File "markSceme-SL-paper3.html"

Path: /IB QUESTIONBANKS/4 Fourth Edition - PAPER/HTML/Chemistry/Topic 10/markSceme-SL-paper3html
File size: 579.89 KB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-746ec5d03ead8d9e8b3bb7d32173f2b4e2e22a05f0c5278e086ab55b3c9c238e.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-3c91afd8a2942c18d21ed2700e1bdec14ada97f1d3788ae229315e1276d81453.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../index.html">Home</a>
</li>
<li class="active dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Questionbanks
<b class="caret"></b>
</a><ul class="dropdown-menu">
<li>
<a href="../../geography.html" target="_blank">DP Geography</a>
</li>
<li>
<a href="../../physics.html" target="_blank">DP Physics</a>
</li>
<li>
<a href="../../chemistry.html" target="_blank">DP Chemistry</a>
</li>
<li>
<a href="../../biology.html" target="_blank">DP Biology</a>
</li>
<li>
<a href="../../furtherMath.html" target="_blank">DP Further Mathematics HL</a>
</li>
<li>
<a href="../../mathHL.html" target="_blank">DP Mathematics HL</a>
</li>
<li>
<a href="../../mathSL.html" target="_blank">DP Mathematics SL</a>
</li>
<li>
<a href="../../mathStudies.html" target="_blank">DP Mathematical Studies</a>
</li>
</ul></li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">

<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">



</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="images/logo.jpg" alt="Ib qb 46 logo">
</div>
</div>
</div><h2>SL Paper 3</h2><div class="specification">
<p class="p1">Benzene is sometimes represented as containing three alternate double and single bonds (Fig.1) and sometimes represented as a hexagon with a circle in the middle (Fig.2).</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-10-07_om_15.38.27.png" alt="M10/4/CHEMI/SP3/ENG/TZ1/G3"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Describe two different types of physical evidence which show that benzene does not contain three double bonds.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain how the reaction of benzene with bromine provides chemical evidence that benzene does not contain three double bonds.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">the C&ndash;C bond lengths are all the same;</p>
<p class="p1">IR absorption of C&ndash;C bonds in benzene is different to that of both C&ndash;C single bonds and C=C double bonds;</p>
<p class="p1">chemical shift of protons in benzene is different to that of protons in alkenes;</p>
<p class="p1">only one isomer exists for 1,2-disubstituted benzene compounds;</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">substitution rather than addition occurs / <em>OWTTE</em>;</p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">Many candidates scored marks by describing the physical evidence in part (a) and the chemical evidence in part (b), which shows that benzene does not contain three double bonds.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Many candidates scored marks by describing the physical evidence in part (a) and the chemical evidence in part (b), which shows that benzene does not contain three double bonds.</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p class="p1">(a)&nbsp; &nbsp; &nbsp;Describe the structure of benzene, C<sub><span class="s1">6</span></sub>H<sub><span class="s1">6</span></sub>.</p>
<p class="p1">(b)&nbsp; &nbsp; &nbsp;State <strong>two </strong>pieces of evidence that support this description.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p class="p1">(a) <span class="Apple-converted-space">&nbsp; &nbsp; </span>hexagonal / ring of six carbon atoms (each with one hydrogen);</p>
<p class="p1">planar;</p>
<p class="p1">all carbon-carbon bond lengths equivalent / all carbon-carbon bond lengths intermediate between single and double bonds / carbon-carbon bond order of 1.5;</p>
<p class="p1">all C&ndash;C&ndash;C bond angles 120&deg;;</p>
<p class="p1"><em>Allow sp</em><sup><span class="s1"><em>2 </em></span></sup><em>(hybridization for C&rsquo;s).</em></p>
<p class="p1">delocalization / resonance;</p>
<p class="p1"><em>Allow </em><strong><em>[2 max] </em></strong><em>for regular hexagon for M1 and M3.</em></p>
<p class="p1"><em>Award </em><strong><em>[1 max] </em></strong><em>for drawing a correct representation of benzene indicating delocalization, but do not award mark for drawing simply a Kekul&eacute; structure alone.</em></p>
<p class="p1"><em>If any of these points are stated in (b) award marks in (a).</em></p>
<p class="p1">(b) <span class="Apple-converted-space">&nbsp; &nbsp; </span>enthalpy change of hydrogenation not equal to three times enthalpy change of hydrogenation of cyclohexene;</p>
<p class="p1">electron density map (of benzene) showing equal electron density/all carbon-carbon bond lengths equivalent / <em>OWTTE</em>;</p>
<p class="p1"><em>Allow diffraction pattern or contour map for electron density map.</em></p>
<p class="p1">only one isomer exists for 1,2-disubstituted benzene compounds / only three disubstituted benzene compounds (rather than four);</p>
<p class="p1">undergoes (electrophilic) substitution reactions / does not undergo addition reactions / does not decolorize bromine water;</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p class="p1">In (a) describing the structure of benzene was well known by many candidates, but the evidence required in (b) to support this description was not well answered by about half of the candidates and chemical language was used imprecisely.</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Hydrolysis of aliphatic and aromatic halides occurs under different conditions.</p>
<p class="p1">State an equation, using structural formulas, to show the reaction of 1-chloro-2-(chloromethyl) benzene with excess sodium hydroxide at room temperature.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p><img src="images/Schermafbeelding_2016-10-13_om_09.08.17.png" alt="M10/4/CHEMI/SP3/ENG/TZ2/G2/M"></p>
<p class="p1">correct formulas of the reactants <span class="s1"><strong>and </strong></span>the inorganic product;</p>
<p class="p1">correct formula of the organic product;</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p class="p1">The difference in the ease with which aliphatic and aromatic halides hydrolyse was poorly understood.</p>
</div>
<br><hr><br><div class="question">
<p class="p1">The structure of benzene originally described by August Kekul&eacute; is shown below.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-10-31_om_17.24.39.png" alt="M12/4/CHEMI/SP3/ENG/TZ1/G1"></p>
<p class="p1">Explain, giving <strong>two </strong>different pieces of evidence, why this is not a valid structure for the bonding in benzene.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p class="p1">all (C&ndash;C) bond lengths equal / C&ndash;C bond lengths intermediate between C&ndash;C and C=C;</p>
<p class="p1">benzene normally undergoes substitution not addition;</p>
<p class="p1">thermochemically more stable than predicted / produces less heat when hydrogenated/combusted than predicted;</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p class="p1">This part was generally well answered by many candidates.</p>
</div>
<br><hr><br><div class="specification">
<p>Following the initial discovery of benzene by Michael Faraday in 1825, it took many years before the structure was determined.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the structure of benzene.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State <strong>one</strong> piece of <strong>chemical</strong> evidence proving benzene does not contain alternate single and double bonds.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>planar <strong>and </strong>six-membered/hexagonal ring;</p>
<p><em>Accept suitable diagram showing either ring structure with circle representing delocalization or a Kekul&eacute;-type structure.</em></p>
<p><em>Allow flat for planar.</em></p>
<p>all carbon-carbon bond lengths equal/0.140 nm / all carbon-carbon bond lengths between single/0.154 nm and double/0.134 nm / all carbon-carbon bonds have same strength;</p>
<p>all bond angles 120&deg; /equivalent;</p>
<p><em>Allow &ldquo;all carbons sp</em><sup><em>2 </em></sup><em>(hybridized)&rdquo;.</em></p>
<p>delocalization of electrons / <em>OWTTE</em>;</p>
<p><em>Allow &ldquo;p orbital/</em>\(\pi \)<em> electrons extend over all carbon atoms&rdquo;.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>benzene does not (readily) undergo addition reactions / benzene more likely to undergo substitution reactions / benzene does not decolourize bromine water;</p>
<p>only one isomer of 1,2-disubstituted benzene (<em>eg, </em>1,2-dibromobenzene) exists (if there were alternate single and double bonds these would be two);</p>
<p>there are three isomers of type \({{\text{C}}_6}{{\text{H}}_4}{{\text{X}}_2}\), so if there were alternate single and double bonds there would be four;</p>
<p>benzene not hydrogenated by hydrogen (and a platinum catalyst) under usual conditions that hydrogenate an alkene;</p>
<p><em>Do not award this mark if high pressure is stated.</em></p>
<p>benzene not oxidized by potassium manganate(VII)/potassium permanganate/\({\text{KMn}}{{\text{O}}_4}\);</p>
<p><em>Allow other suitable named oxidizing agent.</em></p>
<p><em>Accept appropriate thermochemical evidence.</em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Although a straightforward question, most candidates were only able to score two out of the three possible marks in describing the structure of benzene.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Well answered but some candidates gave physical instead of chemical evidence failing to gain the mark. The most popular answer was the tendency to undergo substitution reactions.</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Analgesics are used to relieve pain in the body. Aspirin and paracetamol (acetaminophen) are both mild analgesics.</p>
</div>

<div class="specification">
<p class="p1">The structures of the strong analgesics morphine and heroin (diamorphine) can be found in Table 20 of the Data Book</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Compare how mild and strong analgesics relieve pain in the body.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Identify the amine functional group in the morphine molecule below by drawing a ring around it.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-10-17_om_09.49.31.png" alt="M09/4/CHEMI/SP3/ENG/TZ1/D1.c.i"></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the name of the functional group found in heroin but not in morphine.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State <strong>one </strong>advantage and <strong>one </strong>disadvantage of using morphine as a strong analgesic.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">mild analgesics function by intercepting the pain stimulus at the source / interfere with the production of substances that cause pain/prostaglandins;</p>
<p class="p1">strong analgesics work by bonding to receptor sites in the brain / prevent the transmission of pain impulses without depressing the central nervous system;</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2016-10-17_om_10.15.09.png" alt="M09/4/CHEMI/SP3/ENG/TZ1/D1.c.i/M"></p>
<p class="p1">any circle around the nitrogen atom / the nitrogen atom and its <span style="text-decoration: underline;">three</span> neighboring atoms;</p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">ester;</p>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><em>Advantage: </em>antidiarrheal/constipation (in treatment of diarrhea) / reduces coughing;</p>
<p class="p1"><em>Disadvantage: </em>addiction / tolerance / risk of overdose;</p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">Most candidates were able to distinguish between the ways mild analgesics and strong analgesics relieve pain in part (b).</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">A substantial number of candidates failed to identify the tertiary amine in the structure of morphine. Candidates were inaccurate in drawing a circle around the amine group in part (c). Either just the nitrogen atom or nitrogen atom with its three neighbouring atoms should have been circled.</p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">A large number of candidates confused the ester with an ether or carbonyl group as the functional group found in heroin but not in morphine.</p>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Most candidates recognized the disadvantage of using morphine but they had extreme difficulty in stating a specific advantage for using morphine as a strong analgesic.</p>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The cumene process is used for the production of both propanone and phenol. The overall reaction is shown in the equation below.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-23_om_17.08.44.png" alt="N14/4/CHEMI/SP3/ENG/TZ0/26"></p>
<p>This process is important in the polymer industry. Propanone can be converted into methyl methacrylate, the monomer used to make Perspex<sup>&reg;</sup>, and phenol is used in phenol-methanal resins, which are important thermosetting plastics.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State and explain how the presence of a halogen substituent might affect the acidity of carboxylic acids.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Propanone could also be formed from propene by reaction with steam over an acidic catalyst, followed by oxidation of the product.</p>
<p>The reaction of propene with water can yield two possible products. Explain, in terms of the stability of the intermediate carbocations, why one is formed in much greater quantities than the other.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>halogens make them more acidic;</p>
<p>halogens are electron withdrawing;</p>
<p><em>Accept halogens (can be) electronegative.</em></p>
<p>reduces charge on/stabilizes anion formed / weakens O&ndash;H bond / makes it easier to lose \({{\text{H}}^ + }\) ion;</p>
<p><em>Accept decreases pK</em><sub><em>a</em></sub><em>.</em></p>
<p><em>Accept causes anion to be weaker base.</em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>one product involves a primary carbocation <strong>and </strong>other a secondary carbocation;</p>
<p>secondary carbocation is more stable (than the primary carbocation, and hence this produces the major product);</p>
<p>alkyl groups reduce charge on carbon atom (through an inductive effect);</p>
<p><em>Positive inductive effect of alkyl groups alone not enough for M3.</em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>(a) (i) was well done by the better candidates only, but most candidates only scored one mark in (ii) and no marks in (iii).</p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(d) was very poorly answered. Some knew that there was an inductive effect but did not understand what this meant, namely that through the positive inductive effect the alkyl groups reduce the charge on the carbon atom.</p>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Oseltamivir (Tamiflu) and zanamivir (Relenza) are both used as antivirals to help prevent the spread of the flu virus, but are administered by different methods.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Zanamivir must be taken by inhalation, not orally. Deduce what this suggests about the bioavailability of zanamivir if taken orally.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Oseltamivir does not possess the carboxyl group needed for activity until it is chemically changed in the body. Deduce the name of the functional group in oseltamivir which changes into a carboxyl group in the body. Use section 37 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The synthesis of oseltamivir is dependent on a supply of the precursor shikimic acid, which is available only in low yield from certain plants, notably Chinese star anise. State one alternative green chemistry source of shikimic acid.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>&laquo;oral bioavailability is&raquo; low<br><em><strong>OR<br></strong></em>drug is broken down/pH too low/unable to be absorbed from gut<br><em><strong>OR<br></strong></em>only a small proportion of the drug &laquo;taken by mouth&raquo; reaches the target organ</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>ethoxycarbonyl/carbonyl attached to oxygen</p>
<p><em>Accept &ldquo;ester&rdquo;. </em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Any one of:</em></p>
<p>fermentation<br><em><strong>OR<br></strong></em>microbial production</p>
<p>genetically engineered bacteria/E.coli</p>
<p>sweetgum &laquo;seeds/leaves/bark&raquo;<br><em><strong>OR<br></strong></em>pine/fir/spruce tree &laquo;needles&raquo;<br><em><strong>OR<br></strong>Ginkgo biloba</em></p>
<p><em>Accept other specific examples of more plentiful plant sources.</em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Compound <strong>X</strong> has the molecular formula \({{\text{C}}_{\text{3}}}{{\text{H}}_{\text{6}}}{{\text{O}}_{\text{3}}}\) and is found in human perspiration.</p>
</div>

<div class="specification">
<p><strong>Y </strong>is an isomer of <strong>X</strong>, which contains the same functional groups.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Its infrared (IR) spectrum is represented below.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-18_om_16.36.21.png" alt="M14/4/CHEMI/SP3/ENG/TZ2/03.a"></p>
<p>Deduce the bonds responsible for the absorptions labelled <strong>I</strong> and <strong>II</strong>.</p>
<p>&nbsp;</p>
<p><strong>I</strong>:</p>
<p>&nbsp;</p>
<p><strong>II</strong>:</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The \(^{\text{1}}{\text{H}}\,{\text{NMR}}\) spectrum recorded showed four peaks with the following chemical shift values (in ppm):</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-18_om_16.42.26.png" alt="M14/4/CHEMI/SP3/ENG/TZ2/03.b"></p>
<p>The integration trace for A:B:C:D was found to be 1:1:1:3.</p>
<p>Deduce what information can be obtained about the hydrogen atoms responsible for peak D at 1.2 ppm from the integration trace in the \(^{\text{1}}{\text{H}}\,{\text{NMR}}\) spectrum of <strong>X</strong>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the fragments in the mass spectrum which correspond to the following <em>m</em>/<em>z</em> values.</p>
<p>&nbsp;</p>
<p><em>m</em>/<em>z</em> = 45:</p>
<p>&nbsp;</p>
<p><em>m</em>/<em>z</em> = 17:</p>
<p>&nbsp;</p>
<p><em>m</em>/<em>z</em> = 15:</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the structural formula of <strong>X</strong>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) &nbsp; &nbsp; Deduce the structural formula of <strong>Y</strong>.</p>
<p>&nbsp;</p>
<p>(ii) &nbsp; &nbsp; Predict <strong>one </strong>difference between the \(^{\text{1}}{\text{H}}\,{\text{NMR}}\) spectrum of <strong>Y </strong>and <strong>X</strong>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) &nbsp; &nbsp; Like <strong>X</strong>, 3-methylbutanoic acid is also a source of body odour. Deduce the <em>m</em>/<em>z</em> value for the molecular ion peak on the mass spectrum of this compound.</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>(ii) &nbsp; &nbsp; Deduce the number of different chemical environments of the hydrogen atoms in the \(^{\text{1}}{\text{H}}\,{\text{NMR}}\) spectrum of 3-methylbutanoic acid.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>I</em>: O&ndash;H <strong>and </strong><em>II</em>: C=O;</p>
<p><em>Do not allow CO for C=O.</em></p>
<p><em>Allow OH for O&ndash;H.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>three hydrogens in same (chemical) environment / \({\text{C}}{{\text{H}}_{\text{3}}}\)/methyl (group);</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Award </em><strong><em>[2] </em></strong><em>for all three correct, </em><strong><em>[1] </em></strong><em>for any two correct.</em></p>
<p><em>m</em>/<em>z = 45</em>:</p>
<p>\({\text{COO}}{{\text{H}}^ + }/{\text{C}}{{\text{O}}_2}{{\text{H}}^ + }/{{\text{C}}_2}{{\text{H}}_5}{{\text{O}}^ + }\);</p>
<p><em>m</em>/<em>z = 17</em>:</p>
<p>\({\text{O}}{{\text{H}}^ - }\);</p>
<p><em>m</em>/<em>z = 15</em>:</p>
<p>\({\text{CH}}_3^ + \);</p>
<p><em>Penalize missing + once only.</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\({\text{C}}{{\text{H}}_{\text{3}}}{\text{CH(OH)COOH}}/{\text{C}}{{\text{H}}_{\text{3}}}{\text{CH(OH)C}}{{\text{O}}_{\text{2}}}{\text{H}}\);</p>
<p><em>Allow full or condensed structural formula.</em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) &nbsp; &nbsp; \({\text{C}}{{\text{H}}_{\text{2}}}{\text{(OH)C}}{{\text{H}}_{\text{2}}}{\text{COOH}}/{\text{HO(C}}{{\text{H}}_{\text{2}}}{{\text{)}}_{\text{2}}}{\text{C}}{{\text{O}}_{\text{2}}}{\text{H}}\);</p>
<p><em>Allow full or condensed structural formula.</em></p>
<p>(ii) &nbsp; &nbsp; different integration trace / integration trace 1:2:2:1 (in <strong>Y</strong>) / different chemical shift values / <em>OWTTE</em>;</p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) &nbsp; &nbsp;&nbsp;102;</p>
<p>(ii)&nbsp; &nbsp; &nbsp;4;</p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Most candidates scored this mark by identifying the bonds responsible for the absorptions.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>About half the candidates were able to analyze the integration trace correctly and deduced that this was a methyl group.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Generally well answered. However, a few candidates are still forgetting to include the positive charge of the fragments of the mass spectrum.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>About a third of the candidates were able to deduce the correct structural formula of <strong>X</strong> based on the evidence presented.</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) &nbsp; &nbsp; Only few candidates deduced the correct structure for the isomer <strong>Y</strong>.&nbsp;</p>
<p>(ii) &nbsp; &nbsp; About half the candidates predicted a reasonable difference between the \(^{\text{1}}{\text{H}}\,{\text{NMR}}\) spectra of <strong>X</strong> and <strong>Y</strong>.</p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i)&nbsp; &nbsp; &nbsp;More than half the candidates were able to deduce the molecular formula from the name and hence calculated the <em>m</em>/<em>z</em> value of the molecular ion peak correctly.</p>
<p>(ii)&nbsp; &nbsp; &nbsp;More than half of the candidates deduced the correct number of chemical environments in the \(^{\text{1}}{\text{H}}\,{\text{NMR}}\) spectrum of 3-methylbutanoic acid.</p>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Ethanol is a depressant that is widely consumed in many societies. When consumed excessively it has a major impact on families and society as a whole. Other depressants such as diazepam (Valium<sup><span class="s1">&reg;</span></sup>) may be prescribed by a doctor.</p>
</div>

<div class="specification">
<p class="p1">One problem associated with ethanol consumption is an increased risk of traffic accidents. Police in many countries use a breathalyser to test drivers. The breathalyser contains potassium dichromate(VI).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Describe the colour change of potassium dichromate(VI) when it reacts with ethanol.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State with a reason whether chromium in potassium dichromate(VI) is oxidised or reduced by ethanol.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">orange to green;</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">reduced because oxidation number of Cr decreases / Cr gains electrons;</p>
<p class="p1"><em>Explanation needed for mark.</em></p>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Candidates frequently confused oxidation and reduction or failed to provide a reason as to whether the chromium was oxidised or reduced by ethanol. This highlighted, again, the need for candidates to answer all parts of the question.</p>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Fats and oils have some similarities and some differences in their chemical structures.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State <strong>two </strong>major differences in their structures.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Describe how an oil can be converted into a fat.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Discuss <strong>two </strong>advantages and <strong>two </strong>disadvantages of converting oils into fats.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">oils contain at least one C=C/carbon to carbon double bond;</p>
<p class="p1">oils have fewer carbon atoms in the hydrocarbon chains / <em>OWTTE</em>;</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">hydrogenation / react with hydrogen (gas);</p>
<p class="p1"><span class="s1">heat/140&minus;225 &deg;</span>C<span class="s2">&nbsp;</span><strong>and </strong>metal catalyst/Ni/Zn/Cu/pressure;</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><em>Advantages: </em><strong><em>[2 max] </em></strong></p>
<p class="p1">increases melting points / changes oil to a semi-solid/solid;</p>
<p class="p1">decreases rate of oxidation;</p>
<p class="p1">increases hardness;</p>
<p class="p1">controls feel/plasticity/stiffness;</p>
<p class="p1"><em>Disadvantages: </em><strong><em>[2 max] </em></strong></p>
<p class="p1">the more saturated the less good for the heart / <em>OWTTE</em>;</p>
<p class="p1"><em>trans-</em>fatty acids can be formed (through partial hydrogenation);</p>
<p class="p1"><em>trans</em>-fatty acids are difficult to metabolize / increase LDL levels / low quality energy source / accumulate in fatty tissue / are difficult to digest/excrete (from the body);</p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">Most candidates compared structural features of fats and oils, but many failed to score as they missed the required specificity of carbon to carbon double bond in (a). A significant number of candidates compared melting points which was not part of the question and very few were able to state the difference in the length of hydrocarbon chains.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Many candidates gave detailed descriptions of the process to score both marks in part (b), but some failed to score the second mark by omitting the need of a catalyst/pressure and/or heat.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Many candidates were able to correctly suggest two advantages but failed to correctly state two disadvantages in part (c). Very often marks were lost as result of poor use of subject specific terms.</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Alkenes can undergo electrophilic addition reactions with bromine and with hydrogen bromide.</p>
</div>

<div class="specification">
<p class="p1">Name the product formed when but-2-ene reacts with</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain how a bromine molecule is able to act as an electrophile.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) &nbsp; &nbsp; bromine.</p>
<p class="p1">(ii)&nbsp; &nbsp; &nbsp;hydrogen bromide.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">When but-1-ene reacts with hydrogen bromide, two possible organic products could be formed but in practice only one organic product is obtained in high yield. Explain the mechanism for this reaction using curly arrows to represent the movement of electron pairs and explain clearly why only one organic product is formed.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">as the bromine approaches the alkene an <span style="text-decoration: underline;">induced dipole</span> is formed / <em>OWTTE</em>;</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i)&nbsp; &nbsp; &nbsp;2,3-dibromobutane;</p>
<p class="p1">(ii) &nbsp; &nbsp; 2-bromobutane;</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><img src="images/Schermafbeelding_2016-10-10_om_09.44.47.png" alt="M10/4/CHEMI/SP3/ENG/TZ1/G2.c/M"></p>
<p class="p1">showing curly arrow from double bond to H (in H&ndash;Br) and curly arrow from bond in H&ndash;Br to Br;</p>
<p class="p1">showing the curly arrow from the lone pair/negative charge on Br<sup><span class="s1">&ndash; </span></sup>to the secondary carbocation and 2-bromobutane as correct product;</p>
<p class="p1">stating that the secondary carbocation will be formed in preference to the primary carbocation;</p>
<p class="p1">the two positive/electron releasing inductive effects due to the two R&ndash; groups on the secondary carbocation make it more stable;</p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">In part (a) candidates rarely explained the induced dipole in the bromine molecule which allows it to act as an electrophile.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Part (b) was answered more effectively with many candidates correctly naming products formed from but-2-ene, although several candidates omitted &lsquo;di&rsquo; from 2,3-dibromobutane and thus lost the mark.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">The poor use of curly arrows was again evident in part (c) although some candidates clearly explained why only one organic product is formed when but-1-ene reacts with hydrogen bromide.</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Compound <strong>P </strong>contains a carbonyl group (C=O) and has the molecular formula C<sub><span class="s1">3</span></sub>H<sub><span class="s1">6</span></sub>O.</p>
</div>

<div class="specification">
<p class="p1">Pentan-2-one has the following mass spectrum.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-15_om_07.36.15.png" alt="M13/4/CHEMI/SP3/ENG/TZ1/A1.d"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Draw the <strong>two </strong>possible structures of compound <strong>P</strong>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain why the infrared spectra of the structures in (a) are very similar.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain how the mass spectra of the structures in (a) can be used to distinguish between them.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce the formulas of the species with the <em>m</em>/<em>z </em>values at 86, 71 and 43.</p>
<p class="p1">&nbsp;</p>
<p class="p1">\(m{\text{/}}z = 86\):</p>
<p class="p1">&nbsp;</p>
<p class="p1">\(m{\text{/}}z = 71\):</p>
<p class="p1">&nbsp;</p>
<p class="p1">\(m{\text{/}}z = 43\):</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Suggest a reason for the peak at <em>m</em>/<em>z </em>= 43 having an exceptionally high relative abundance.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">\({\text{C}}{{\text{H}}_{\text{3}}}{\text{COC}}{{\text{H}}_{\text{3}}}\) <strong>and</strong> \({\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{CHO}}\);</p>
<p class="p1"><em>Accept full or condensed structural formulas.</em></p>
<p class="p1"><em>Ignore incorrect names as long as structures are correct.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">same/similar (types of) bonds / both contain the carbonyl group/C=O;</p>
<p class="p1"><em>Do not accept same functional group.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(mass spectrum of) \({\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{CHO}}\) contains peak at \(m{\text{/}}z = 29\) / \({\text{C}}{{\text{H}}_{\text{3}}}{\text{COC}}{{\text{H}}_{\text{3}}}\) does <strong>not </strong>contain peak at \(m{\text{/}}z = 29\);</p>
<p class="p1">(corresponding to) loss of \({{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}\) / \({M_{\text{r}}} - {{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}\) / \({\text{CH}}{{\text{O}}^ + }\) / loss of CHO / \({M_{\text{r}}} - {\text{CHO}}\) / \({{\text{C}}_{\text{2}}}{\text{H}}_{\text{5}}^ + \);</p>
<p class="p1"><strong>OR</strong></p>
<p class="p1">(mass spectrum of) \({\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{CHO}}\) contains a (strong) peak at \(m{\text{/}}z = 57\) / \({\text{C}}{{\text{H}}_{\text{3}}}{\text{COC}}{{\text{H}}_{\text{3}}}\) does <strong>not </strong>contain a (strong) peak at \(m{\text{/}}z = 57\);</p>
<p class="p1">(corresponding to) loss of H / \({M_{\text{r}}} - {\text{H}}\) / \({\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{O}}^ + }\);</p>
<p class="p1"><em>Penalize missing + once only in A1.</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><em>m/z = 86: </em>\({\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{COCH}}_{\text{3}}^ + {\text{/}}{{\text{C}}_{\text{3}}}{{\text{H}}_{\text{7}}}{\text{COCH}}_{\text{3}}^ + {\text{/}}{{\text{C}}_{\text{5}}}{{\text{H}}_{{\text{10}}}}{{\text{O}}^ + }\);</p>
<p class="p1"><em>m/z = 71: </em>\({\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{O}}^ + }{\text{/}}{{\text{C}}_{\text{3}}}{{\text{H}}_{\text{7}}}{\text{C}}{{\text{O}}^ + }{\text{/}}{{\text{C}}_{\text{4}}}{{\text{H}}_{\text{7}}}{{\text{O}}^ + }\);</p>
<p class="p1"><em>Accept CH</em><sub><span class="s1"><em>3</em></span></sub><em>COCH</em><sub><span class="s1"><em>2</em></span></sub><em>CH</em><span class="s1"><em><sub>2</sub><sup>+</sup></em></span></p>
<p class="p1"><em>m/z = 43: </em>\({\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{CH}}_{\text{2}}^ + {\text{ / C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{O}}^ + }{\text{ / }}{{\text{C}}_{\text{3}}}{\text{H}}_{\text{7}}^ + {\text{ / }}{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{3}}}{{\text{O}}^ + }\);</p>
<p class="p1"><em>Penalize missing + once only in A1.</em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\({\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{CH}}_{\text{2}}^ + \) and \({\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{O}}^ + }\)/two species have this mass/<em>m/z</em>;</p>
<p class="p1"><em>Do not penalize missing + in this part.</em></p>
<div class="question_part_label">d.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">The majority of candidates was able to identify the two structures in (a) and recognized that IR spectroscopy could not distinguish them easily because they contained the same types of bonds in (b).</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">The majority of candidates was able to identify the two structures in (a) and recognized that IR spectroscopy could not distinguish them easily because they contained the same types of bonds in (b).</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Answers to part (c) were often general and did not meet the requirements. Only few candidates predicted the peaks in the mass spectrum that could be used to distinguish the two compounds.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Part (d)(i) and (ii) were answered well by about half the candidates. However, some candidates are still forgetting to include a positive charge for fragments detected in the mass spectrometer.</p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Part (d)(i) and (ii) were answered well by about half the candidates. However, some candidates are still forgetting to include a positive charge for fragments detected in the mass spectrometer.</p>
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Caffeine and nicotine are two common stimulants.</p>
</div>

<div class="question">
<p class="p1">State the name of the functional group circled on the structure of caffeine.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-10-31_om_06.25.07.png" alt="M11/4/CHEMI/SP3/ENG/TZ2/D2.b.i"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p class="p1">amide;</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p class="p1">Most candidates correctly identified the functional group.</p>
</div>
<br><hr><br><div class="specification">
<p>Consider the following lipid and carbohydrate.</p>
<p><img src=""></p>
</div>

<div class="specification">
<p>In order to determine the number of carbon-carbon double bonds in a molecule of&nbsp;linoleic acid, 1.24 g of the lipid were dissolved in 10.0 cm<sup>3</sup> of non-polar solvent.</p>
<p>The solution was titrated with a 0.300 mol dm<sup>&ndash;3</sup> solution of iodine, I<sub>2</sub>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the empirical formula of linoleic acid.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The empirical formula of fructose is CH<sub>2</sub>O. Suggest why linoleic acid releases&nbsp;more energy per gram than fructose.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the type of reaction occurring during the titration.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the volume of iodine solution used to reach the end-point.&nbsp;</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline the importance of linoleic acid for human health.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>C<sub>9</sub>H<sub>16</sub>O</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>ratio of oxygen to carbon in linoleic acid lower</p>
<p><em><strong>OR</strong></em></p>
<p>linoleic acid less oxidized</p>
<p><em><strong>OR</strong></em></p>
<p>linoleic acid more reduced</p>
<p><em>Accept &ldquo;&laquo;average&raquo; oxidation state of&nbsp;carbon in linoleic acid is lower&rdquo;.</em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>&laquo;electrophilic&raquo; addition/A<sub>E</sub></p>
<p><em><strong>OR</strong></em></p>
<p>oxidation&ndash;reduction/redox</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>&laquo;\(\frac{{1.24\,{\text{g}}}}{{280.50\,{\text{g}}\,{\text{mo}}{{\text{l}}^{ - 1}}}}\) =&raquo; 0.00442 &laquo;mol&raquo;</p>
<p>0.00884 mol of C=C</p>
<p><em><strong>OR</strong></em></p>
<p>ratio of linoleic acid : iodine&nbsp;= 1:2</p>
<p>&laquo;volume of I<sub>2</sub> solution&nbsp;=&nbsp;\(\frac{{0.00884\,{\text{mol}}}}{{0.300\,{\text{mol}}\,{\text{d}}{{\text{m}}^{ - 3}}}}\) =&raquo; 0.0295 &laquo;dm<sup>3</sup>&raquo; / 29.5 &laquo;cm<sup>3</sup>&raquo;</p>
<p><em>Award <strong>[3]</strong> for correct final answer.</em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Any two of:</em></p>
<p>increases &laquo;ratio of&raquo; HDL &laquo;to LDL&raquo; cholesterol</p>
<p><em><strong>OR</strong></em></p>
<p>decreases LDL cholesterol &laquo;level&raquo;</p>
<p>removes plaque from/unblocks arteries</p>
<p><em><strong>OR</strong></em></p>
<p>decreases risk of heart disease</p>
<p>decreases risk of stroke &laquo;in the brain&raquo;</p>
<p><em>Accept "essential fatty acid".</em></p>
<p><em>Do <strong>not</strong> accept &ldquo;bad cholesterol&rdquo; for&nbsp;&ldquo;LDL cholesterol&rdquo; <strong>OR</strong> &ldquo;good cholesterol&rdquo;&nbsp;for &ldquo;HDL cholesterol&rdquo;.</em></p>
<p><em>Do <strong>not</strong> accept general answers such as&nbsp;&ldquo;source of energy&rdquo; <strong>OR</strong> &ldquo;forms&nbsp;triglycerides&rdquo; <strong>OR</strong> &ldquo;regulates permeability&nbsp;of cell membranes&rdquo; etc.</em></p>
<p><strong><em>[Max 2 Marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Amino acids are usually identified by their common names. Use section 33 of the data booklet.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the IUPAC name for leucine.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A mixture of amino acids is separated by gel electrophoresis at pH 6.0. The amino acids are then stained with ninhydrin.</p>
<p>(i) On the diagram below draw the relative positions of the following amino acids at the end of the process: Val, Asp, Lys and Thr.</p>
<p><img src=""></p>
<p>(ii) Suggest why glycine and isoleucine separate slightly at pH 6.5.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the number of different tripeptides that can be made from twenty different amino acids.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The fibrous protein keratin has a secondary structure with a helical arrangement.</p>
<p>(i) State the type of interaction responsible for holding the protein in this arrangement.</p>
<p>(ii) Identify the functional groups responsible for these interactions.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>2-amino-4-methylpentanoic acid</p>
<p><em>Accept 4-methyl-2-aminopentanoic acid.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>i</p>
<p><img src=""></p>
<p>Lys on cathode side <em><strong>AND</strong></em> Asp on anode side<br>Val at origin <em><strong>AND</strong></em> Thr on anode side but closer to origin than Asp</p>
<p><em>Val and Thr need not overlap.</em><br><em>Accept any (reasonable) size and demarcation of position so long as position relative to origin is correct.</em><br><em>Accept crosses for spots.</em><br><em>Award <strong>[1 max]</strong> for any two correct.</em><br><em>Award&nbsp;<strong>[1 max]</strong> if net direction of spots is reversed.</em><br><em>Award&nbsp;<strong>[1 max]</strong> if the four points are in the correct order but not in a straight line.</em></p>
<p>&nbsp;</p>
<p>ii</p>
<p>different sizes/molar masses/chain lengths &laquo;so move with different speeds&raquo;</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>&laquo;20<sup>3</sup> =&raquo; 8000</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>i</p>
<p>hydrogen bonds</p>
<p>&nbsp;</p>
<p>ii</p>
<p>carboxamide/amide/amido<br><em><strong>OR<br></strong></em>C=O <em><strong>AND</strong></em> N&ndash;H</p>
<p><em>Accept peptide.</em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Vegetable oils, such as that shown, require conversion to biodiesel for use in current internal&nbsp;combustion engines.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State <strong>two</strong> reagents required to convert vegetable oil to biodiesel.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the formula of the biodiesel formed when the vegetable oil shown is reacted&nbsp;with the reagents in (a).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain, in terms of the molecular structure, the critical difference in properties that&nbsp;makes biodiesel a more suitable liquid fuel than vegetable oil.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the specific energy, in kJ\(\,\)g<sup>&minus;1</sup>, and energy density, in kJ\(\,\)cm<sup>&minus;3</sup>, of a particular&nbsp;biodiesel using the following data and section 1 of the data booklet.</p>
<p>Density = 0.850 g\(\,\)cm<sup>&minus;3</sup>; Molar mass = 299 g\(\,\)mol<sup>&minus;1</sup>;</p>
<p>Enthalpy of combustion = 12.0 MJ\(\,\)mol<sup>&minus;1</sup>.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>methanol<br><em><strong>OR</strong></em><br>ethanol</p>
<p>strong acid<br><em><strong>OR</strong></em><br>strong base</p>
<p>&nbsp;</p>
<p><em>Accept &ldquo;alcohol&rdquo;.</em></p>
<p><em>Accept any specific strong acid or&nbsp;strong base other than HNO<sub>3</sub>/nitric acid.</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>CH<sub>3</sub>(CH<sub>2</sub>)<sub>16</sub>COOCH<sub>3</sub> / CH<sub>3</sub>OCO(CH<sub>2</sub>)<sub>16</sub>CH<sub>3</sub><br><em><strong>OR</strong></em><br>CH<sub>3</sub>(CH<sub>2</sub>)<sub>16</sub>COOC<sub>2</sub>H<sub>5</sub> / C<sub>2</sub>H<sub>5</sub>OCO(CH<sub>2</sub>)<sub>16</sub>CH<sub>3</sub></p>
<p>&nbsp;</p>
<p><em>Product <strong>must</strong> correspond to alcohol&nbsp;chosen in (a), but award mark for either structure if neither given for (a).</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>lower viscosity</p>
<p>weaker intermolecular/dispersion/London/van der Waals&rsquo; forces<br><em><strong>OR</strong></em><br>smaller/shorter molecules</p>
<p>&nbsp;</p>
<p><em>Accept &ldquo;lower molecular mass/M<sub>r</sub>&rdquo; or&nbsp;&ldquo;lower number of electrons&rdquo;.</em></p>
<p><em>Accept converse arguments.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Specific energy:</em> &laquo;\( = \frac{{12\,000{\text{ kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}}}{{299{\text{ g}}\,{\text{mo}}{{\text{l}}^{ - 1}}}}\)&raquo; =&nbsp;40.1 &laquo;kJ g<sup>&minus;1</sup>&raquo;</p>
<p><em>Energy density:</em> &laquo;= 40.1 kJ\(\,\)g<sup>&minus;1</sup>&nbsp;x&nbsp;0.850 g\(\,\)cm<sup>&minus;3</sup>&raquo; =&nbsp;34.1 &laquo;kJ\(\,\)cm<sup>&minus;3</sup>&raquo;</p>
<p>&nbsp;</p>
<p><em>Award [1] if both are in terms of a unit&nbsp;other than kJ (such as J or MJ).</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Methadone, a synthetic opioid, binds to opioid receptors in the brain.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Compare and contrast the functional groups present in methadone and diamorphine (heroin), giving their names. Use section 37 of the data booklet.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Methadone is sometimes used to help reduce withdrawal symptoms in the treatment of heroin addiction. Outline <strong>one</strong> withdrawal symptom that an addict may experience.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>Similarity</em>:</p>
<p>both contain &laquo;at least one&raquo; benzene/aromatic ring<br><em><strong>OR<br></strong></em>both contain amino &laquo;group&raquo; &nbsp;</p>
<p><em>Difference:</em></p>
<p>diamorphine has one benzene/aromatic ring&nbsp;<em><strong>AND</strong></em>&nbsp;methadone has two phenyl &laquo;groups&raquo;<br><em><strong>OR<br></strong></em>diamorphine has one vinylene/ethenylene/1,2-ethenediyl &laquo;group&raquo; <em><strong>AND</strong></em>&nbsp;methadone has no vinylene/ethenylene/1,2-ethenediyl &laquo;group&raquo;&nbsp;<br><em><strong>OR<br></strong></em>diamorphine has one ether &laquo;group&raquo; <em><strong>AND</strong></em>&nbsp;methadone has no ether &laquo;group&raquo;<br><em><strong>OR<br></strong></em>diamorphine has &laquo;two&raquo; ethanoate/acetate &laquo;groups&raquo; <em><strong>AND</strong></em> methadone has no ethanoate/acetate &laquo;groups&raquo;</p>
<p><em>Accept &ldquo;both contain carbonyl &laquo;groups&raquo;&rdquo;. <br>Accept &ldquo;amine&rdquo; for &ldquo;amino &laquo;group&raquo;&rdquo;. <br>Accept &ldquo;phenyl&rdquo; for &ldquo;benzene ring&rdquo; in M1 and M2 although there are no phenyl groups in diamorphine, as the benzene ring in this compound is a part of a polycyclic structure. <br>Do <strong>not</strong> accept &ldquo;arene&rdquo; or &ldquo;benzene&rdquo; alone in M1 and M2. <br>Accept &ldquo;alkenyl/alkene&rdquo; for &ldquo;vinylene/ethenylene/1,2-ethenediyl&rdquo; and &ldquo;ester&rdquo; for &ldquo;ethanoate/acetate&rdquo;. <br>Accept &ldquo;methadone has a ketone/carbonyl <em><strong>AND</strong></em>&nbsp;diamorphine does not/has an ester/ethanoate/acetate&rdquo;.<br>Accept &ldquo;diamorphine is a heterocycle/heterocyclic compound <em><strong>AND</strong></em>&nbsp;methadone is not a heterocycle/heterocyclic compound&rdquo;.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>feeling depressed/anxious/irritable<br><em><strong>OR<br></strong></em>craving for opioids/heroin<br><em><strong>OR<br></strong></em>experience fever/cold sweats/nausea/vomiting/insomnia/muscle pain/cramps/diarrhea/increased rate of respiration/increased heartbeat/lacrimation</p>
<p><em>Accept listed symptoms (eg, depression, anxiety, fever etc.). <br>Some of the most common symptoms are listed here &ndash; there may be other valid ones. Accept &ldquo;headaches&rdquo;.</em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Dehydroepiandrosterone (DHEA) is a substance banned under the World Anti-Doping Code.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Steroid abuse has certain health hazards, some general, some specific to males and some specific to females. Identify <strong>one</strong> health hazard in <strong>each</strong> category.</p>
<p>General Hazard:</p>
<p>Male Hazard:</p>
<p>Female Hazard:</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) State the name of the functional group circled in the DHEA molecule shown below.</p>
<p><img src="" alt></p>
<p>(ii) Identify the characteristic of this structure that classifies it as a steroid.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The production of banned steroids has ethical implications. Suggest a reason why steroid research might be supported.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 13">
<div class="section">
<div class="layoutArea">
<div class="column">
<p><em>General hazards</em>:<br>acne<br><strong><em>OR</em></strong><br>weight gain<br><strong><em>OR</em></strong><br>liver/kidney damage<br><strong><em>OR</em></strong><br>stunted growth<br><strong><em>OR</em></strong><br>disruption of puberty<br><strong><em>OR</em></strong><br>increased aggressiveness<br><strong><em>OR</em></strong><br>increased risk of heart disease/atherosclerosis/heart attacks/strokes<strong>&radic;</strong></p>
<p><em>General hazards:</em><br><em>Accept heart problems.</em></p>
<div class="page" title="Page 13">
<div class="section">
<div class="layoutArea">
<div class="column">
<p><em>Male hazards:<br></em>feminization/breast &laquo;tissue&raquo; development <br><strong><em>OR</em></strong><br>shrinking of the testes/testicles<br><strong><em>OR</em></strong><br>reduction in sperm production<br><strong><em>OR</em></strong><br>impotence&nbsp;</p>
<p><em>Male hazards:</em> <br><em>Accept baldness.</em></p>
<div class="page" title="Page 13">
<div class="section">
<div class="layoutArea">
<div class="column">
<p><em>Female hazards:<br></em>decreased breast development<br><strong><em>OR</em></strong><br>masculinisation<br><strong><em>OR</em></strong><br>infertility/abnormal menstrual cycles<br><strong><em>OR</em></strong><br>birth defects/altered fetus development</p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i)<br>alkenyl/ethanylylidene&nbsp;</p>
<p>(ii)<br>four-ring &laquo;steroidal&raquo; backbone <br><strong><em>OR</em></strong><br>fused ring structure<br><strong><em>OR</em></strong><br>three 6-membered rings <em><strong>AND</strong></em> a 5-membered ring&nbsp;</p>
<p><em>Award <strong>[1]</strong> for a sketch of the steroidal backbone.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 14">
<div class="section">
<div class="layoutArea">
<div class="column">
<p>medical uses of steroids <strong>&laquo;</strong>under physician supervision<strong>&raquo;</strong> <br><strong><em>OR</em></strong><br> detection of banned substances can be improved <strong><br></strong></p>
<p>A<em>ccept any specific medical use.</em><br><em>Accept answers such as &ldquo;their effects <strong>&laquo;</strong>either positive or negative<strong>&raquo;</strong> are better understood&rdquo;.</em></p>
</div>
</div>
</div>
</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Organic molecules can be visualized using three-dimensional models built from kits such as&nbsp;that pictured below.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-10_om_11.20.15.png" alt="M18/4/CHEMI/SP3/ENG/TZ2/02"></p>
</div>

<div class="specification">
<p style="text-align: left;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe <strong>two </strong>differences, other than the number of atoms, between the models of ethane and ethene constructed from the kit shown.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The above ball and stick model is a substituted pyridine molecule (made of carbon, hydrogen, nitrogen, bromine and chlorine atoms). All atoms are shown and represented according to their relative atomic size.</p>
<p>Label each ball in the diagram, excluding hydrogens, as a carbon, C, nitrogen, N, bromine, Br, or chlorine, Cl.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest <strong>one </strong>advantage of using a computer generated molecular model compared to a ball and stick 3-D model.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Pyridine, like benzene, is an aromatic compound.</p>
<p>Outline what is meant by an aromatic compound.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>Any two of:</em></p>
<p><em>Ethene:</em> <strong>«</strong>carbon–carbon<strong>» </strong>double bond <strong><em>AND </em></strong><em>Ethane: </em><strong>«</strong>carbon–carbon<strong>» </strong>single bond</p>
<p>ethene has a shorter carbon–carbon bond <strong>«</strong>than ethane<strong>»</strong></p>
<p> </p>
<p><em>Ethene</em>: planar/two-dimensional/2-D <strong><em>AND </em></strong><em>Ethane: </em>tetrahedral <strong>«</strong>carbons<strong>»</strong>/three-dimensional/3-D</p>
<p><strong><em>OR</em></strong></p>
<p><em>Ethene: </em>each carbon surrounded by three electron domains <strong><em>AND </em></strong><em>Ethane: </em>each carbon surrounded by four electron domains</p>
<p><strong><em>OR</em></strong></p>
<p>different molecular geometries/shapes</p>
<p> </p>
<p>rotation about carbon–carbon inhibited/blocked in ethene <strong><em>AND </em></strong>not in ethane</p>
<p> </p>
<p><strong>«</strong>H–C–C/H–C–H<strong>» </strong>bond angles different</p>
<p><strong><em>OR</em></strong></p>
<p><em>Ethene: </em><strong>«</strong>bond angles approximately<strong>» </strong>120° <strong><em>AND </em></strong><em>Ethane: </em>109.5/109°</p>
<p> </p>
<p><em>Do </em><strong><em>not </em></strong><em>accept “different number of </em><em>atoms/hydrogens/bonds” etc.</em></p>
<p><em>Accept “Ethene: unsaturated </em><strong><em>AND</em></strong><em> Ethane: saturated” </em><strong><em>OR </em></strong><em>“Ethene: has a </em><em>double bond </em><strong><em>AND </em></strong><em>Ethane: does not” </em><strong><em>OR </em></strong><em>“Ethene: two flexible bonds between </em><em>carbon atoms </em><strong><em>AND </em></strong><em>Ethane: one”.</em></p>
<p><em>Accept any reasonable physical </em><em>description of the two different </em><em>molecular models based on a variety of </em><em>kits for M1.</em></p>
<p><em>For ethene, accept any bond angle in </em><em>the range 117–122</em><em>°</em><em>.</em></p>
<p><em>Award </em><strong><em>[2] </em></strong><em>if </em><em>any two of the concepts </em><em>listed </em><em>are shown in a correctly labelled </em><em>or annotated diagram.</em></p>
<p><em>Award </em><strong><em>[1 max] </em></strong><em>for two correct </em><em>statements for either molecule but with </em><em>no comparison given to the other.</em></p>
<p><em>Award </em><strong><em>[1 max] </em></strong><em>for suitable unlabeled </em><em>diagrams of both compounds.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>6 carbon atoms labelled in correct positions</p>
<p>both nitrogen atoms labelled in correct positions</p>
<p>bromine <strong><em>AND </em></strong>chlorine atoms labelled in correct positions</p>
<p><img src="images/Schermafbeelding_2018-08-10_om_12.53.07.png" alt="M18/4/CHEMI/SP3/ENG/TZ2/02.b.i/M"></p>
<p><em><strong>[3 marks]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>accurate bond angles/lengths can be measured</p>
<p><strong><em>OR</em></strong></p>
<p><strong>«</strong>using mathematical functions<strong>» </strong>can calculate expected shapes based on energy minimizations</p>
<p><strong><em>OR</em></strong></p>
<p>better visualization of possible bond rotations/conformation/modes of vibration</p>
<p><strong><em>OR</em></strong></p>
<p>can visualize macromolecules/proteins/DNA</p>
<p><strong><em>OR</em></strong></p>
<p>hydrogen bonding <strong>«</strong>networks<strong>» </strong>can be generated/allows intermolecular forces <strong>«</strong>of attraction<strong>» </strong>to be simulated</p>
<p><strong><em>OR</em></strong></p>
<p>more variety of visualization representations/can observe space filling</p>
<p><strong><em>OR</em></strong></p>
<p>can produce an electron density map/electrostatic potential map</p>
<p><strong><em>OR</em></strong></p>
<p>once model is generated file can be saved for future use/computer models can be shared globally by scientists</p>
<p><strong><em>OR</em></strong></p>
<p>helps design molecules of biological significance/assists in drug design <strong>«</strong>using libraries<strong>»</strong></p>
<p><strong><em>OR</em></strong></p>
<p>can predict molecular interactions with solvents/can predict physical properties/can predict spectral data/can examine crystal structures</p>
<p><strong><em>OR</em></strong></p>
<p><strong>«</strong>often<strong>» </strong>easier to construct/modify <strong>«</strong>model<strong>»</strong></p>
<p> </p>
<p><em>Accept “precise” for “accurate”.</em></p>
<p><em>Accept “computer generated structural </em><em>representation is normally what is </em><em>expected in order to be published </em><strong><em>«</em></strong><em>in a </em><em>scientific journal</em><strong><em>»”.</em></strong></p>
<p><em>Accept “easier to see different sizes of </em><em>atoms/atomic radii”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>bonds within ring have resonance</p>
<p><strong><em>OR</em></strong></p>
<p>contains delocalized <strong>«</strong>conjugated pi<strong>» </strong>electrons in ring</p>
<p> </p>
<p><em>There must be reference to a ring or </em><em>cyclic structure.</em></p>
<p><em>Accept “alternating single and double </em><em>bonds in a ring”.</em></p>
<p><em>Accept “ring which shows </em><em>resonance/delocalization”.</em></p>
<p><em>Accept “follows Hückel/4n +2 rule”.</em></p>
<p><em>Do </em><strong><em>not </em></strong><em>accept “contains one or more </em><em>benzene rings”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>In a class experiment, students were asked to determine the value of <strong>x</strong> in the formula of a hydrated salt, BaCl<sub>2</sub><strong>・x</strong>H<sub>2</sub>O. They followed these instructions:</p>
<ol>
<li>Measure the mass of an empty crucible and lid.</li>
<li>Add approximately 2 g sample of hydrated barium chloride to the crucible and record the mass.</li>
<li>Heat the crucible using a Bunsen burner for five minutes, holding the lid at an angle so gas can escape.</li>
<li>After cooling, reweigh the crucible, lid and contents.</li>
<li>Repeat steps 3 and 4.</li>
</ol>
<p>Their results in three trials were as follows:</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State and explain the further work students need to carry out in trial 2 before they can process the results alongside trial 1.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In trial 3, the students noticed that after heating, the crucible had turned black on the outside. Suggest what may have caused this, and how this might affect the calculated value for <strong>x</strong> in the hydrated salt.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>List <strong>two</strong> assumptions made in this experiment.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>repeat steps 3 and 4<br><em><strong>OR<br></strong></em>repeat step 5<br><em><strong>OR<br></strong></em>conduct a third heating<br><em><strong>OR<br></strong></em>&laquo;re&raquo;heat <em><strong>AND</strong></em> &laquo;re&raquo;weigh &nbsp;</p>
<p>water still present<br><em><strong>OR<br></strong></em>need two consistent readings<br><em><strong>OR<br></strong></em>heat to constant mass</p>
<p><em>Accept &ldquo;ensure even/strong heating&rdquo; for M1.<br>Do <strong>not</strong> accept &ldquo;cleaning/washing the crucible&rdquo;.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>soot/carbon deposited<br><em><strong>OR<br></strong></em>incomplete combustion<br><em><strong>OR<br></strong></em>air hole of Bunsen burner closed/not fully open</p>
<p><em>Accept &ldquo;using a yellow &laquo;Bunsen burner&raquo; flame&rdquo; for M1.</em></p>
<p>&nbsp;</p>
<p>&laquo;value of <strong>x</strong>&raquo; lower</p>
<p><em>Only award M2 if M1 correct.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>all mass loss is due to water loss</p>
<p>all the water &laquo;of crystallization&raquo; is lost</p>
<p>crucible does not absorb/lose water</p>
<p>crystal/BaCl<sub>2</sub> does not decompose/hydrolyse/oxidize/react with oxygen/air &laquo;when heated&raquo;</p>
<p><em>Accept &ldquo;no loss of crystals/BaCl<sub>2</sub> occurs&rdquo;, &ldquo;no impurities in the &laquo;weighed hydrated&raquo; salt&rdquo;, &ldquo;reaction goes to completion&rdquo;, &ldquo;heat was consistent/strong&rdquo;, &ldquo;crystal/BaCl<sub>2</sub> does not absorb water during cooling&rdquo;, &ldquo;balance has been calibrated&rdquo; or &ldquo;crucible was clean at the start&rdquo;. </em></p>
<p><em>Do <strong>not</strong> accept &rdquo;heat loss to surroundings&rdquo; or &ldquo;no carbon deposited on crucible&rdquo;. </em></p>
<p><em>Reference to defects in apparatus not accepted. </em></p>
<p><em>Do <strong>not</strong> penalize if BaCl<sub>2</sub>.<strong>x</strong>H<sub>2</sub>O is used for BaCl<sub>2</sub>.</em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Monosaccharides can combine to form disaccharides and polysaccharides.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the functional groups which are present in only one structure of glucose.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sucrose is a disaccharide formed from \(\alpha \)-glucose and &beta;-fructose.</p>
<p>Deduce the structural formula of sucrose.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Starch is a constituent of many plastics. Suggest <strong>one</strong> reason for including starch&nbsp;in plastics.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest <strong>one</strong> of the challenges scientists face when scaling up the synthesis of a&nbsp;new compound.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>Only in straight chain form:<br></em>carbonyl<br><em><strong>OR</strong></em><br>aldehyde</p>
<p><em>Only in ring structure:</em><br>hemiacetal</p>
<p>&nbsp;</p>
<p><em>Accept functional group abbreviations (eg, CHO etc.).&nbsp;</em></p>
<p><em>Accept &ldquo;ether&rdquo;.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>correct link between the two monosaccharides</p>
<p>&nbsp;</p>
<p><em>Correct 1,4 beta link <strong>AND</strong> all bonds on&nbsp;the 2 carbons in the link required for&nbsp;mark.</em></p>
<p><em>Ignore any errors in the rest of the&nbsp;structure.</em></p>
<p><em>Penalize extra atoms on carbons in link.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>plastic &laquo;more&raquo; biodegradable/degrades into nontoxic products<br><em><strong>OR</strong></em><br>plastic can be produced using green technology/renewable resource<br><em><strong>OR</strong></em><br>reduces fossil fuel use/petrochemicals<br><em><strong>OR</strong></em><br>easily plasticized<br><em><strong>OR</strong></em><br>used to form thermoplasts</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>minimize &laquo;negative&raquo; impact on environment<br><em><strong>OR</strong></em><br>minimize waste produced<br><em><strong>OR</strong></em><br>consider atom economy<br><em><strong>OR</strong></em><br>efficiency of synthetic process<br><em><strong>OR</strong></em><br>problems of side reactions/lower yields<br><em><strong>OR</strong></em><br>control temperature &laquo;inside large reactors&raquo;<br><em><strong>OR</strong></em><br>availability of starting/raw materials<br><em><strong>OR</strong></em><br>minimize energy costs<br><em><strong>OR</strong></em><br>value for money/cost effectiveness/cost of production</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Infrared (IR) spectroscopy is often used for the identification of polymers, such as PETE, for&nbsp;recycling.</p>
</div>

<div class="specification">
<p>LDPE and high density polyethene (HDPE) have very similar IR spectra even though&nbsp;they have rather different structures and physical properties.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Below are the IR spectra of two plastics (<strong>A</strong> and <strong>B</strong>); one is PETE, the other is low&nbsp;density polyethene (LDPE).</p>
<p style="text-align: left;"><img src=""></p>
<p style="text-align: left;">Deduce, giving your reasons, the identity and resin identification code (RIC) of <strong>A</strong> and <strong>B&nbsp;</strong>using sections 26 and 30 of the data booklet.</p>
<p style="text-align: left;"><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the difference in their structures.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the difference in their structures affects their melting points.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>A RIC:</em> 1 <em><strong>AND</strong> B RIC:</em> 4</p>
<p><em><strong>ALTERNATIVE 1:</strong></em><br>&laquo;only&raquo; PETE contains carbonyl/C=O/ester/COO groups<br>carbonyl groups absorb at 1700&ndash;1750 &laquo;cm<sup>&ndash;1</sup>&raquo;</p>
<p><em><strong>ALTERNATIVE 2:</strong></em><br>LDPE contains more C&ndash;H bonds &laquo;than PETE&raquo;<br>C&ndash;H bonds absorb at 2850&ndash;3090 &laquo;cm<sup>&ndash;1</sup>&raquo;</p>
<p>&nbsp;</p>
<p><em>For either, accept specific frequencies&nbsp;in these ranges (eg 1735 &laquo;cm<sup>&ndash;1</sup>&raquo; or 2900 &laquo;cm<sup>&ndash;1</sup>&raquo;).</em></p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>HDPE less branched<br><em><strong>OR</strong></em><br>LDPE more branched</p>
<p>&nbsp;</p>
<p><em>Accept &ldquo;no branching in HDPE <strong>AND&nbsp;</strong>branching in LDPE&rdquo;.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>HDPE &laquo;polymer&raquo; chains/molecules can pack together more closely &laquo;than&nbsp;LDPE chains&raquo;<br><em><strong>OR</strong></em><br>HDPE &laquo;polymer&raquo; chains/molecules have a higher contact surface area &laquo;than&nbsp;LDPE chains&raquo;</p>
<p>stronger intermolecular/dispersion/London/van der Waals&rsquo; forces in HDPE&nbsp;<em><strong>AND</strong> </em>higher melting point</p>
<p>&nbsp;</p>
<p><em>Accept converse arguments.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Carbohydrates are energy-rich molecules which can be synthesized in some plant cells from inorganic compounds.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the raw materials and source of energy used in the process described above.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The structures of two molecules, <strong>X</strong> and <strong>Y</strong>, are shown below.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">(i) Justify why both these molecules are carbohydrates.</p>
<p style="text-align: left;">(ii) Distinguish between these molecules in terms of their functional groups.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Amylose is an unbranched polysaccharide composed of repeating units of glucose.</p>
<p>(i) Draw the structure of the repeating unit of amylose. Use section 34 of the data booklet.</p>
<p>(ii) Amylose is a major component of starch. Corn starch can be used to make replacements for plastics derived from oil, especially for packaging. Discuss <strong>one</strong> potential advantage and <strong>one</strong> disadvantage of this use of starch.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>CO<sub>2</sub> <em><strong>AND</strong></em> H<sub>2</sub>O <em><strong>AND</strong></em> sun</p>
<p><em>Accept names.</em><br><em>Accept &ldquo;sunlight/light/photons&rdquo; instead of &ldquo;sun&rdquo;.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>i</p>
<p>both have formula C<sub>x</sub>(H<sub>2</sub>O)<sub>y</sub><br><em><strong>OR</strong></em><br>both contain several OH/hydroxyl &laquo;groups&raquo; <em><strong>AND</strong></em> a C=O/carbonyl &laquo;group&raquo;</p>
<p><em>Accept &ldquo;both have the formula C<sub>n</sub>H<sub>2n</sub>O<sub>n</sub> /empirical formula CH<sub>2</sub>O&rdquo; but do <strong>not</strong> accept &ldquo;both have same molecular formula/have formula C<sub>3</sub>H<sub>6</sub>O<sub>3</sub>&rdquo;.</em></p>
<p><em>Accept &ldquo;aldehyde or ketone&rdquo; for &ldquo;carbonyl&rdquo;.</em></p>
<p>&nbsp;</p>
<p>ii</p>
<p><img src=""></p>
<p><em>Accept &ldquo;alkyl&rdquo; for &ldquo;R&rdquo;.</em><br><em>Accept &ldquo;<strong>X</strong>: aldose/aldehyde <strong>AND Y</strong>: ketose/ketone&rdquo;.</em><br><em>Accept &ldquo;CO&rdquo; for &ldquo;C=O&rdquo;.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>i</p>
<p><img src=""></p>
<p>continuation bonds <em><strong>AND</strong></em> open O on either but not both ends</p>
<p><em>Brackets are not necessary for the mark.</em><br><em>Do <strong>not</strong> accept &beta;-isomer.</em><br><em>Mark may be awarded if a polymer is shown but with the repeating unit clearly identified.</em><br><em>3-D representation is <strong>not</strong> required.</em></p>
<p>&nbsp;</p>
<p>ii</p>
<p><em>Advantage:<br>Any one of:</em></p>
<p>biodegradable / break down naturally/by bacteria</p>
<p><em>Do <strong>not</strong> accept just &ldquo;decompose easily&rdquo;.</em></p>
<p>compostable</p>
<p>does not contribute to land-fill</p>
<p>renewable/sustainable resource</p>
<p>starch grains swell <em><strong>AND</strong></em> help break up plastic</p>
<p>lower greenhouse gas emissions</p>
<p>uses less fossil fuels than traditional plastics</p>
<p>less energy needed for production</p>
<p>&nbsp;</p>
<p><em>Disadvantage:<br>Any one of:</em></p>
<p>land use &laquo;affects biodiversity/loss of habitat&raquo;</p>
<p>growing corn for plastics instead of food</p>
<p>&laquo;starch&raquo; breakdown can increase acidity of soil/compost</p>
<p>&laquo;starch&raquo; breakdown can produce methane &laquo;especially when buried&raquo;</p>
<p>sensitive to moisture/bacteria/acidic foods</p>
<p>&laquo;bioplastics sometimes&raquo; degrade quickly/before end of use</p>
<p>cannot be reused</p>
<p>poor mechanical strength</p>
<p>eutrophication</p>
<p>increased use of fertilizers/pesticides/phosphorus/nitrogen &laquo;has negative environmental effects&raquo;</p>
<p><em>Ignore any reference to cost.<br><br>Accept &ldquo;prone to site explosions/fires&rdquo; or &ldquo;low heat resistance&rdquo; for disadvantage.</em></p>
<p><em>Only award<strong> [1 max]</strong> if the same example is used for the advantage and disadvantage.</em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br>