om_08.31.46.png" alt="M12/4/CHEMI/HP2/ENG/TZ2/04"></p>
</div>
<br><hr><br><div class="specification">
<p>Calcium carbide, CaC<sub>2</sub>, is an ionic solid.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the nature of ionic bonding.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe how the relative atomic mass of a sample of calcium could be determined from its mass spectrum.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>When calcium compounds are introduced into a gas flame a red colour is seen; sodium compounds give a yellow flame. Outline the source of the colours and why they are different.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest <strong>two </strong>reasons why solid calcium has a greater density than solid potassium.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why solid calcium is a good conductor of electricity.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch a graph of the first six ionization energies of calcium.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calcium carbide reacts with water to form ethyne and calcium hydroxide.</p>
<p style="text-align: center;">CaC<sub>2</sub>(s) + H<sub>2</sub>O(l) → C<sub>2</sub>H<sub>2</sub>(g) + Ca(OH)<sub>2</sub>(aq)</p>
<p>Estimate the pH of the resultant solution.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe how sigma (σ) and pi (\(\pi \)) bonds are formed.</p>
<p><img src=""></p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">g.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the number of σ and \(\pi \) bonds in a molecule of ethyne.</p>
<p><img src=""></p>
<p> </p>
<div class="marks">[1]</div>
<div class="question_part_label">g.ii.</div>
</div>
<br><hr><br><div class="question">
<p class="p1">SF<sub><span class="s1">2</span></sub>, SF<sub><span class="s1">4 </span></sub>and SF<sub><span class="s1">6 </span></sub>have different shapes. Draw their Lewis structures and use the VSEPR theory to predict the name of the shape of each molecule.</p>
<p class="p1"><img src="images/Schermafbeelding_2016-10-03_om_05.19.02.png" alt="N09/4/CHEMI/HP2/ENG/TZ0/02"></p>
</div>
<br><hr><br><div class="specification">
<p class="p1">Hydrazine, N<sub><span class="s1">2</span></sub>H<sub><span class="s1">4</span></sub>, is a valuable rocket fuel.</p>
</div>
<div class="specification">
<p class="p1">The equation for the reaction between hydrazine and oxygen is given below.</p>
<p class="p1">\[{{\text{N}}_2}{{\text{H}}_4}({\text{l)}} + {{\text{O}}_2}({\text{g)}} \to {{\text{N}}_2}({\text{g)}} + 2{{\text{H}}_2}{\text{O(l)}}\]</p>
</div>
<div class="specification">
<p class="p1">The reaction between \({{\text{N}}_2}{{\text{H}}_4}({\text{aq)}}\) and \({\text{HCl(aq)}}\) can be represented by the following equation.</p>
<p class="p1">\[{{\text{N}}_2}{{\text{H}}_4}({\text{aq)}} + 2{\text{HCl(aq)}} \to {{\text{N}}_2}{\text{H}}_6^{2 + }({\text{aq)}} + 2{\text{C}}{{\text{l}}^ - }({\text{aq)}}\]</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>Draw the Lewis (electron dot) structure for N<sub><span class="s1">2</span></sub>H<sub><span class="s1">4 </span></sub>showing all valence electrons.</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>State and explain the H–N–H bond angle in hydrazine.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Hydrazine and ethene, C<sub><span class="s1">2</span></sub>H<sub><span class="s1">4</span></sub>, are hydrides of adjacent elements in the periodic table. The boiling point of hydrazine is much higher than that of ethene. Explain this difference in terms of the intermolecular forces in each compound.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>The enthalpy change of formation, \(\Delta H_{\text{f}}^\Theta \), of liquid hydrazine is \({\text{50.6 kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\). Use this value, together with data from Table 12 of the Data Booklet, to calculate the enthalpy change for this reaction.</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>Use the bond enthalpy values from Table 10 of the Data Booklet to determine the enthalpy change for this reaction.</p>
<p class="p1">(iii) <span class="Apple-converted-space"> </span>Identify the calculation that produces the most accurate value for the enthalpy change for the reaction given and explain your choice.</p>
<p class="p1">(iv) <span class="Apple-converted-space"> </span>Calculate \(\Delta {S^\Theta }\) for the reaction using the data below and comment on its magnitude.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-26_om_09.01.06.png" alt="N10/4/CHEMI/HP2/ENG/TZ0/07.c"></p>
<p class="p1">(v) <span class="Apple-converted-space"> </span>Calculate \(\Delta {G^\Theta }\) for the reaction at 298 K.</p>
<p class="p1">(vi) <span class="Apple-converted-space"> </span>Predict, giving a reason, the spontaneity of the reaction above at both high and low temperatures.</p>
<div class="marks">[16]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The reaction between \({{\text{N}}_{\text{2}}}{{\text{H}}_{\text{4}}}{\text{(aq)}}\) and HCl(aq) can be represented by the following equation.</p>
<p class="p1">\[{{\text{N}}_2}{{\text{H}}_4}({\text{aq)}} + 2{\text{HCl(aq)}} \to {{\text{N}}_2}{\text{H}}_6^{2 + }({\text{aq)}} + 2{\text{C}}{{\text{l}}^ - }({\text{aq)}}\]</p>
<p class="p1">(i) <span class="Apple-converted-space"> </span>Identify the type of reaction that occurs.</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>Predict the value of the H–N–H bond angle in \({{\text{N}}_{\text{2}}}{\text{H}}_{\text{6}}^{{\text{2}} + }\).</p>
<p class="p1">(iii) <span class="Apple-converted-space"> </span>Suggest the type of hybridization shown by the nitrogen atoms in \({{\text{N}}_{\text{2}}}{\text{H}}_{\text{6}}^{{\text{2}} + }\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Consider the structure and bonding in \({\text{MgC}}{{\text{l}}_{\text{2}}}\) and \({\text{PC}}{{\text{l}}_{\text{5}}}\).</p>
</div>
<div class="specification">
<p class="p1">For each of the species \({\text{PB}}{{\text{r}}_{\text{3}}}\) and \({\text{S}}{{\text{F}}_{\text{6}}}\):</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State and explain the difference in the electrical conductivity in the liquid state of the two chlorides.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) deduce the Lewis structure.</p>
<p class="p1">(ii) predict the shape and bond angle.</p>
<p class="p1">(iii) predict and explain the molecular polarity.</p>
<p class="p1"><img src="images/Schermafbeelding_2016-11-03_om_06.27.58.png" alt="N11/4/CHEMI/HP2/ENG/TZ0/06.c"></p>
<div class="marks">[8]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Compare the formation of sigma (\(\sigma \)) and pi (\(\pi \)) bonds between the carbon atoms in a molecule of ethyne.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Geometrical isomerism and optical isomerism are two sub-groups of stereoisomerism in organic chemistry.</p>
</div>
<div class="specification">
<p class="p1">Compound <strong>P </strong>has the following three-dimensional structure. <strong>P </strong>also has geometrical isomers.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-15_om_18.37.34.png" alt="M13/4/CHEMI/HP2/ENG/TZ2/08.d"></p>
</div>
<div class="specification">
<p class="p1">Menthol can be used in cough medicines. The compound contains C, H and O only.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Describe what is meant by the term <em>stereoisomers</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Geometrical isomers have different physical properties and many drugs, such as doxepin (which has antidepressant properties), have geometrical isomers.</p>
<p class="p2" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-16_om_13.17.23.png" alt="M13/4/CHEMI/HP2/ENG/TZ2/08.b"></p>
<p class="p1">For each of the carbon atoms labelled <strong>1 </strong>and <strong>2 </strong>in doxepin, deduce the type of hybridization involved (sp, sp<sup><span class="s1">2 </span></sup>or sp<sup><span class="s1">3</span></sup>).</p>
<p class="p2"> </p>
<p class="p1"><strong>1</strong>:</p>
<p class="p2"> </p>
<p class="p1"><strong>2</strong>:</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Clomifene, a fertility drug, whose three-dimensional structure is represented below, also has geometrical isomers.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-16_om_13.22.28.png" alt="M13/4/CHEMI/HP2/ENG/TZ2/08.c"></p>
<p class="p1">Identify the name of <strong>one </strong>functional group present in clomifene.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Draw any <strong>two </strong>other isomers of <strong>P</strong>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Apply IUPAC rules to state the names of all the straight-chain isomers of compounds of molecular formula C<sub><span class="s1">4</span></sub>H<sub><span class="s1">8 </span></sub>(including <strong>P</strong>).</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the structural formula of the organic products, <strong>Q</strong>, <strong>R</strong>, <strong>S </strong>and <strong>T</strong>, formed in the following reactions.</p>
<p class="p1"><img src="images/Schermafbeelding_2016-09-16_om_14.46.40.png" alt="M13/4/CHEMI/HP2/ENG/TZ2/08.d.iii"></p>
<div class="marks">[4]</div>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Suggest <strong>one </strong>suitable mechanism for the reaction of <strong>Q </strong>with aqueous sodium hydroxide to form <strong>T</strong>, using curly arrows to represent the movement of electron pairs.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the structural formula of the organic product formed, <strong>U</strong>, when <strong>R </strong>is heated under reflux with acidified potassium dichromate(VI).</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.v.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Apply IUPAC rules to state the name of this product, <strong>U</strong>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.vi.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">When a \(6.234 \times {10^{ - 2}}{\text{ g}}\) of the compound was combusted, \(1.755 \times {10^{ - 1}}{\text{ g}}\) of carbon dioxide and \(7.187 \times {10^{ - 2}}{\text{ g}}\) of water were produced. Determine the molecular formula of the compound showing your working, given that its molar mass is \(M = 156.30{\text{ g}}\,{\text{mo}}{{\text{l}}^{ - 1}}\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Menthol occurs naturally and has several isomers. State the structural feature of menthol which is responsible for it having enantiomers.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the instrument used to distinguish between each of the two enantiomers, and how they could be distinguished using this instrument.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Compare the physical and chemical properties of enantiomers.</p>
<p class="p2"> </p>
<p class="p1">Physical properties:</p>
<p class="p2"> </p>
<p class="p2"> </p>
<p class="p2"> </p>
<p class="p2"> </p>
<p class="p1">Chemical properties:</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.iv.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">But-2-ene is a straight-chain alkene with formula \({{\text{C}}_{\text{4}}}{{\text{H}}_{\text{8}}}\). The molecule contains both \(\sigma \) and \(\pi \) bonds.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-25_om_13.53.05.png" alt="N10/4/CHEMI/HP2/ENG/TZ0/02.a"></p>
</div>
<div class="specification">
<p class="p1">The polymerization of the alkenes is one of the most significant reactions of the twentieth century.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>Explain the formation of the \(\pi \) bond.</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>For each of the carbon atoms, C(1) and C(2), identify the type of hybridization shown.</p>
<p class="p2"> </p>
<p class="p1">C(1):</p>
<p class="p2"> </p>
<p class="p1">C(2):</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">But-2-ene shows geometrical isomerism. Draw the structural formula and state the name of the other geometrical isomer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Identify the structural formula of an isomer of but-2-ene which does not decolourize bromine water, Br<sub><span class="s1">2</span></sub>(aq).</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>Outline <strong>two </strong>reasons why the polymers of the alkenes are of economic importance.</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>State the type of polymerization reaction shown by the alkene in part (a).</p>
<p class="p1">(iii) <span class="Apple-converted-space"> </span>Deduce the structure of the resulting polymer showing <strong>three </strong>repeating units.</p>
<p class="p1">(iv) <span class="Apple-converted-space"> </span>Explain why monomers are often gases or volatile liquids, but polymers are solids.</p>
<div class="marks">[6]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Calcium nitrate contains both covalent and ionic bonds.</p>
</div>
<div class="specification">
<p>Nitrogen also forms oxides, which are atmospheric pollutants.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the formula of both ions present and the nature of the force between these ions.</p>
<p> </p>
<p>Ions:</p>
<p> </p>
<p>Nature of force:</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State which atoms are covalently bonded.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Bonding in the nitrate ion involves electron delocalization. Explain the meaning of electron delocalization and how it affects the ion.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline the source of these oxides.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State <strong>one</strong> product formed from their reaction with water.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State <strong>one</strong> environmental problem caused by these atmospheric pollutants.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iii.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Ethanedioic acid is a diprotic acid. A student determined the value of x in the formula of hydrated ethanedioic acid, \({\text{HOOC–COOH}} \bullet {\text{x}}{{\text{H}}_{\text{2}}}{\text{O}}\)<span class="s1">, by titrating a known mass of the acid with a 0.100 \({\text{mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) solution of NaOH(aq).</span></p>
<p class="p2">0.795 g of ethanedioic acid was dissolved in distilled water and made up to a total volume of 250 cm<sup><span class="s2">3 </span></sup>in a volumetric flask.</p>
<p class="p2">\({\text{25 c}}{{\text{m}}^{\text{3}}}\) of this ethanedioic acid solution was pipetted into a flask and titrated against aqueous sodium hydroxide using phenolphthalein as an indicator.</p>
<p class="p2">The titration was then repeated twice to obtain the results below.</p>
<p class="p2" style="text-align: center;"><img src="images/Schermafbeelding_2016-08-02_om_14.26.59.png" alt="M15/4/CHEMI/HP2/ENG/TZ1/01"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the average volume of NaOH added, in \({\text{c}}{{\text{m}}^{\text{3}}}\), in titrations 2 and 3, and then calculate the amount, in mol, of NaOH added.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The equation for the reaction taking place in the titration is:</p>
<p class="p1">\({\text{HOOC–COOH(aq)}} + {\text{2NaOH(aq)}} \to {\text{NaOOC–COONa(aq)}} + {\text{2}}{{\text{H}}_{\text{2}}}{\text{O(l)}}\)</p>
<p class="p2">Determine the amount, in mol, of ethanedioic acid that reacts with the average</p>
<p class="p2">volume of NaOH(aq).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine the amount, in mol, of ethanedioic acid present in \({\text{250 c}}{{\text{m}}^{\text{3}}}\) of the original solution.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine the molar mass of hydrated ethanedioic acid.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine the value of x in the formula \({\text{HOOC–COOH}} \bullet {\text{x}}{{\text{H}}_{\text{2}}}{\text{O}}\)<span class="s1">.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Identify the strongest intermolecular force in solid ethanedioic acid.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce the Lewis (electron dot) structure of ethanedioic acid, \({\text{HOOC–COOH}}\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Predict and explain the difference in carbon-oxygen bond lengths in ethanedioic acid and its conjugate base, <span class="s1">\(^ - {\text{OOC–CO}}{{\text{O}}^ - }\)</span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Propane and propene are members of different homologous series.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Draw diagrams to show how sigma (σ) and pi (π) bonds are formed between atoms.</p>
<p><img src="" alt></p>
<p> </p>
<p>(ii) State the number of sigma (σ) and pi (π) bonds in propane and propene.</p>
<p><img src="" alt></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Construct the mechanism of the formation of 2-bromopropane from hydrogen bromide and propene using curly arrows to denote the movement of electrons.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Lewis (electron dot) structures are useful models.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the Lewis (electron dot) structures of PF<sub>3</sub> and PF<sub>5</sub> and use the VSEPR theory to deduce the molecular geometry of each species including bond angles.</p>
<p><img src=""></p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Predict whether the molecules PF<sub>3</sub> and PF<sub>5</sub> are polar or non-polar.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the type of hybridization shown by the phosphorus atom in PF<sub>3</sub>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>PCl<sub>5</sub>(g) and Cl<sub>2</sub>(g) were placed in a sealed flask and allowed to reach equilibrium at 200 °C. The enthalpy change, Δ<em>H</em>, for the decomposition of PCl<sub>5</sub>(g) is positive.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-09-21_om_08.14.28.png" alt="M17/4/CHEMI/SP2/ENG/TZ2/03"></p>
</div>
<div class="question">
<p>Deduce the Lewis (electron dot) structure and molecular geometry and the bond angles of PCl<sub>3</sub>.</p>
<p><img src=""></p>
</div>
<br><hr><br><div class="specification">
<p>Urea, (H<sub>2</sub>N)<sub>2</sub>CO, is excreted by mammals and can be used as a fertilizer.</p>
</div>
<div class="specification">
<p>Urea can also be made by the direct combination of ammonia and carbon dioxide gases.</p>
<p style="text-align: center;">2NH<sub>3</sub>(g) + CO<sub>2</sub>(g) \( \rightleftharpoons \) (H<sub>2</sub>N)<sub>2</sub>CO(g) + H<sub>2</sub>O(g) <span class="Apple-converted-space"> </span>Δ<em>H </em>< 0</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the percentage by mass of nitrogen in urea to two decimal places using section 6 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest how the percentage of nitrogen affects the cost of transport of fertilizers giving a reason.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The structural formula of urea is shown.</p>
<p><img style="margin-right:auto;margin-left:auto;display: block;" src="images/Schermafbeelding_2018-08-07_om_11.43.42.png" alt="M18/4/CHEMI/HP2/ENG/TZ1/01.b_01"></p>
<p>Predict the electron domain and molecular geometries at the nitrogen and carbon atoms, applying the VSEPR theory.</p>
<p><img src="images/Schermafbeelding_2018-08-07_om_11.45.16.png" alt="M18/4/CHEMI/HP2/ENG/TZ1/01.b_02"></p>
<p> </p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Urea can be made by reacting potassium cyanate, KNCO, with ammonium chloride, NH<sub>4</sub>Cl.</p>
<p style="text-align: center;">KNCO(aq) + NH<sub>4</sub>Cl(aq) → (H<sub>2</sub>N)<sub>2</sub>CO(aq) + KCl(aq)</p>
<p>Determine the maximum mass of urea that could be formed from 50.0 cm<sup>3</sup> of 0.100 mol dm<sup>−3</sup> potassium cyanate solution.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the equilibrium constant expression, <em>K</em><sub>c</sub>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Predict, with a reason, the effect on the equilibrium constant, <em>K</em><sub>c</sub>, when the temperature is increased.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine an approximate order of magnitude for <em>K</em><sub>c</sub>, using sections 1 and 2 of the data booklet. Assume Δ<em>G</em><sup>Θ</sup> for the forward reaction is approximately +50 kJ at 298 K.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest one reason why urea is a solid and ammonia a gas at room temperature.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch two different hydrogen bonding interactions between ammonia and water.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The combustion of urea produces water, carbon dioxide and nitrogen.</p>
<p>Formulate a balanced equation for the reaction.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the maximum volume of CO<sub>2</sub>, in cm<sup>3</sup>, produced at STP by the combustion of 0.600 g of urea, using sections 2 and 6 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the bond formation when urea acts as a ligand in a transition metal complex ion.</p>
<div class="marks">[2]</div>
<div class="question_part_label">h.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The C–N bonds in urea are shorter than might be expected for a single C–N bond. Suggest, in terms of electrons, how this could occur.</p>
<div class="marks">[1]</div>
<div class="question_part_label">i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The mass spectrum of urea is shown below.</p>
<p><img style="margin-right:auto;margin-left:auto;display: block;" src="images/Schermafbeelding_2018-08-07_om_13.00.41.png" alt="M18/4/CHEMI/HP2/ENG/TZ1/01.j_01"></p>
<p>Identify the species responsible for the peaks at <em>m</em>/<em>z </em>= 60 and 44.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">j.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The IR spectrum of urea is shown below.</p>
<p><img style="margin-right:auto;margin-left:auto;display: block;" src="images/Schermafbeelding_2018-08-07_om_13.07.17.png" alt="M18/4/CHEMI/HP2/ENG/TZ1/01.k_01"></p>
<p>Identify the bonds causing the absorptions at 3450 cm<sup>−1</sup> and 1700 cm<sup>−1</sup> using section 26 of the data booklet.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">k.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Predict the number of signals in the <sup>1</sup>H NMR spectrum of urea.</p>
<div class="marks">[1]</div>
<div class="question_part_label">l.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Predict the splitting pattern of the <sup>1</sup>H NMR spectrum of urea.</p>
<div class="marks">[1]</div>
<div class="question_part_label">l.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why TMS (tetramethylsilane) may be added to the sample to carry out <sup>1</sup>H NMR spectroscopy and why it is particularly suited to this role.</p>
<div class="marks">[2]</div>
<div class="question_part_label">l.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>Phosphine (IUPAC name phosphane) is a hydride of phosphorus, with the formula PH<sub>3</sub>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Draw a Lewis (electron dot) structure of phosphine.</p>
<p>(ii) State the hybridization of the phosphorus atom in phosphine.</p>
<p>(iii) Deduce, giving your reason, whether phosphine would act as a Lewis acid, a Lewis base, or neither.</p>
<p>(iv) Outline whether you expect the bonds in phosphine to be polar or non-polar, giving a brief reason.</p>
<p>(v) Phosphine has a much greater molar mass than ammonia. Explain why phosphine has a significantly lower boiling point than ammonia.</p>
<p>(vi) Ammonia acts as a weak Brønsted–Lowry base when dissolved in water.</p>
<p style="text-align: center;"><img src="" alt></p>
<p style="text-align: left;">Outline what is meant by the terms “weak” and “Brønsted–Lowry base”.</p>
<p style="text-align: left;">Weak:</p>
<p style="text-align: left;">Brønsted–Lowry base:</p>
<div class="marks">[8]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Phosphine is usually prepared by heating white phosphorus, one of the allotropes of phosphorus, with concentrated aqueous sodium hydroxide. The equation for the reaction is:</p>
<p style="text-align: center;"><img src="" alt></p>
<p style="text-align: left;">(i) The first reagent is written as P<sub>4</sub>, not 4P. Describe the difference between P<sub>4</sub> and 4P.</p>
<p style="text-align: left;">(ii) The ion H<sub>2</sub>PO<sub>2</sub><sup>−</sup> is amphiprotic. Outline what is meant by amphiprotic, giving the formulas of <strong>both</strong> species it is converted to when it behaves in this manner.</p>
<p style="text-align: left;">(iii) State the oxidation state of phosphorus in P<sub>4</sub> and H<sub>2</sub>PO<sub>2</sub><sup>−</sup>.</p>
<p style="text-align: left;">P<sub>4</sub>:</p>
<p style="text-align: left;">H<sub>2</sub>PO<sub>2</sub><sup>−</sup>:</p>
<p style="text-align: left;">(iv) Oxidation is now defined in terms of change of oxidation number. Explore how earlier definitions of oxidation and reduction may have led to conflicting answers for the conversion of P<sub>4</sub> to H<sub>2</sub>PO<sub>2</sub><sup>−</sup> and the way in which the use of oxidation numbers has resolved this.</p>
<div class="marks">[8]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>2.478 g of white phosphorus was used to make phosphine according to the equation:<img src="" alt></p>
<p>(i) Calculate the amount, in mol, of white phosphorus used.</p>
<p>(ii) This phosphorus was reacted with 100.0 cm<sup>3</sup> of 5.00 mol dm<sup>−3</sup> aqueous sodium hydroxide. Deduce, showing your working, which was the limiting reagent.</p>
<p>(iii) Determine the excess amount, in mol, of the other reagent.</p>
<p>(iv) Determine the volume of phosphine, measured in cm<sup>3</sup> at standard temperature and pressure, that was produced.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Impurities cause phosphine to ignite spontaneously in air to form an oxide of phosphorus and water.</p>
<p>(i) 200.0 g of air was heated by the energy from the complete combustion of 1.00 mol phosphine. Calculate the temperature rise using section 1 of the data booklet and the data below.</p>
<p>Standard enthalpy of combustion of phosphine, <img src="" alt><br>Specific heat capacity of air = 1.00Jg<sup>−1</sup>K<sup>−1</sup>=1.00kJkg<sup>−1</sup>K<sup>−1</sup></p>
<p>(ii) The oxide formed in the reaction with air contains 43.6% phosphorus by mass. Determine the empirical formula of the oxide, showing your method.</p>
<p>(iii) The molar mass of the oxide is approximately 285 g mol<sup>−1</sup>. Determine the molecular formula of the oxide.</p>
<p>(iv) State the equation for the reaction of this oxide of phosphorus with water.</p>
<p>(v) Suggest why oxides of phosphorus are not major contributors to acid deposition.</p>
<p>(vi) The levels of sulfur dioxide, a major contributor to acid deposition, can be minimized by either pre-combustion and post-combustion methods. Outline <strong>one</strong> technique of each method.</p>
<p>Pre-combustion:</p>
<p>Post-combustion:</p>
<div class="marks">[9]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>A compound with a molecular formula C<sub>7</sub>H<sub>14</sub>O produced the following high resolution <sup>1</sup>H NMR spectrum.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce what information can be obtained from the <sup>1</sup>H NMR spectrum.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the functional group that shows stretching at 1710 cm<sup>–1</sup> in the infrared spectrum of this compound using section 26 of the data booklet and the <sup>1</sup>H NMR.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest the structural formula of this compound.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Bromine was added to hexane, hex-1-ene and benzene. Identify the compound(s) which will react with bromine in a well-lit laboratory.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the structural formula of the main organic product when hex-1-ene reacts with hydrogen bromide.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the reagents and the name of the mechanism for the nitration of benzene.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline, in terms of the bonding present, why the reaction conditions of halogenation are different for alkanes and benzene.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Below are two isomers, A and B, with the molecular formula C<sub>4</sub>H<sub>9</sub>Br.</p>
<p style="text-align: left;"><img src=""></p>
<p>Explain the mechanism of the nucleophilic substitution reaction with NaOH(aq) for the isomer that reacts almost exclusively by an S<sub>N</sub>2 mechanism using curly arrows to represent the movement of electron pairs.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The reaction between hydrogen and nitrogen monoxide is thought to proceed by the mechanism shown below.</p>
<p style="text-align: center;"><img src="" alt></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) State the equation for the overall reaction.</p>
<p>(ii) Deduce the rate expression consistent with this mechanism.</p>
<p>(iii) Explain how you would attempt to confirm this rate expression, giving the results you would expect.</p>
<p>(iv) State, giving your reason, whether confirmation of the rate expression would prove that the mechanism given is correct.</p>
<p>(v) Suggest how the rate of this reaction could be measured experimentally.</p>
<div class="marks">[7]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The enthalpy change for the reaction between nitrogen monoxide and hydrogen is −664 kJ and its activation energy is 63 kJ.</p>
<p><img src="" alt></p>
<p>(i) Sketch the potential energy profile for the overall reaction, using the axes given, indicating both the enthalpy of reaction and activation energy.</p>
<p>(ii) This reaction is normally carried out using a catalyst. Draw a dotted line labelled “Catalysed” on the diagram above to indicate the effect of the catalyst.</p>
<p>(iii) Sketch and label a second Maxwell–Boltzmann energy distribution curve representing the same system but at a higher temperature, T<sub>higher</sub>.</p>
<p><img src="" alt></p>
<p>(iv) Explain why an increase in temperature increases the rate of this reaction.</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>One of the intermediates in the reaction between nitrogen monoxide and hydrogen is dinitrogen monoxide, N<sub>2</sub>O. This can be represented by the resonance structures below:</p>
<p><img src="" alt></p>
<p>(i) Analyse the bonding in dinitrogen monoxide in terms of σ-bonds and Δ-bonds.</p>
<p>(ii) State what is meant by resonance.</p>
<p> </p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br>