File "markSceme-SL-paper1.html"
Path: /IB QUESTIONBANKS/4 Fourth Edition - PAPER/HTML/Chemistry/Topic 10/markSceme-SL-paper1html
File size: 275.08 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-746ec5d03ead8d9e8b3bb7d32173f2b4e2e22a05f0c5278e086ab55b3c9c238e.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-3c91afd8a2942c18d21ed2700e1bdec14ada97f1d3788ae229315e1276d81453.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../index.html">Home</a>
</li>
<li class="active dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Questionbanks
<b class="caret"></b>
</a><ul class="dropdown-menu">
<li>
<a href="../../geography.html" target="_blank">DP Geography</a>
</li>
<li>
<a href="../../physics.html" target="_blank">DP Physics</a>
</li>
<li>
<a href="../../chemistry.html" target="_blank">DP Chemistry</a>
</li>
<li>
<a href="../../biology.html" target="_blank">DP Biology</a>
</li>
<li>
<a href="../../furtherMath.html" target="_blank">DP Further Mathematics HL</a>
</li>
<li>
<a href="../../mathHL.html" target="_blank">DP Mathematics HL</a>
</li>
<li>
<a href="../../mathSL.html" target="_blank">DP Mathematics SL</a>
</li>
<li>
<a href="../../mathStudies.html" target="_blank">DP Mathematical Studies</a>
</li>
</ul></li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="images/logo.jpg" alt="Ib qb 46 logo">
</div>
</div>
</div><h2>SL Paper 1</h2><div class="question">
<p>What is the product of the reaction between hex-3-ene and steam?</p>
<p>A. Hexan-1-ol</p>
<p>B. Hexan-2-ol</p>
<p>C. Hexan-3-ol</p>
<p>D. Hexan-4-ol</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Applying IUPAC rules, what is the name of \({\text{C}}{{\text{H}}_{\text{3}}}{\text{CH(C}}{{\text{H}}_{\text{3}}}{\text{)C}}{{\text{H}}_{\text{2}}}{\text{COOH}}\)?</p>
<p>A. 2,3-dimethylpropanoic acid</p>
<p>B. Pentanoic acid</p>
<p>C. 3-methylbutanoic acid</p>
<p>D. 2-methylbutanoic acid</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>There were no comments about this question but it is worth noting that over 56% chose answer D. </p>
</div>
<br><hr><br><div class="question">
<p class="p1">Which organic molecule is <span class="s1"><strong>not </strong></span>a structural isomer of pentan-1-ol?</p>
<p class="p1">A. pentan-2-ol</p>
<p class="p1">B. 2-methylpentan-2-ol</p>
<p class="p1">C. 2-methylbutan-2-ol</p>
<p class="p1">D. pentan-3-ol</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>In which pair are both compounds secondary?</p>
<p><img src="images/Schermafbeelding_2016-08-16_om_09.52.42.png" alt="M14/4/CHEMI/SPM/ENG/TZ2/29"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>This question could have been better worded but 72% of the candidates chose the correct answer.</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Which of the following pairs are members of the same homologous series?</p>
<p class="p1">A. <span class="Apple-converted-space"> </span>\({\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{OH}}\) and \({\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{CHO}}\)</p>
<p class="p1">B. <span class="Apple-converted-space"> </span>\({\text{C}}{{\text{H}}_{\text{3}}}{\text{CH(OH)C}}{{\text{H}}_{\text{3}}}\) and \({\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{CH(OH)C}}{{\text{H}}_{\text{3}}}\)</p>
<p class="p1">C. <span class="Apple-converted-space"> </span>\({\text{C}}{{\text{H}}_{\text{3}}}{\text{COC}}{{\text{H}}_{\text{3}}}\) and \({\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{COOH}}\)</p>
<p class="p1">D. <span class="Apple-converted-space"> </span>\({\text{C}}{{\text{H}}_{\text{3}}}{\text{COC}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{3}}}\) and \({\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{CHO}}\)</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which properties are features of a homologous series?</p>
<p>I. Same general formula</p>
<p>II. Similar chemical properties</p>
<p>III. Gradation in physical properties</p>
<p> </p>
<p>A. I and II only</p>
<p>B. I and III only</p>
<p>C. II and III only</p>
<p>D. I, II and III</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>One respondent opined that the word “gradation” is difficult to understand, particularly for students not working in their mother tongue. Whilst other words could have been used, this word was used because it appears in the syllabus.</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Some methane gas is burned in a limited supply of oxygen. Which products could form?</p>
<p class="p1">I. C(s)</p>
<p class="p1">II. CO(g)</p>
<p class="p1">III. CO<sub><span class="s1">2</span></sub>(g)</p>
<p class="p1"> </p>
<p class="p1">A. I and II only</p>
<p class="p1">B. I and III only</p>
<p class="p1">C. II and III only</p>
<p class="p1">D. I, II and III</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p class="p1">We recognize that this might be a language problem. “Incomplete combustion” is not the same as “burned in a limited supply of oxygen”. Candidates may also have not read “could” correctly. The correct answer was D. This was the “hardest” question on the paper.</p>
</div>
<br><hr><br><div class="question">
<p class="p1">How many <strong>structural </strong>isomers exist with the formula \({{\text{C}}_{\text{3}}}{{\text{H}}_{\text{5}}}{\text{C}}{{\text{l}}_{\text{3}}}\)?</p>
<p class="p1">A. <span class="Apple-converted-space"> </span>3</p>
<p class="p1">B. <span class="Apple-converted-space"> </span>4</p>
<p class="p1">C. <span class="Apple-converted-space"> </span>5</p>
<p class="p1">D. <span class="Apple-converted-space"> </span>6</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">What are possible products of the incomplete combustion of propane?</p>
<p class="p1">A. carbon monoxide, hydrogen and carbon</p>
<p class="p1">B. carbon dioxide, carbon and hydrogen</p>
<p class="p1">C. carbon, carbon monoxide and water</p>
<p class="p1">D. carbon dioxide and water only</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p class="p1">C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which equation represents a propagation step in the reaction of methane with bromine?</p>
<p>A. \({\text{C}}{{\text{H}}_{\text{4}}} \to {\text{C}}{{\text{H}}_{\text{3}}} \bullet + {\text{H}} \bullet \)</p>
<p>B. \({\text{C}}{{\text{H}}_{\text{4}}} + {\text{Br}} \bullet \to {\text{C}}{{\text{H}}_{\text{3}}} \bullet + {\text{HBr}}\)</p>
<p>C. \({\text{C}}{{\text{H}}_{\text{4}}} + {\text{Br}} \bullet \to {\text{C}}{{\text{H}}_{\text{3}}}{\text{Br}} + {\text{H}} \bullet \)</p>
<p>D. \({\text{C}}{{\text{H}}_{\text{3}}} \bullet + {\text{Br}} \bullet \to {\text{C}}{{\text{H}}_{\text{3}}}{\text{Br}}\)</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>Answer C was the most popular distractor, given by nearly a quarter of the candidates. It is a common misconception that a bromine radical can displace a hydrogen radical.</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Which species can oxidize ethanol to ethanoic acid?</p>
<p class="p1">A. <span class="Apple-converted-space"> </span>\({{\text{I}}^ - }\)</p>
<p class="p2">B. <span class="Apple-converted-space"> </span>Fe</p>
<p class="p2">C. <span class="Apple-converted-space"> </span>\({{\text{O}}^{2 - }}\)</p>
<p class="p2">D. <span class="Apple-converted-space"> </span>Acidified \({{\text{K}}_{\text{2}}}{\text{C}}{{\text{r}}_{\text{2}}}{{\text{O}}_{\text{7}}}\)</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p class="p1">D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>What is the major product of the reaction between HCl and but-2-ene?</p>
<p>A. 1,2-dichlorobutane</p>
<p>B. 2,3-dichlorobutane</p>
<p>C. 1-chlorobutane</p>
<p>D. 2-chlorobutane</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>What is the mechanism for the reaction of propene with iodine in the dark?</p>
<p>A. electrophilic addition</p>
<p>B. electrophilic substitution</p>
<p>C. free radical substitution</p>
<p>D. nucleophilic substitution</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">What happens when a few drops of bromine water are added to excess hex-1-ene and the mixture is shaken?</p>
<p class="p1">I. The colour of the bromine water disappears.</p>
<p class="p1">II. The organic product formed does not contain any carbon-carbon double bonds.</p>
<p class="p1">III. 2-bromohexane is formed.</p>
<p class="p1">A. I and II only</p>
<p class="p1">B. I and III only</p>
<p class="p1">C. II and III only</p>
<p class="p1">D. I, II and III</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">Which substance can be polymerized to produce the polymer below?</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-14_om_15.08.41.png" alt="M13/4/CHEMI/SPM/ENG/TZ1/28"></p>
<p class="p1">A. But-1-ene</p>
<p class="p1">B. But-2-ene</p>
<p class="p1">C. Propene</p>
<p class="p1">D. 2-methylpropene</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p class="p1">C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">Which of the structures below is an aldehyde?</p>
<p class="p1">A. <span class="Apple-converted-space"> </span>\({\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{OH}}\)</p>
<p class="p1">B. <span class="Apple-converted-space"> </span>\({\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{COC}}{{\text{H}}_{\text{3}}}\)</p>
<p class="p1">C. <span class="Apple-converted-space"> </span>\({\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{COOC}}{{\text{H}}_{\text{3}}}\)</p>
<p class="p1">D. <span class="Apple-converted-space"> </span>\({\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{CH O}}\)</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p class="p1">There were three G2 comments on this question stating that the wording of the question was ambiguous (e.g. use of the word relatively etc.). This was discussed at Grade Award and for this reason it was decided to remove this question.</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Which order is correct when the following substances are arranged in order of <strong>increasing</strong> boiling point?</p>
<p class="p1">A. <span class="Apple-converted-space"> </span>\({\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{3}}} < {\text{C}}{{\text{H}}_{\text{3}}}{\text{CHO}} < {\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{OH}}\)</p>
<p class="p1">B. <span class="Apple-converted-space"> </span>\({\text{C}}{{\text{H}}_{\text{3}}}{\text{CHO}} < {\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{OH}} < {\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{3}}}\)</p>
<p class="p1">C. <span class="Apple-converted-space"> </span>\({\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{OH}} < {\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{3}}} < {\text{C}}{{\text{H}}_{\text{3}}}{\text{CHO}}\)</p>
<p class="p1">D. <span class="Apple-converted-space"> </span>\({\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{3}}} < {\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{OH}} < {\text{C}}{{\text{H}}_{\text{3}}}{\text{CHO}}\)</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p class="p1">One respondent stated that it would be best to write from least reactive to most reactive in both of these questions. However, “increasing” is written in bold in both questions and, also, this type of question has been asked extensively on previous papers and hence candidates would have understood what was asked for explicitly if they had looked at some of the previous examination papers. In the case of Q.13 60% of candidates gave the correct answer and in Q.27, 68% had the question correct.</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Which of the following are isomers of pentane?</p>
<p class="p1">I. 2-methylpentane</p>
<p class="p1">II. methylbutane</p>
<p class="p1">III. dimethylpropane</p>
<p class="p1">A. I and II only</p>
<p class="p1">B. I and III only</p>
<p class="p1">C. II and III only</p>
<p class="p1">D. I, II and III</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">Which compound is <strong>not </strong>an isomer of hexane?</p>
<p class="p1">A. <span class="Apple-converted-space"> </span>\({\text{C}}{{\text{H}}_{\text{3}}}{\text{CH(C}}{{\text{H}}_{\text{3}}}{\text{)C}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{3}}}\)</p>
<p class="p1">B. <span class="Apple-converted-space"> </span>\({\text{C}}{{\text{H}}_{\text{3}}}{\text{CHCHC}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{3}}}\)</p>
<p class="p1">C. <span class="Apple-converted-space"> </span>\({{\text{(C}}{{\text{H}}_{\text{3}}}{\text{)}}_{\text{3}}}{\text{CC}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{3}}}\)</p>
<p class="p1">D. <span class="Apple-converted-space"> </span>\({\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{CH(C}}{{\text{H}}_{\text{3}}}{\text{)C}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{3}}}\)</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which steps are involved in the free-radical mechanism of the bromination of ethane in the presence of ultraviolet radiation?</p>
<p>I. \({{\text{C}}_2}{{\text{H}}_6} + {\text{Br}} \bullet \to {{\text{C}}_2}{{\text{H}}_5} \bullet + {\text{HBr}}\)</p>
<p>II. \({{\text{C}}_2}{{\text{H}}_5} \bullet {\text{B}}{{\text{r}}_2} \to {{\text{C}}_2}{{\text{H}}_5}{\text{Br}} + {\text{Br}} \bullet \)</p>
<p>III. \({{\text{C}}_2}{{\text{H}}_5} \bullet + {\text{Br}} \bullet \to {{\text{C}}_2}{{\text{H}}_5}{\text{Br}}\)</p>
<p>A. I and II only</p>
<p>B. I and III only</p>
<p>C. II and III only</p>
<p>D. I, II and III</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p class="p1">D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">Which monomer could be used to form a polymer with the following repeating unit?</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-27_om_08.28.11.png" alt="N10/4/CHEMI/SPM/ENG/TZ0/28"></p>
<p class="p1">A. <span class="Apple-converted-space"> </span>\({\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{Cl}}\)</p>
<p class="p1">B. <span class="Apple-converted-space"> </span>\({\text{C}}{{\text{H}}_{\text{2}}}{\text{ClC}}{{\text{H}}_{\text{2}}}{\text{Cl}}\)</p>
<p class="p1">C. <span class="Apple-converted-space"> </span>\({\text{C}}{{\text{H}}_{\text{2}}}{\text{CHCl}}\)</p>
<p class="p1">D. <span class="Apple-converted-space"> </span> CHClCHCl</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">Which organic product forms in the following reaction?</p>
<p class="p2">\[{{\text{(C}}{{\text{H}}_3}{\text{)}}_2}{\text{CHOH}}\xrightarrow[{{\text{reflux}}}]{{{{\text{K}}_2}{\text{C}}{{\text{r}}_2}{{\text{O}}_7}{\text{/}}{{\text{H}}^ + }}}\]</p>
<p class="p1">A. <span class="Apple-converted-space"> </span>Ethanoic acid</p>
<p class="p1">B. <span class="Apple-converted-space"> </span>Propanal</p>
<p class="p1">C. <span class="Apple-converted-space"> </span>Propanone</p>
<p class="p1">D. <span class="Apple-converted-space"> </span>Propanoic acid</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p class="p1">C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which compound contains a secondary carbon atom?</p>
<p>A. CH<sub>3</sub>CH(Cl)CH(CH<sub>3</sub>)<sub>2</sub></p>
<p>B. (CH<sub>3</sub>)<sub>2</sub>CHCH<sub>2</sub>Cl</p>
<p>C. (CH<sub>3</sub>)<sub>3</sub>CCl</p>
<p>D. CH<sub>3</sub>CH<sub>2</sub>Cl</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>How many structural isomers of C<sub>6</sub>H<sub>14</sub> exist?</p>
<p>A. 4</p>
<p>B. 5</p>
<p>C. 6</p>
<p>D. 7</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">Consider the compound \({\text{(C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{)CH=CH(C}}{{\text{H}}_{\text{3}}}{\text{)}}\). Which statements are correct?</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-11-01_om_17.14.59.png" alt="M12/4/CHEMI/SPM/ENG/TZ2/26"></p>
<p class="p1">I. <span class="Apple-converted-space"> </span>A suitable name is pent-2-ene.</p>
<p class="p1">II. <span class="Apple-converted-space"> </span>The empirical formula is \({\text{C}}{{\text{H}}_{\text{2}}}\).</p>
<p class="p1">III. <span class="Apple-converted-space"> </span>An isomer of the compound is pentane.</p>
<p class="p1">A. <span class="Apple-converted-space"> </span>I and II only</p>
<p class="p1">B. <span class="Apple-converted-space"> </span>I and III only</p>
<p class="p1">C. <span class="Apple-converted-space"> </span>II and III only</p>
<p class="p1">D. <span class="Apple-converted-space"> </span>I, II and III</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p class="p1">Three respondents commented on this question. One respondent stated that a 3D structure should not be used here. As previously mentioned in this report, candidates should be encouraged to see a whole range of different representations of structures and in organic chemistry it is especially important that candidates are exposed to 3D representations as part of the overall teaching of organic chemistry. Another respondent stated that it would have been better if statement I. was instead given as a suitable name for the compound is pent-2-ene, which is a fair comment. This was mirrored by another respondent who stated that the molecule drawn is in fact a geometrical isomer and hence E should have been used. Although this is correct, at SL in Topic 10, it is clearly stated that the distinction between <em>cis </em>and <em>trans </em>isomers is not required (TN for AS 10.1.8), so this is the reason why reference was not given to (2E)-pent-2-ene in the question, so the respondent is correct in stating that it would be better if the term IUPAC name was not given for this reason.</p>
</div>
<br><hr><br><div class="question">
<p>Which of these reactions proceeds by a free radical mechanism in the presence of UV light?</p>
<p>A. C<sub>6</sub>H<sub>6</sub> + Cl<sub>2</sub> → C<sub>6</sub>H<sub>5</sub>Cl + HCl</p>
<p>B. C<sub>6</sub>H<sub>6</sub> + 3H<sub>2</sub> → C<sub>6</sub>H<sub>12</sub></p>
<p>C. CH<sub>2</sub>CH<sub>2</sub> + HBr → CH<sub>3</sub>CH<sub>2</sub>Br</p>
<p>D. CH<sub>3</sub>CH<sub>3</sub> + Cl<sub>2</sub> → CH<sub>3</sub>CH<sub>2</sub>Cl + HCl</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">Which is a tertiary halogenoalkane?</p>
<p class="p1">A. <span class="Apple-converted-space"> </span>\({\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{Br}}\)</p>
<p class="p1">B. <span class="Apple-converted-space"> </span>\({\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{CH(C}}{{\text{H}}_{\text{3}}}{\text{)Cl}}\)</p>
<p class="p1">C. <span class="Apple-converted-space"> </span>\({\text{C(C}}{{\text{H}}_{\text{3}}}{{\text{)}}_{\text{3}}}{\text{Br}}\)</p>
<p class="p1">D. <span class="Apple-converted-space"> </span>\({\text{C}}{{\text{H}}_{\text{3}}}{\text{CHClC}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{3}}}\)</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">Which statement is correct about the polymerization of ethene to poly(ethene)?</p>
<p class="p1">A. The polymer is an alkene.</p>
<p class="p1">B. The monomer ethene and the repeating unit have the same empirical formula.</p>
<p class="p1">C. The monomer ethene is less reactive than the polymer.</p>
<p class="p1">D. The polymer contains C<span class="s1">−</span>C single and C<span class="s1">=</span>C double bonds.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p class="p1">B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which structural formula represents a secondary halogenoalkane?</p>
<p>A. \({\text{C}}{{\text{H}}_{\text{3}}}{\text{CHBrC}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{3}}}\)</p>
<p>B. \({{\text{(C}}{{\text{H}}_{\text{3}}}{\text{)}}_{\text{3}}}{\text{CBr}}\)</p>
<p>C. \({\text{C}}{{\text{H}}_{\text{3}}}{{\text{(C}}{{\text{H}}_{\text{2}}}{\text{)}}_{\text{3}}}{\text{Br}}\)</p>
<p>D. \({{\text{(C}}{{\text{H}}_{\text{3}}}{\text{)}}_{\text{2}}}{\text{CHC}}{{\text{H}}_{\text{2}}}{\text{Br}}\)</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>What is the order of increasing boiling point?</p>
<p>A. C<sub>4</sub>H<sub>10</sub> < CH<sub>3</sub>COOH < CH<sub>3</sub>CH<sub>2</sub>CHO < CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>OH</p>
<p>B. C<sub>4</sub>H<sub>10</sub> < CH<sub>3</sub>CH<sub>2</sub>CHO < CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>OH < CH<sub>3</sub>COOH</p>
<p>C. CH<sub>3</sub>COOH < CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>OH< CH<sub>3</sub>CH<sub>2</sub>CHO < C<sub>4</sub>H<sub>10</sub></p>
<p>D. C<sub>4</sub>H<sub>10</sub> < CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>OH < CH<sub>3</sub>CH<sub>2</sub>CHO < CH<sub>3</sub>COOH</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">What is the organic product of the reaction between 2-chlorobutane and sodium hydroxide solution?</p>
<p class="p1">A. Butan-1-ol</p>
<p class="p1">B. Butan-2-ol</p>
<p class="p1">C. Butanal</p>
<p class="p1">D. Butanone</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">What is the name of the following molecule applying IUPAC rules?</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-14_om_15.00.41.png" alt="M13/4/CHEMI/SPM/ENG/TZ1/25"></p>
<p class="p1">A. 1,1-dimethylbutane</p>
<p class="p1">B. Hexane</p>
<p class="p1">C. 2-methylpentane</p>
<p class="p1">D. 4-methylpentane</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p class="p1">C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which equation represents the initiation reaction when methane reacts with chlorine in the presence of ultraviolet light?</p>
<p>A. \({\text{C}}{{\text{H}}_{\text{4}}} \to {\text{C}}{{\text{H}}_{\text{3}}} \bullet + {\text{H}} \bullet \)</p>
<p>B. \({\text{C}}{{\text{l}}_2} \to {\text{2Cl}} \bullet \)</p>
<p>C. \({\text{C}}{{\text{l}}_2} \to {\text{C}}{{\text{l}}^ + } + {\text{C}}{{\text{l}}^ - }\)</p>
<p>D. \({\text{C}}{{\text{H}}_3} \bullet + {\text{C}}{{\text{l}}_2} \to {\text{C}}{{\text{H}}_3}{\text{Cl}} + {\text{Cl}} \bullet \)</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>What is the name of the compound with this molecular structure applying IUPAC rules?</p>
<p style="text-align: center;"><img src=""></p>
<p>A. 1-methylpropanoic acid</p>
<p>B. 2-methylpropanoic acid</p>
<p>C. 2-methylbutanoic acid</p>
<p>D. 3-methylbutanoic acid</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">Which statements about the chlorine free radical are correct?</p>
<p class="p1">I. It has 18 electrons.</p>
<p class="p1">II. It is an uncharged species.</p>
<p class="p1">III. It is formed by homolytic fission.</p>
<p class="p1">A. I and II only</p>
<p class="p1">B. I and III only</p>
<p class="p1">C. II and III only</p>
<p class="p1">D. I, II and III</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p class="p1">C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<div class="page" title="Page 3">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 3">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 3">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 3">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 4">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 7">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 7">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 8">
<div class="section">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 8">
<div class="section">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 9">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 9">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 9">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 9">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 10">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 10">
<div class="layoutArea">
<div class="column">
<p>What is the general formula of the alkyne series?</p>
<p>A. C<em><sub>n</sub></em>H<em><sub>n</sub></em></p>
<p>B. C<em><sub>n</sub></em>H<sub>2<em>n</em>-2</sub></p>
<p>C. C<em><sub>n</sub></em>H<sub>2<em>n</em></sub></p>
<p>D. C<em><sub>n</sub></em>H<sub>2<em>n</em>+2</sub></p>
<p> <sub> </sub></p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which compound can be oxidized when heated with an acidified solution of potassium dichromate(VI)?</p>
<p>A. CH<sub>3</sub>C(O)CH<sub>2</sub>CH<sub>3</sub></p>
<p>B. CH<sub>3</sub>CH<sub>2</sub>CH(OH)CH<sub>3</sub></p>
<p>C. (CH<sub>3</sub>)<sub>3</sub>COH</p>
<p>D. CH<sub>3</sub>(CH<sub>2</sub>)<sub>2</sub>COOH</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which conditions are used to convert ethanol to ethanal?</p>
<p>A. Excess oxidizing agent and reflux</p>
<p>B. Excess oxidizing agent and distillation</p>
<p>C. Excess ethanol and reflux</p>
<p>D. Excess ethanol and distillation</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>What is the name of the alkane shown in the diagram below, applying IUPAC rules?</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-23_om_05.30.50.png" alt="N14/4/CHEMI/SPM/ENG/TZ0/26"></p>
<p>A. Hexane</p>
<p>B. 1,1,1-trimethylpropane</p>
<p>C. Ethylmethylpropane</p>
<p>D. 2,2-dimethylbutane</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>This question was answered correctly by the most candidates (87.72%).</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Which compound could be <strong>X </strong>in the two-stage reaction pathway?</p>
<p class="p1" style="text-align: center;">\({{\text{C}}_{\text{2}}}{{\text{H}}_{\text{4}}} \to \) <strong>X</strong> \( \to {{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}{\text{OH}}\)</p>
<p class="p1">A. <span class="Apple-converted-space"> </span>\({{\text{C}}_{\text{2}}}{{\text{H}}_{\text{6}}}\)</p>
<p class="p1">B. <span class="Apple-converted-space"> </span>\({{\text{C}}_{\text{2}}}{{\text{H}}_{\text{3}}}{\text{OH}}\)</p>
<p class="p1">C. <span class="Apple-converted-space"> </span>\({{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}{\text{Br}}\)</p>
<p class="p1">D. <span class="Apple-converted-space"> </span>\({{\text{C}}_{\text{2}}}{{\text{H}}_{\text{4}}}{\text{C}}{{\text{l}}_{\text{2}}}\)</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p class="p1">C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">What is the product of the oxidation of butan-2-ol?</p>
<p class="p1">A. But-2-ene</p>
<p class="p1">B. Butanoic acid</p>
<p class="p1">C. Butanal</p>
<p class="p1">D. Butanone</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p class="p1">This proved to be one of the most challenging questions on the paper with a difficulty index of 42%, with more candidates selecting oxidation products from a primary alcohol (B and C) than the correct response. It did however prove to be a very good discriminator with a discrimination index of 0.56.</p>
</div>
<br><hr><br><div class="question">
<div class="page" title="Page 10">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 10">
<div class="layoutArea">
<div class="column">
<p>What is the mechanism of the reaction between ethane and chlorine in sunlight?</p>
A. Free radical substitution</div>
<div class="column">B. Free radical addition<br>C. Electrophilic substitution<br>D. Electrophilic addition</div>
</div>
<div class="layoutArea">
<div class="column">
<p> </p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">What is the name of \({{\text{(C}}{{\text{H}}_{\text{3}}}{\text{)}}_{\text{3}}}{\text{CCOC}}{{\text{H}}_{\text{3}}}\), applying IUPAC rules?</p>
<p class="p1">A. <span class="Apple-converted-space"> </span>2,2-dimethylbutan-3-one</p>
<p class="p1">B. <span class="Apple-converted-space"> </span>3,3-dimethylbutan-2-one</p>
<p class="p1">C. <span class="Apple-converted-space"> </span>2,2-dimethylbutanal</p>
<p class="p1">D. <span class="Apple-converted-space"> </span>3,3-dimethylbutanal</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p class="p1">B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">Which substance is <strong>not </strong>produced during the combustion of alkanes?</p>
<p class="p1">A. <span class="Apple-converted-space"> </span>\({\text{C}}{{\text{O}}_{\text{2}}}\)</p>
<p class="p1">B. <span class="Apple-converted-space"> </span>CO</p>
<p class="p1">C. <span class="Apple-converted-space"> </span>C</p>
<p class="p1">D. <span class="Apple-converted-space"> </span>\({{\text{H}}_{\text{2}}}\)</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">Which conditions are required to obtain a good yield of a carboxylic acid when ethanol is oxidized using potassium dichromate(VI), \({{\text{K}}_{\text{2}}}{\text{C}}{{\text{r}}_{\text{2}}}{{\text{O}}_{\text{7}}}{\text{(aq)}}\)?</p>
<p class="p1" style="padding-left: 30px;">I. <span class="Apple-converted-space"> </span>Add sulfuric acid</p>
<p class="p1" style="padding-left: 30px;">II. <span class="Apple-converted-space"> </span>Heat the reaction mixture under reflux</p>
<p class="p1" style="padding-left: 30px;">III. <span class="Apple-converted-space"> </span>Distil the product as the oxidizing agent is added</p>
<p class="p1">A. <span class="Apple-converted-space"> </span>I and II only</p>
<p class="p1">B. <span class="Apple-converted-space"> </span>I and III only</p>
<p class="p1">C. <span class="Apple-converted-space"> </span>II and III only</p>
<p class="p1">D. <span class="Apple-converted-space"> </span>I, II and III</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p class="p1">One teacher commented on the G2 form that this question required more specific knowledge than was indicated by the syllabus and indeed many candidates found this question challenging, as indicated by the very high number of blank responses and the difficulty index of 33%. The discrimination index of 0.23 showed that it was accessible to many of the better candidates.</p>
</div>
<br><hr><br><div class="question">
<p>Which are structural isomers?</p>
<p> I. CH<sub>3</sub>CH<sub>2</sub>OH and CH<sub>3</sub>OCH<sub>3</sub></p>
<p> II. HOCH<sub>2</sub>CH<sub>3</sub> and CH<sub>3</sub>CH<sub>2</sub>OH</p>
<p> III. CH<sub>3</sub>COOH and HCOOCH<sub>3</sub></p>
<p>A. I and II only</p>
<p>B. I and III only</p>
<p>C. II and III only</p>
<p>D. I, II and III</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">What is the IUPAC name for \({\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{CH(C}}{{\text{H}}_{\text{3}}}{\text{)C}}{{\text{H}}_{\text{3}}}\)?</p>
<p class="p1">A. <span class="Apple-converted-space"> </span>1,1-dimethylpropane</p>
<p class="p1">B. <span class="Apple-converted-space"> </span>2-ethylpropane</p>
<p class="p1">C. <span class="Apple-converted-space"> </span>2-methylbutane</p>
<p class="p1">D. <span class="Apple-converted-space"> </span>3-methylbutane</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">Which statement about a homologous series is correct?</p>
<p class="p1">A. Members of the series differ by CH<sub><span class="s1">3</span></sub>.</p>
<p class="p1">B. Members of the series have the same physical properties.</p>
<p class="p1">C. Members of the series have the same empirical formula.</p>
<p class="p1">D. Members of the series have similar chemical properties.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">Which three compounds can be considered to be a homologous series?</p>
<p class="p1">A. <span class="Apple-converted-space"> </span>\({\text{C}}{{\text{H}}_{\text{3}}}{\text{OH, C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{OH, C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{OH}}\)</p>
<p class="p1">B. <span class="Apple-converted-space"> </span>\({\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{OH, C}}{{\text{H}}_{\text{3}}}{\text{CHO, C}}{{\text{H}}_{\text{3}}}{\text{COOH}}\)</p>
<p class="p1">C. <span class="Apple-converted-space"> </span>\({\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{CH(OH)C}}{{\text{H}}_{\text{3}}}{\text{, C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{OH, (C}}{{\text{H}}_{\text{3}}}{{\text{)}}_{\text{3}}}{\text{COH}}\)</p>
<p class="p1">D. <span class="Apple-converted-space"> </span>\({\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{OH, C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{OC}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{3}}}{\text{, (C}}{{\text{H}}_{\text{3}}}{{\text{)}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{CHO}}\)</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which type of reaction occurs between an alcohol and a carboxylic acid?</p>
<p>A. Addition</p>
<p>B. Oxidation</p>
<p>C. Esterification</p>
<p>D. Polymerization</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">What is the IUPAC name of the following compound?</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-10-19_om_07.48.43.png" alt="M09/4/CHEMI/SPM/ENG/TZ2/28"></p>
<p class="p1">A. 2-methylbutane</p>
<p class="p1">B. Ethylpropane</p>
<p class="p1">C. 3-methylbutane</p>
<p class="p1">D. Pentane</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p class="p1">This question provoked a large number of comments on G2 forms, mainly stating that 2-methylbutane should have been given rather than just methylbutane. There is some merit to this although in this case the word methylbutane alone is not ambiguous. Though many were attracted by the incorrect response of 3-methylbutane, a greater number of candidates answered the question correctly and it proved quite a good discriminator, with a discrimination index of 0.41.</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Which equations represent the incomplete combustion of methane?</p>
<p class="p1">I. <span class="Apple-converted-space"> </span>\({\text{C}}{{\text{H}}_4}{\text{(g)}} + {\text{2}}{{\text{O}}_2}{\text{(g)}} \to {\text{C}}{{\text{O}}_2}{\text{(g)}} + {\text{2}}{{\text{H}}_2}{\text{O(g)}}\)</p>
<p class="p1">II. <span class="Apple-converted-space"> </span>\({\text{C}}{{\text{H}}_4}{\text{(g)}} + {\text{1}}\frac{1}{2}{{\text{O}}_2}{\text{(g)}} \to {\text{CO(g)}} + {\text{2}}{{\text{H}}_2}{\text{O(g)}}\)</p>
<p class="p1">III. <span class="Apple-converted-space"> </span>\({\text{C}}{{\text{H}}_4}{\text{(g)}} + {{\text{O}}_2}{\text{(g)}} \to {\text{C(s)}} + {\text{2}}{{\text{H}}_2}{\text{O(g)}}\)</p>
<p class="p1">A. <span class="Apple-converted-space"> </span>I and II only</p>
<p class="p1">B. <span class="Apple-converted-space"> </span>I and III only</p>
<p class="p1">C. <span class="Apple-converted-space"> </span>II and III only</p>
<p class="p1">D. <span class="Apple-converted-space"> </span>I, II and III</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">What product is formed when \({\text{C}}{{\text{H}}_{\text{3}}}{\text{CH(OH)C}}{{\text{H}}_{\text{3}}}\) is reacted with acidified potassium dichromate(VI)?</p>
<p class="p1">A. <span class="Apple-converted-space"> </span>\({\text{C}}{{\text{H}}_{\text{3}}}{\text{COOC}}{{\text{H}}_{\text{3}}}\)</p>
<p class="p1">B. <span class="Apple-converted-space"> </span>\({\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{CHO}}\)</p>
<p class="p1">C. <span class="Apple-converted-space"> </span>\({\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{COOH}}\)</p>
<p class="p1">D. <span class="Apple-converted-space"> </span>\({\text{C}}{{\text{H}}_{\text{3}}}{\text{COC}}{{\text{H}}_{\text{3}}}\)</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">When bromine water is shaken with a liquid organic compound, it is rapidly decolourized. What can be determined from this test?</p>
<p class="p1">A. The compound is an alcohol.</p>
<p class="p1">B. The compound is an alkane.</p>
<p class="p1">C. The compound is an alkene.</p>
<p class="p1">D. The compound is an iodoalkane.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p class="p1">Though it produced a significant number of blank responses, with a difficulty index of 57%, the majority of the candidates answered this question correctly and with a discrimination index of 0.59 it was one of the best discriminators on the paper.</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Which of the following statements about alkenes is <strong>not </strong>correct?</p>
<p class="p1">A. <span class="Apple-converted-space"> </span>They have reactive double bonds.</p>
<p class="p1">B. <span class="Apple-converted-space"> </span>They can form addition polymers.</p>
<p class="p1">C. <span class="Apple-converted-space"> </span>They react mainly by substitution.</p>
<p class="p1">D. <span class="Apple-converted-space"> </span>They can react with water to form alcohols.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">Which compound would decolourize bromine water in the dark?</p>
<p class="p1">A. <span class="Apple-converted-space"> </span>\({\text{C}}{{\text{H}}_{\text{3}}}{\text{COC}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{3}}}\)</p>
<p class="p1">B. <span class="Apple-converted-space"> </span>\({\text{C}}{{\text{H}}_{\text{3}}}{{\text{(C}}{{\text{H}}_{\text{2}}}{\text{)}}_{\text{4}}}{\text{OH}}\)</p>
<p class="p1">C. <span class="Apple-converted-space"> </span>\({\text{C}}{{\text{H}}_{\text{3}}}{\text{CHCHC}}{{\text{H}}_{\text{3}}}\)</p>
<p class="p1">D. <span class="Apple-converted-space"> </span>\({\text{C}}{{\text{H}}_{\text{3}}}{{\text{(C}}{{\text{H}}_{\text{2}}}{\text{)}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{3}}}\)</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which monomer is used to form the polymer with the following repeating unit?</p>
<p style="text-align: center;"><img src="" alt></p>
<p>A. CH<sub>3</sub>CH=CHCH<sub>3 </sub></p>
<p>B. CH<sub>3</sub>CH<sub>2</sub>CH=CH<sub>2 </sub></p>
<p>C. CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>3 </sub></p>
<p>D. (CH<sub>3</sub>)<sub>2</sub>C=CH<sub>2</sub></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which compound could be formed when CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>OH is heated with acidified potassium dichromate(VI)?</p>
<p> I. CH<sub>3</sub>CH<sub>2</sub>CHO</p>
<p> II. CH<sub>3</sub>CH<sub>2</sub>COOH</p>
<p> III. CH<sub>3</sub>COCH<sub>3</sub></p>
<p>A. I and II only</p>
<p>B. I and III only</p>
<p>C. II and III only</p>
<p>D. I, II and III</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">Applying IUPAC rules, what is the name of the compound?</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-08-08_om_11.43.54.png" alt="M15/4/CHEMI/SPM/ENG/TZ1/27"></p>
<p class="p1">A. 1-ethyl-1,3-dimethylbut-2-ene</p>
<p class="p1">B. 2-ethyl-4-methylpent-3-ene</p>
<p class="p1">C. 2-methyl-4-ethylpent-3-ene</p>
<p class="p1">D. 2,4-dimethylhex-2-ene</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p class="p1">D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which compound is an isomer of octane, \({{\text{C}}_{\text{8}}}{{\text{H}}_{{\text{18}}}}\)?</p>
<p>A. \({{\text{(C}}{{\text{H}}_{\text{3}}}{\text{)}}_{\text{2}}}{\text{CH(C}}{{\text{H}}_{\text{2}}}{{\text{)}}_{\text{2}}}{\text{CH(C}}{{\text{H}}_{\text{3}}}{{\text{)}}_{\text{2}}}\)</p>
<p>B. \({{\text{(C}}{{\text{H}}_{\text{3}}}{\text{)}}_{\text{2}}}{\text{CHC}}{{\text{H}}_{\text{2}}}{\text{CHCHC}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{3}}}\)</p>
<p>C. \({\text{C}}{{\text{H}}_{\text{3}}}{{\text{(C}}{{\text{H}}_{\text{2}}}{\text{)}}_{\text{5}}}{\text{C}}{{\text{H}}_{\text{3}}}\)</p>
<p>D. \({{\text{(C}}{{\text{H}}_{\text{3}}}{\text{)}}_{\text{2}}}{\text{CH(C}}{{\text{H}}_{\text{2}}}{{\text{)}}_{\text{2}}}{\text{CHCHC}}{{\text{H}}_{\text{3}}}\)</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>There was some concern that this is not on the syllabus. The examiners consider the question to be a fair extension of assessment statement 10.1.5.</p>
</div>
<br><hr><br><div class="question">
<p>Which statement is correct for members of the same homologous series?</p>
<p>A. They have the same empirical formula and a gradual change in chemical properties.</p>
<p>B. They have the same empirical formula and a gradual change in physical properties.</p>
<p>C. They have the same general formula and a gradual change in chemical properties.</p>
<p>D. They have the same general formula and a gradual change in physical properties.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which compounds belong to the same homologous series?</p>
<p>A. CHCCH<sub>2</sub>CH<sub>3</sub>, CHCCH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub></p>
<p>B. CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>OH, CH<sub>3</sub>CH<sub>2</sub>OCH<sub>2</sub>CH<sub>3</sub></p>
<p>C. CH<sub>2</sub>CHCH<sub>3</sub>, CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>3</sub></p>
<p>D. CH<sub>3</sub>COCH<sub>3</sub>, CH<sub>3</sub>CH<sub>2</sub>OCH<sub>3</sub></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">Which molecule contains an ester group?</p>
<p class="p1">A. <span class="Apple-converted-space"> </span>\({\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{COOH}}\)</p>
<p class="p1">B. <span class="Apple-converted-space"> </span>\({\text{C}}{{\text{H}}_{\text{3}}}{\text{COOC}}{{\text{H}}_{\text{3}}}\)</p>
<p class="p1">C. <span class="Apple-converted-space"> </span>\({\text{C}}{{\text{H}}_{\text{3}}}{\text{COC}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{OH}}\)</p>
<p class="p1">D. <span class="Apple-converted-space"> </span>\({\text{OHCC}}{{\text{H}}_{\text{2}}}{\text{CHO}}\)</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">Which three compounds can be considered to be a homologous series?</p>
<p class="p1">A. <span class="Apple-converted-space"> </span>\({\text{C}}{{\text{H}}_{\text{3}}}{\text{N}}{{\text{H}}_{\text{2}}}\) <span class="Apple-converted-space"> </span>\({\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{N}}{{\text{H}}_{\text{2}}}\) <span class="Apple-converted-space"> </span>\({\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{N}}{{\text{H}}_{\text{2}}}\)</p>
<p class="p1">B. <span class="Apple-converted-space"> </span>\({\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{N}}{{\text{H}}_{\text{2}}}\) <span class="Apple-converted-space"> </span>\({\text{C}}{{\text{H}}_{\text{3}}}{\text{CH(N}}{{\text{H}}_{\text{2}}}{\text{)C}}{{\text{H}}_{\text{3}}}\) <span class="Apple-converted-space"> </span>\({\text{C}}{{\text{H}}_{\text{3}}}{\text{(NH)C}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{3}}}\)</p>
<p class="p1">C. <span class="Apple-converted-space"> </span>\({\text{C(C}}{{\text{H}}_{\text{3}}}{{\text{)}}_{\text{4}}}\) <span class="Apple-converted-space"> </span>\({\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{3}}}\) <span class="Apple-converted-space"> </span>\({{\text{(C}}{{\text{H}}_{\text{3}}}{\text{)}}_{\text{2}}}{\text{CHC}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{3}}}\)</p>
<p class="p1">D. <span class="Apple-converted-space"> </span>\({\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{COOH}}\) <span class="Apple-converted-space"> </span>\({\text{C}}{{\text{H}}_{\text{3}}}{\text{COOC}}{{\text{H}}_{\text{3}}}\) <span class="Apple-converted-space"> </span>\({\text{HCOOC}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{3}}}\)</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p class="p1">A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which type of reaction occurs when methanol and propanoic acid react together in the presence of a catalyst?</p>
<p>A. Addition</p>
<p>B. Condensation</p>
<p>C. Redox</p>
<p>D. Neutralization </p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">What is the structural formula of 2,3-dibromo-3-methylhexane?</p>
<p class="p1">A. <span class="Apple-converted-space"> </span>\({\text{C}}{{\text{H}}_{\text{3}}}{\text{CHBrCHBrCH(C}}{{\text{H}}_{\text{3}}}{\text{)C}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{3}}}\)</p>
<p class="p1">B. <span class="Apple-converted-space"> </span>\({\text{C}}{{\text{H}}_{\text{3}}}{\text{CHBrCBr(C}}{{\text{H}}_{\text{3}}}{\text{)C}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{3}}}\)</p>
<p class="p1">C. <span class="Apple-converted-space"> </span>\({\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{CHBrCBr(C}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{3}}}{{\text{)}}_{\text{2}}}\)</p>
<p class="p1">D. <span class="Apple-converted-space"> </span>\({\text{C}}{{\text{H}}_{\text{3}}}{\text{CHBrCHBrCH(C}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{3}}}{{\text{)}}_{\text{2}}}\)</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">What is the function of the ultraviolet light used in the reaction between ethane and bromine?</p>
<p class="p1">A. It causes bromine free radicals to form bromine molecules.</p>
<p class="p1">B. It causes bromide ions to form bromine molecules.</p>
<p class="p1">C. It causes bromine molecules to form bromide ions.</p>
<p class="p1">D. It causes bromine molecules to form bromine free radicals.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p class="p1">D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The structure of a drug used to treat symptoms of Alzheimer’s disease is shown below. Which functional groups are present in this molecule?</p>
<p style="text-align: center;"><img src="" alt></p>
<p>A. Hydroxyl and ester </p>
<p>B. Hydroxide and ether </p>
<p>C. Hydroxyl and ether </p>
<p>D. Hydroxide and ester</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which functional group is present in paracetamol?</p>
<p style="text-align: center;"><img src=""></p>
<p>A. Carboxyl</p>
<p>B. Amino</p>
<p>C. Nitrile</p>
<p>D. Hydroxyl</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which alcohols are oxidized by acidified potassium dichromate(VI) solution when heated?</p>
<p style="padding-left: 60px;"><img src="" alt></p>
<p>A. I and II only </p>
<p>B. I and III only </p>
<p>C. II and III only </p>
<p>D. I, II and III</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">How many non-cyclic structural isomers exist with the molecular formula \({{\text{C}}_{\text{5}}}{{\text{H}}_{{\text{10}}}}\)?</p>
<p class="p2">A. <span class="Apple-converted-space"> </span>2</p>
<p class="p2">B. <span class="Apple-converted-space"> </span>3</p>
<p class="p2">C. <span class="Apple-converted-space"> </span>4</p>
<p class="p2">D. <span class="Apple-converted-space"> </span>5</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p class="p1">D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which molecule has a tertiary nitrogen?</p>
<p>A. (CH<sub>3</sub>)<sub>2</sub>NH</p>
<p>B. (C<sub>2</sub>H<sub>5</sub>)<sub>4</sub>N<sup>+</sup>I<sup>−</sup></p>
<p>C. C<sub>3</sub>H<sub>7</sub>N(CH<sub>3</sub>)<sub>2</sub></p>
<p>D. C<sub>6</sub>H<sub>5</sub>NH<sub>2</sub></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>What is the name of this compound, using IUPAC rules?</p>
<p><img style="margin-right:auto;margin-left:auto;display: block;" src="images/Schermafbeelding_2018-08-10_om_07.41.06.png" alt="M18/4/CHEMI/SPM/ENG/TZ2/25"></p>
<p>A. 1,1-dimethylpropanoic acid</p>
<p>B. 3,3-dimethylpropanoic acid</p>
<p>C. 2-methylbutanoic acid</p>
<p>D. 3-methylbutanoic acid</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<div class="page" title="Page 10">
<div class="layoutArea">
<div class="column">
<p>Which compound can both be esterified and turn acidified potassium dichromate(VI) solution green?</p>
A. (CH<sub>3</sub>)<sub>3</sub>COH<br>B. CH<sub>3</sub>CH<sub>2</sub>CO<sub>2</sub>H<br>C. (CH<sub>3</sub>)<sub>2</sub>CHOH<br>D. CH<sub>3</sub>CH<sub>2</sub>COCH<sub>3</sub></div>
</div>
</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">Which of the following substances are structural isomers of each other?</p>
<p class="p1">I. <span class="Apple-converted-space"> </span>\({\text{C}}{{\text{H}}_{\text{3}}}{{\text{(C}}{{\text{H}}_{\text{2}}}{\text{)}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{3}}}\)</p>
<p class="p1">II. <span class="Apple-converted-space"> </span>\({{\text{(C}}{{\text{H}}_{\text{3}}}{\text{)}}_{\text{2}}}{\text{CHC}}{{\text{H}}_{\text{3}}}\)</p>
<p class="p1">III. <span class="Apple-converted-space"> </span>\({\text{C}}{{\text{H}}_{\text{3}}}{\text{CH(C}}{{\text{H}}_{\text{3}}}{\text{)C}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{3}}}\)</p>
<p class="p1">A. <span class="Apple-converted-space"> </span>I and II only</p>
<p class="p1">B. <span class="Apple-converted-space"> </span>I and III only</p>
<p class="p1">C. <span class="Apple-converted-space"> </span>II and III only</p>
<p class="p1">D. <span class="Apple-converted-space"> </span>I, II and III</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>For the reaction pathway below, what are the names for the first and second steps?</p>
<p>\[{\text{C}}{{\text{H}}_{\text{2}}}{\text{CHC}}{{\text{H}}_{\text{3}}} \to {\text{C}}{{\text{H}}_{\text{3}}}{\text{CHClC}}{{\text{H}}_{\text{3}}} \to {\text{C}}{{\text{H}}_{\text{3}}}{\text{CHOHC}}{{\text{H}}_{\text{3}}}\]</p>
<p><img src="images/Schermafbeelding_2016-08-16_om_08.12.21.png" alt="M14/4/CHEMI/SPM/ENG/TZ1/29"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which statements are correct for the reaction of ethene with bromine in the absence of ultraviolet light?</p>
<p>I. It is an addition reaction.</p>
<p>II. The organic product is colourless.</p>
<p>III. The organic product is saturated.</p>
<p>A. I and II only</p>
<p>B. I and III only</p>
<p>C. II and III only</p>
<p>D. I, II and III</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>One respondent commented that the absence of UV light was not relevant. The condition was mentioned to exclude the possibility of a substitution reaction.</p>
</div>
<br><hr><br><div class="question">
<div class="page" title="Page 3">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 3">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 3">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 3">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 4">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 7">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 7">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 8">
<div class="section">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 8">
<div class="section">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 9">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 9">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 9">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 9">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 10">
<div class="layoutArea">
<div class="column">
<p>How many alcohols have the general formula C<sub>4</sub>H<sub>10</sub>O?</p>
A. 3<br>B. 4<br>C. 5<br>D. 6</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">From which monomer is this polymer made?</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-11-03_om_14.22.36.png" alt="N11/4/CHEMI/SPM/ENG/TZ0/28_1"></p>
<p class="p1" style="text-align: left;"><img src="images/Schermafbeelding_2016-11-03_om_14.23.36.png" alt="N11/4/CHEMI/SPM/ENG/TZ0/28_2"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which describes the reaction between a halogen and ethane?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>What are possible names of a molecule with molecular formula C<sub>4</sub>H<sub>10</sub>O?</p>
<p> I. 1-Methoxypropane</p>
<p> II. 2-Methylpropan-2-ol</p>
<p> III. Butanal</p>
<p>A. I and II only</p>
<p>B. I and III only</p>
<p>C. II and III only</p>
<p>D. I, II and III</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which equation represents a propagation step in the mechanism for the reaction between ethane, \({{\text{C}}_{\text{2}}}{{\text{H}}_{\text{6}}}\), and chlorine, \({\text{C}}{{\text{l}}_{\text{2}}}\), in the presence of sunlight/UV?</p>
<p>A. \({{\text{C}}_2}{{\text{H}}_6} + {\text{Cl}} \bullet \to {{\text{C}}_2}{{\text{H}}_5} \bullet + {\text{HCl}}\)</p>
<p>B. \({{\text{C}}_2}{{\text{H}}_6} + {\text{Cl}} \bullet \to {{\text{C}}_2}{{\text{H}}_5}{\text{Cl}} + {\text{H}} \bullet \)</p>
<p>C. \({\text{C}}{{\text{l}}_{\text{2}}} \to 2{\text{Cl}} \bullet \)</p>
<p>D. \({{\text{C}}_2}{{\text{H}}_5} \bullet + {\text{Cl}} \bullet \to {{\text{C}}_2}{{\text{H}}_5}{\text{Cl}}\)</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p class="p1">A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">What is the name of the following compound applying IUPAC rules?</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-18_om_08.02.03.png" alt="M13/4/CHEMI/SPM/ENG/TZ2/27"></p>
<p class="p1">A. 1,1,1-trimethylpropane</p>
<p class="p1">B. 2,2-dimethylbutane</p>
<p class="p1">C. 3,3-dimethylbutane</p>
<p class="p1">D. 2-methyl-2-ethylpropane</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p class="p1">B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">What is the product of the following reaction?</p>
<p class="p1">\[{\text{C}}{{\text{H}}_3}{\text{CH(OH)C}}{{\text{H}}_{\text{3}}}\xrightarrow{{{\text{C}}{{\text{r}}_{\text{2}}}{\text{O}}_{\text{7}}^{2 - }/{{\text{H}}^ + }}}\]</p>
<p class="p1">A. <span class="Apple-converted-space"> </span>\({\text{C}}{{\text{H}}_{\text{3}}}{\text{COOH}}\)</p>
<p class="p1">B. <span class="Apple-converted-space"> </span>\({\text{C}}{{\text{H}}_{\text{3}}}{\text{COC}}{{\text{H}}_{\text{3}}}\)</p>
<p class="p1">C. <span class="Apple-converted-space"> </span>\({\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{COOH}}\)</p>
<p class="p1">D. <span class="Apple-converted-space"> </span>\({\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{3}}}\)</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p class="p1">One G2 comment stated that there was an overlap between this question and a similar question in P2, which is correct.</p>
</div>
<br><hr><br><div class="question">
<p>What are the functional groups in the aspirin molecule?</p>
<p style="text-align: center;"><img src=""></p>
<p style="padding-left: 90px;">\(\begin{gathered} \begin{array}{*{20}{l}} {{\text{I.}}}&{{\text{Ether}}} \\ {{\text{II.}}}&{{\text{Carboxyl}}} \\ {{\text{III.}}}&{{\text{Ester}}} \end{array} \hfill \\ \hfill \\ \end{gathered} \)</p>
<p>A. I and II only</p>
<p>B. I and III only</p>
<p>C. II and III only</p>
<p>D. I, II and III</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>What is the name of this compound, using IUPAC rules?</p>
<p style="text-align: center;"><img src=""></p>
<p>A. 3-methylbutan-3-ol</p>
<p>B. 2-ethylpropan-2-ol</p>
<p>C. 2-methylbutan-2-ol</p>
<p>D. 3-methylbutan-2-ol</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br>