File "markSceme-HL-paper1.html"

Path: /IB QUESTIONBANKS/4 Fourth Edition - PAPER/HTML/Chemistry/Topic 10/markSceme-HL-paper1html
File size: 193.13 KB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-746ec5d03ead8d9e8b3bb7d32173f2b4e2e22a05f0c5278e086ab55b3c9c238e.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-3c91afd8a2942c18d21ed2700e1bdec14ada97f1d3788ae229315e1276d81453.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../index.html">Home</a>
</li>
<li class="active dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Questionbanks
<b class="caret"></b>
</a><ul class="dropdown-menu">
<li>
<a href="../../geography.html" target="_blank">DP Geography</a>
</li>
<li>
<a href="../../physics.html" target="_blank">DP Physics</a>
</li>
<li>
<a href="../../chemistry.html" target="_blank">DP Chemistry</a>
</li>
<li>
<a href="../../biology.html" target="_blank">DP Biology</a>
</li>
<li>
<a href="../../furtherMath.html" target="_blank">DP Further Mathematics HL</a>
</li>
<li>
<a href="../../mathHL.html" target="_blank">DP Mathematics HL</a>
</li>
<li>
<a href="../../mathSL.html" target="_blank">DP Mathematics SL</a>
</li>
<li>
<a href="../../mathStudies.html" target="_blank">DP Mathematical Studies</a>
</li>
</ul></li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">

<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">



</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="images/logo.jpg" alt="Ib qb 46 logo">
</div>
</div>
</div><h2>HL Paper 1</h2><div class="question">
<p>Which would be the most effective method to distinguish between liquid propan-1-ol and propan-2-ol?</p>
<p>A.     Observation of colour change when warmed with acidified potassium dichromate</p>
<p>B.     Determination of <em>m</em>/<em>z </em>value of molecular ion in the mass spectrum</p>
<p>C.     Determination of percentage composition</p>
<p>D.     <sup>1</sup>H NMR spectroscopy</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">What structural feature must a molecule have in order to undergo addition polymerization?</p>
<p class="p1">A.&nbsp; &nbsp; &nbsp;Two functional groups</p>
<p class="p1">B.&nbsp; &nbsp; &nbsp;A carbon&ndash;carbon double bond</p>
<p class="p1">C.&nbsp; &nbsp; &nbsp;Carbon atoms singly bonded together</p>
<p class="p1">D.&nbsp; &nbsp; &nbsp;A polar covalent bond</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>What is the organic product of the reaction between butan-1-ol and ethanoic acid on heating using concentrated sulfuric acid?</p>
<p>A.&nbsp; &nbsp; &nbsp;Butyl methanoate</p>
<p>B.&nbsp; &nbsp; &nbsp;Butyl ethanoate</p>
<p>C.&nbsp; &nbsp; &nbsp;Ethyl butanoate</p>
<p>D.&nbsp; &nbsp; &nbsp;Ethyl propanoate</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">Which reaction occurs via a free-radical mechanism?</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({{\text{C}}_2}{{\text{H}}_6} + {\text{B}}{{\text{r}}_2} \to {{\text{C}}_2}{{\text{H}}_5}{\text{Br}} + {\text{HBr}}\)</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({{\text{C}}_2}{{\text{H}}_4} + {\text{B}}{{\text{r}}_2} \to {{\text{C}}_2}{{\text{H}}_4}{\text{B}}{{\text{r}}_2}\)</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({{\text{C}}_4}{{\text{H}}_9}{\text{I}} + {\text{O}}{{\text{H}}^ - } \to {{\text{C}}_4}{{\text{H}}_9}{\text{OH}} + {{\text{I}}^ - }\)</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({{\text{(C}}{{\text{H}}_3})_3}{\text{CI}} + {{\text{H}}_2}{\text{O}} \to {{\text{(C}}{{\text{H}}_3}{\text{)}}_3}{\text{COH}} + {\text{HI}}\)</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">What is the name of \({{\text{(C}}{{\text{H}}_{\text{3}}}{\text{)}}_{\text{2}}}{\text{CHCOC}}{{\text{H}}_{\text{3}}}\) applying IUPAC rules?</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>3,3-dimethylpropan-2-one</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>3-methylbutan-2-one</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>2-methylbutan-3-one</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>3-methylbutanal</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p class="p1">One respondent stated that choices B. 3-methylbutan-2-one and C. 2-methylbutan-3-one would lead to the same structure. However, according to the guide, candidates should be able to apply IUPAC rules to name compounds containing up to six carbon atoms involving a ketone. Hence, applying IUPAC rules, the only answer is in fact B as the compound will be numbered with the lowest number on the ketone. It was surprising that candidates had difficulty naming this compound, and the question proved to be the third most challenging question on the paper, with less than half getting it correct (47.50%). The question had an associated discrimination index of 0.45.</p>
</div>
<br><hr><br><div class="question">
<p class="p1">What is the correct order of reaction types in the following sequence?</p>
<p class="p1"><img src="images/Schermafbeelding_2016-10-21_om_10.50.10.png" alt="M11/4/CHEMI/HPM/ENG/TZ1/36"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">Which compound is produced in the reaction between but-2-ene and steam?</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({\text{C}}{{\text{H}}_{\text{3}}}{\text{CHOHCHOHC}}{{\text{H}}_{\text{3}}}\)</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({\text{C}}{{\text{H}}_{\text{2}}}{\text{OHC}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{OH}}\)</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{CHOHC}}{{\text{H}}_{\text{3}}}\)</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{OH}}\)</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which compounds can be reduced?</p>
<p style="padding-left: 90px;">I.&nbsp; &nbsp; &nbsp;C<sub>2</sub>H<sub>4</sub><br>II.&nbsp; &nbsp; &nbsp;CH<sub>3</sub>COOH<br>III.&nbsp; &nbsp; &nbsp;CH<sub>3</sub>CHO</p>
<p>A. &nbsp; &nbsp; I and II only</p>
<p>B. &nbsp; &nbsp; I and III only</p>
<p>C. &nbsp; &nbsp; II and III only</p>
<p>D. &nbsp; &nbsp; I, II and III</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which is a secondary alcohol?</p>
<p><img src="images/Schermafbeelding_2018-08-07_om_10.13.28.png" alt="M18/4/CHEMI/HPM/ENG/TZ1/34"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">What is the IUPAC name of the compound \({\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{COOC}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{3}}}\)?</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>Ethyl ethanoate</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>Propyl ethanoate</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>Ethyl propanoate</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>Pentyl propanoate</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which functional groups are present in \({{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{CONH}}{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}\)?</p>
<p>A. &nbsp; &nbsp; Benzene ring (phenyl), amine</p>
<p>B. &nbsp; &nbsp; Benzene ring (phenyl), ketone, amine</p>
<p>C. &nbsp; &nbsp; Benzene ring (phenyl), amide</p>
<p>D. &nbsp; &nbsp; Alkene, amide</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>What is the structural formula of the ester formed by reacting propanoic acid with 2-methylbutan-2-ol under appropriate conditions?</p>
<p><img src="images/Schermafbeelding_2016-08-11_om_09.29.08.png" alt="M14/4/CHEMI/HPM/ENG/TZ2/39"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>What is the name of \({{\text{(C}}{{\text{H}}_{\text{3}}}{\text{)}}_{\text{3}}}{\text{CCOC}}{{\text{H}}_{\text{3}}}\), applying IUPAC rules?</p>
<p>A. &nbsp; &nbsp; 2,2-dimethylbutan-3-one</p>
<p>B. &nbsp; &nbsp; 3,3-dimethylbutan-2-one</p>
<p>C. &nbsp; &nbsp; 2,2-dimethylbutanal</p>
<p>D. &nbsp; &nbsp; 3,3-dimethylbutanal</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>One respondent commented that &ldquo;very few IB specific textbooks highlight the role of priority of naming functional groups&rdquo;. It was the seventh hardest question; nearly 65% gave the correct answer with close to 28% opting for A (as expected).</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Which compound is the major product of the reaction when 1-bromobutane is heated with concentrated sodium hydroxide in ethanol?</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({\text{C}}{{\text{H}}_{\text{3}}}{\text{CHOHC}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{3}}}\)</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({\text{C}}{{\text{H}}_{\text{3}}}{\text{CHCHC}}{{\text{H}}_{\text{3}}}\)</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{OH}}\)</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({\text{C}}{{\text{H}}_{\text{2}}}{\text{CHC}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{3}}}\)</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">What is the IUPAC name for \({\text{HCOOC}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{3}}}\)?</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>Butanoic acid</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>Butanal</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>Methyl propanoate</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>Propyl methanoate</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which monomer could create this polymer?</p>
<p><img style="margin-right:auto;margin-left:auto;display: block;" src="images/Schermafbeelding_2018-08-07_om_10.11.19.png" alt="M18/4/CHEMI/HPM/ENG/TZ1/33"></p>
<p>A.     But-2-ene</p>
<p>B.     But-1-ene</p>
<p>C.     Propene</p>
<p>D.     2-Methylprop-1-ene</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which of these repeating units is present in the polymer poly(propene)?</p>
<p><img src="images/Schermafbeelding_2016-08-21_om_08.52.51.png" alt="N14/4/CHEMI/HPM/ENG/TZ0/36"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>What is the IUPAC name for \({{\text{(C}}{{\text{H}}_{\text{3}}}{\text{)}}_{\text{2}}}{\text{COH(C}}{{\text{H}}_{\text{2}}}{{\text{)}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{3}}}\)?</p>
<p>A. &nbsp; &nbsp; Hexan-3-ol</p>
<p>B. &nbsp; &nbsp; 2-methylpentan-2-ol</p>
<p>C. &nbsp; &nbsp; 2-methylpentan-3-ol</p>
<p>D. &nbsp; &nbsp; Dimethylpentan-1-ol</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which product is formed when bromine water is added to propene, \({\text{C}}{{\text{H}}_{\text{3}}}{\text{CHC}}{{\text{H}}_{\text{2}}}\)?</p>
<p>A. &nbsp; &nbsp; \({\text{C}}{{\text{H}}_{\text{3}}}{\text{CB}}{{\text{r}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{3}}}\)</p>
<p>B. &nbsp; &nbsp; \({\text{C}}{{\text{H}}_{\text{2}}}{\text{BrC}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{Br}}\)</p>
<p>C. &nbsp; &nbsp; \({\text{C}}{{\text{H}}_{\text{3}}}{\text{CHBrC}}{{\text{H}}_{\text{2}}}{\text{Br}}\)</p>
<p>D. &nbsp; &nbsp; \({\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{Br}}\)</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>Although 65.41% gave the correct answer, nearly a quarter chose D.</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Which reactants could be used to form the compound below?</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-10-26_om_18.09.24.png" alt="M11/4/CHEMI/HPM/ENG/TZ2/38"></p>
<p class="p1">A.&nbsp; &nbsp; &nbsp;Butanoic acid and ethanol</p>
<p class="p1">B.&nbsp; &nbsp; &nbsp;Propanoic acid and ethanol</p>
<p class="p1">C.&nbsp; &nbsp; &nbsp;Ethanoic acid and propan-1-ol</p>
<p class="p1">D.&nbsp; &nbsp; &nbsp;Ethanoic acid and butan-1-ol</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">Which compound is an amide?</p>
<p class="p1">A.&nbsp; &nbsp; &nbsp;CH<sub><span class="s1">3</span></sub>COOCH<sub><span class="s1">3</span></sub></p>
<p class="p1">B.&nbsp; &nbsp; &nbsp;CH<sub><span class="s1">3</span></sub>CONH<sub><span class="s1">2</span></sub></p>
<p class="p1">C.&nbsp; &nbsp; &nbsp;CH<sub><span class="s1">3</span></sub>NH<sub><span class="s1">2</span></sub></p>
<p class="p1">D.&nbsp; &nbsp; &nbsp;CH<sub><span class="s1">2</span></sub>(NH<sub><span class="s1">2</span></sub>)COOH</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">What is the name of the ester formed when \({\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{COOH}}\) and \({\text{C}}{{\text{H}}_{\text{3}}}{\text{OH}}\) react together?</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>Ethyl methanoate</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>Methyl ethanoate</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>Propyl methanoate</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>Methyl propanoate</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">What is the product of the addition of chlorine, \({\text{C}}{{\text{l}}_{\text{2}}}\), to propene, \({{\text{C}}_{\text{3}}}{{\text{H}}_{\text{6}}}\)?</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>1,1-dichloropropane</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>2,2-dichloropropane</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>1,2-dichloropropane</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>1,3-dichloropropane</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p class="p1">C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">Identify the functional group present in \({\text{HCOC}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{3}}}\).</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>Ester</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>Ketone</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>Aldehyde</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>Alcohol</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">What are possible products of the incomplete combustion of propan-2-ol?</p>
<p class="p1">A.&nbsp; &nbsp; &nbsp;carbon monoxide, hydrogen and carbon</p>
<p class="p1">B.&nbsp; &nbsp; &nbsp;carbon dioxide, carbon and hydrogen</p>
<p class="p1">C.&nbsp; &nbsp; &nbsp;carbon, carbon monoxide and water</p>
<p class="p1">D.&nbsp; &nbsp; &nbsp;carbon dioxide and water only</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p class="p1">C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which is the correct combination of substitution reaction mechanisms?</p>
<p><img src="images/Schermafbeelding_2018-08-08_om_11.33.47.png" alt="M18/4/CHEMI/HPM/ENG/TZ2/35"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>In which order should the reagents be used to convert benzene into phenylamine (aniline)?</p>
<p><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>What is the major product of the reaction between 2-methylbut-2-ene and hydrogen bromide?</p>
<p>A. &nbsp; &nbsp; 3-bromo-2-methylbutane</p>
<p>B. &nbsp; &nbsp; 3-bromo-3-methylbutane</p>
<p>C. &nbsp; &nbsp; 2-bromo-3-methylbutane</p>
<p>D. &nbsp; &nbsp; 2-bromo-2-methylbutane</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which functional group is responsible for the p<em>K</em><sub>b</sub> of 4.1 in this compound?</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">A. Amido</p>
<p style="text-align: left;">B. Amino</p>
<p style="text-align: left;">C. Chloro</p>
<p style="text-align: left;">D. Ether</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br>