File "markSceme-SL-paper3.html"

Path: /IB QUESTIONBANKS/4 Fourth Edition - PAPER/HTML/Chemistry/Topic 1/markSceme-SL-paper3html
File size: 637.43 KB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-746ec5d03ead8d9e8b3bb7d32173f2b4e2e22a05f0c5278e086ab55b3c9c238e.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-3c91afd8a2942c18d21ed2700e1bdec14ada97f1d3788ae229315e1276d81453.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../index.html">Home</a>
</li>
<li class="active dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Questionbanks
<b class="caret"></b>
</a><ul class="dropdown-menu">
<li>
<a href="../../geography.html" target="_blank">DP Geography</a>
</li>
<li>
<a href="../../physics.html" target="_blank">DP Physics</a>
</li>
<li>
<a href="../../chemistry.html" target="_blank">DP Chemistry</a>
</li>
<li>
<a href="../../biology.html" target="_blank">DP Biology</a>
</li>
<li>
<a href="../../furtherMath.html" target="_blank">DP Further Mathematics HL</a>
</li>
<li>
<a href="../../mathHL.html" target="_blank">DP Mathematics HL</a>
</li>
<li>
<a href="../../mathSL.html" target="_blank">DP Mathematics SL</a>
</li>
<li>
<a href="../../mathStudies.html" target="_blank">DP Mathematical Studies</a>
</li>
</ul></li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">

<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">



</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="images/logo.jpg" alt="Ib qb 46 logo">
</div>
</div>
</div><h2>SL Paper 3</h2><div class="specification">
<p>Magnesium hydroxide is the active ingredient in a common antacid.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Formulate the equation for the neutralization of stomach acid with magnesium hydroxide.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the mass of HCl, in g, that can be neutralized by the standard adult dose of 1.00g magnesium hydroxide.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Compare and contrast the use of omeprazole (Prilosec) and magnesium hydroxide.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 23">
<div class="section">
<div class="layoutArea">
<div class="column">
<p>Mg (OH)<sub>2</sub>(s) + 2HCl (aq) &rarr; 2H<sub>2</sub>O (l) + MgCl<sub>2</sub> (aq)<br> <em><strong>OR</strong></em><br>Mg (OH)<sub>2</sub> (s) + 2H<sup>+</sup> (aq) &rarr; Mg<sup>2+</sup> (aq) + 2H<sub>2</sub>O (l)&nbsp;</p>
</div>
</div>
</div>
</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(\frac{{1.00}}{{58.33}}\)=0.0171&laquo;molMg(OH)<sub>2</sub>&raquo;<br>&laquo;0.0171&times;2&times;36.46=&raquo;1.25&laquo;g&raquo;</p>
<p><em>Award <strong>[2]</strong> for 1.25 or 1.26 &laquo;g&raquo;.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 24">
<div class="section">
<div class="layoutArea">
<div class="column">
<p>Award <em><strong>[1 max]</strong></em> for any similarity:<br> both compounds relieve symptoms of acid reflux/heartburn/indigestion <br><em><strong>OR</strong></em><br> both increase the stomach pH&nbsp;</p>
</div>
</div>
<div class="layoutArea">
<div class="column">
<p>both cause diarrhoea</p>
<p><em>Award <strong>[2 max]</strong> for any two differences:</em></p>
</div>
<div class="column">
<p>omeprazole stops the production of acid/is a proton-pump inhibitor <em><strong>AND</strong></em> magnesium hydroxide neutralizes the <strong>&laquo;</strong>excess<strong>&raquo;</strong> acid that is present<strong><br></strong>omeprazole takes longer <strong>&laquo;</strong>than magnesium hydroxide<strong>&raquo;</strong> to provide relief <br>omeprazole is used to treat ulcers while magnesium hydroxide is not</p>
<p>omeprazole can prevent long term damage from overproduction of acid <em><strong>AND</strong></em> magnesium hydroxide does not<br><em><strong>OR<br></strong></em>omeprazole has a long term effect <em><strong>AND</strong></em> magnesium hydroxide has a short-term effect <strong>&laquo;</strong>only<strong>&raquo;</strong></p>
<p>magnesium hydroxide affects ionic balance in the body <em><strong>AND</strong></em> omeprazole does not</p>
<p><em>Award <strong>[1 max]</strong> if two or three correct points are given about one of the compounds without addressing the other compound.</em></p>
</div>
</div>
</div>
</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Iron may be extracted from an ore containing Fe<sub>2</sub>O<sub>3</sub> in a blast furnace by reaction with coke, limestone and air. Aluminium is obtained by electrolysis of an ore containing Al<sub>2</sub>O<sub>3</sub>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the overall redox equation when carbon monoxide reduces Fe<sub>2</sub>O<sub>3</sub> to Fe.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Predict the magnetic properties of Fe<sub>2</sub>O<sub>3</sub> and Al<sub>2</sub>O<sub>3</sub> in terms of the electron structure of the metal ion, giving your reasons.</p>
<p>Fe<sub>2</sub>O<sub>3</sub>:<br><br></p>
<p>Al<sub>2</sub>O<sub>3</sub>:<br>&nbsp;</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Molten alumina, Al<sub>2</sub>O<sub>3</sub>(l), was electrolysed by passing 2.00&times;10<sup>6</sup> C through the cell. Calculate the mass of aluminium produced, using sections 2 and 6 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>Fe<sub>2</sub>O<sub>3</sub>&nbsp;(s) + 3CO (g) &rarr; 2Fe (l) + 3CO<sub>2</sub> (g)</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Fe<sub>2</sub>O<sub>3</sub>:</em><br>paramagnetic<br><em><strong>AND</strong></em><br>unpaired electrons present &laquo;so magnetic moments do not cancel out&raquo;</p>
<p><em>Al<sub>2</sub>O<sub>3</sub>:</em><br>diamagnetic<br><em><strong>AND</strong></em><br>no unpaired electrons/all electrons are paired &laquo;so magnetic moments cancel out&raquo;</p>
<p><em>Award <strong>[1 max]</strong> for &ldquo;Fe<sub>2</sub>O<sub>3</sub> paramagnetic <strong>AND</strong>&nbsp;Al<sub>2</sub>O<sub>3</sub> diamagnetic&rdquo;.</em></p>
<p><em>Award <strong>[1 max]</strong> for &ldquo;Fe<sub>2</sub>O<sub>3</sub> unpaired electrons present <strong>AND</strong>&nbsp;Al<sub>2</sub>O<sub>3</sub> no unpaired electrons/all electrons are paired&rdquo;.</em></p>
<p><em>Award <strong>[1 max]</strong> for &ldquo;Magnetic moments do not cancel out in&nbsp;Fe<sub>2</sub>O<sub>3</sub> but do in Al<sub>2</sub>O<sub>3</sub>&rdquo;.</em></p>
<p><em>Unpaired and paired electrons may also be conveyed by orbital diagrams for the respective ions.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(n\left( {\rm{e}} \right) = \frac{{2.00 \times {{10}^6}}}{{96500}}/20.7 \ll {\rm{mol}} \gg \)</p>
<p><em><strong>OR</strong></em><br><em>n</em>(Al)=\(\frac{1}{3}\)n(e)/6.91&laquo;mol&raquo;</p>
<p><em>m</em>(Al)=&laquo;6.91&times;26.98=&raquo;186&laquo;g&raquo;</p>
<p><em>Award <strong>[2]</strong> for correct final answer for any value within the range 186&ndash;189 &laquo;g&raquo;.</em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The mild analgesic aspirin can be prepared in the laboratory from salicylic acid.</p>
<p style="text-align: center;">(CH<sub>3</sub>CO)<sub>2</sub>O + HOC<sub>6</sub>H<sub>4</sub>COOH&nbsp;&rarr; CH<sub>3</sub>CO<sub>2</sub>C<sub>6</sub>H<sub>4</sub>COOH + CH<sub>3</sub>COOH</p>
<p style="text-align: center;">Salicylic acid &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;Aspirin &nbsp; &nbsp; &nbsp;&nbsp;</p>
<p>&nbsp;</p>
<p>After the reaction is complete, the product is isolated, recrystallized, tested for purity and the experimental yield is measured. A student&rsquo;s results in a single trial are as follows.</p>
<p style="text-align: center;"><img src=""></p>
<p>Literature melting point data: aspirin = 138&ndash;140 &deg;C</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the percentage experimental yield of the product after recrystallization. The molar masses are as follows: <em>M</em>(salicylic acid) = 138.13 g mol<sup>&minus;1</sup>, <em>M</em>(aspirin) = 180.17 g mol<sup>&minus;1</sup>. (You do not need to process the uncertainties in the calculation.)</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why isolation of the crude product involved the addition of ice-cold water.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Justify the conclusion that recrystallization increased the purity of the product, by reference to <strong>two</strong> differences between the melting point data of the crude and recrystallized products.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State why aspirin is described as a mild analgesic with reference to its site of action.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em><strong>ALTERNATIVE 1:</strong></em><br>&laquo;theoretical yield = \(\frac{{1.552\,{\text{g}}}}{{138.13\,{\text{g}}\,{\text{mo}}{{\text{l}}^{ - 1}}}}\) &times; 180.17 g mol<sup>&minus;1</sup>&nbsp;=&raquo; 2.024 &laquo;g&raquo;</p>
<p>&laquo;experimental yield =&nbsp;\(\frac{{1.124{\rm{g}}}}{{2.024{\rm{g}}}}\) &times; 100 =&raquo; 55.53 &laquo;%&raquo;</p>
<p><em><strong>ALTERNATIVE 2:</strong></em><br>&laquo;\(\frac{{1.552\,{\text{g}}}}{{138.13\,{\text{g}}\,{\text{mo}}{{\text{l}}^{ - 1}}}}\)&raquo;= 0.01124 &laquo;mol salicylic acid/aspirin theoretical&raquo; <em><strong>AND</strong></em></p>
<p>&laquo;\(\frac{{1.124\,{\text{g}}}}{{180.17\,{\text{g}}\,{\text{mo}}{{\text{l}}^{ - 1}}}}\)&raquo;= 0.006239 &laquo;mol aspirin experimental&raquo;</p>
<p>&laquo;experimental yield =&nbsp;\(\frac{{0.006239{\rm{mol}}}}{{0.01124{\rm{mol}}}}\) x 100 =&raquo; 55.51 &laquo;%&raquo;</p>
<p><em>Accept answers in the range 55.4 % to 55.7 %.</em><br><em>Award <strong>[2]</strong> for correct final answer.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>low temperature gives greater difference between solubility of aspirin and impurities<br><em><strong>OR<br></strong></em>&laquo;product&raquo; crystallizes out from cold solution/&laquo;ice-cold water/lower temperature&raquo; speeds up crystallization process<br><em><strong>OR<br></strong></em>aspirin/product has low solubility &laquo;in water&raquo; at low temperatures</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>intercepts pain stimulus at source/acts at site of pain<br><em><strong>OR<br></strong></em>interferes with production of pain sensitizing substances/prostaglandins &laquo;at site of pain&raquo;</p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>recrystallized melting point is higher<br><em><strong>OR<br></strong></em>recrystallized melting point is closer to pure substance/literature value</p>
<p>smaller range of values</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Aspirin is one of the most widely used drugs in the world.</p>
</div>

<div class="specification">
<p>Aspirin was synthesized from 2.65 g of salicylic acid (2-hydroxybenzoic acid) (<em>M</em><sub>r</sub> = 138.13)&nbsp;and 2.51 g of ethanoic anhydride (<em>M</em><sub>r</sub> = 102.10).</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the amounts, in mol, of each reactant.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate, in g, the theoretical yield of aspirin.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State <strong>two</strong> techniques which could be used to confirm the identity of aspirin.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State how aspirin can be converted to water-soluble aspirin.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Compare, giving a reason, the bioavailability of soluble aspirin with aspirin.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>n(salicylic acid)&nbsp;=&nbsp;&laquo;\(\frac{{2.65{\text{ g}}}}{{138.13{\text{ g}}\,{\text{mo}}{{\text{l}}^{ - 1}}}}\)&raquo; 0.0192 &laquo;mol&raquo;</p>
<p><em><strong>AND</strong></em></p>
<p>n(ethanoic anhydride) =&nbsp;&laquo;\(\frac{{2.51{\text{ g}}}}{{102.10{\text{ g}}\,{\text{mo}}{{\text{l}}^{ - 1}}}}\)&raquo;&nbsp;0.0246 &laquo;mol&raquo;</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>&laquo;mass =&nbsp;0.0192 mol x&nbsp;180.17 g\(\,\)mol<sup>&ndash;1</sup> =&raquo; 3.46 &laquo;g&raquo;</p>
<p>&nbsp;</p>
<p><em>Award ECF mark <strong>only</strong> if limiting reagent&nbsp;determined in (i) has been used.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Any two of:</em></p>
<p>melting point</p>
<p>mass spectrometry/MS</p>
<p>high-performance liquid chromatography/HPLC</p>
<p>NMR/nuclear magnetic resonance</p>
<p>X-ray crystallography</p>
<p>elemental analysis &laquo;for elemental percent composition&raquo;</p>
<p>&nbsp;</p>
<p><em>Accept &ldquo;spectroscopy&rdquo; instead of&nbsp;&ldquo;spectrometry&rdquo; where mentioned but&nbsp;<strong>not</strong> &ldquo;spectrum&rdquo;.</em></p>
<p><em>Accept &ldquo;infra-red spectroscopy/IR&rdquo; <strong>OR</strong>&nbsp;&ldquo;ultraviolet &laquo;-visible&raquo;&nbsp;spectroscopy/UV/UV-Vis&rdquo;.</em></p>
<p><em>Do <strong>not</strong> accept &ldquo;gas&nbsp;chromatography/GC&rdquo;.</em></p>
<p><em>Accept &ldquo;thin-layer chromatography/TLC&rdquo;&nbsp;as an alternative to &ldquo;HPLC&rdquo;.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>react with NaOH</p>
<p>&nbsp;</p>
<p><em>Accept &ldquo;NaHCO<sub>3</sub>&rdquo; or &ldquo;Na<sub>2</sub>CO<sub>3</sub>&rdquo; instead&nbsp;of &ldquo;NaOH&rdquo;.</em></p>
<p><em>Accept chemical equation <strong>OR</strong> name for&nbsp;reagent used.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>&laquo;marginally&raquo; higher <em><strong>AND</strong></em> increase rate of dispersion<br><em><strong>OR</strong></em><br>&laquo;marginally&raquo; higher <em><strong>AND</strong></em> increase absorption in mouth/stomach &laquo;mucosa&raquo;<br><em><strong>OR</strong></em><br>&laquo;approximately the&raquo; same <em><strong>AND</strong></em> ionic salt reacts with HCl/acid in stomach to&nbsp;produce aspirin again</p>
<p>&nbsp;</p>
<p><em>Do not accept &ldquo;&laquo;marginally&raquo; higher&nbsp;<strong>AND</strong> greater solubility in blood&rdquo;.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A student wished to determine the concentration of a solution of sodium hydroxide by titrating it against a 0.100moldm<sup>&minus;3</sup> aqueous solution of hydrochloric acid.</p>
<p>4.00g of sodium hydroxide pellets were used to make 1.00dm<sup>3</sup> aqueous solution.</p>
<p>20.0cm<sup>3</sup> samples of the sodium hydroxide solution were titrated using bromothymol blue as the indicator.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline, giving your reasons, how you would carefully prepare the 1.00dm<sup>3</sup> aqueous solution from the 4.00g sodium hydroxide pellets.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) State the colour change of the indicator that the student would see during his titration using section 22 of the data booklet.</p>
<p>(ii) The student added the acid too quickly. Outline, giving your reason, how this could have affected the calculated concentration.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why, despite preparing the solution and performing the titrations very carefully, widely different results were obtained.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>Key Procedural Steps:</em><br>use volumetric flask<br>mix the solution<br>fill up to line/mark/&laquo;bottom of&raquo; meniscus/1 dm<sup>3</sup> &laquo;with deionized/distilled water&raquo;</p>
<p><em>Key Technique Aspects:</em><br>use balance that reads to two decimal places/use analytical balance/use balance of high precision<br>mix pellets in beaker with deionized/distilled water &laquo;and stir with glass rod to dissolve&raquo;<br>use a funnel &laquo;and glass-rod&raquo; to avoid loss of solution<br>need to rinse &laquo;the beaker, funnel and glass rod&raquo; and transfer washings to the &laquo;volumetric&raquo; flask</p>
<p><em>Safety Precautions:</em><br>NaOH corrosive/reacts with water exothermically<br>keep NaOH in dessicator<br>let the solution cool</p>
<p><em>Two marks may be awarded from two different categories or from within one category.</em><br><em>Do <strong>not</strong> accept &ldquo;use of a funnel to transfer the solid&rdquo;.</em><br><em>Do <strong>not</strong> accept &ldquo;keep volumetric flask in cold water/ice&rdquo;.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) blue to green/yellow</p>
<p>(ii) equivalence point has been exceeded<br><em><strong>OR</strong></em><br>greater volume of/too much acid has been added</p>
<p>&laquo;calculated&raquo; concentration increased</p>
<p><em>Accept &ldquo;end-point&rdquo; for &ldquo;equivalence point&rdquo;.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>colour difficult to detect<br><em><strong>OR</strong></em><br>using different HCl standards<br><em><strong>OR</strong></em><br>no significant figures used in subsequent calculation <br><em><strong>OR</strong></em><br>incorrect method of calculation</p>
<p><em>Accept any valid hypothesis. </em></p>
<p><em>Do not accept any mistakes associated with techniques (based on stem of question) eg. parallax error, not rinsing glassware, etc. </em></p>
<p><em>Do not accept &ldquo;HCl was not standardized&rdquo;. </em></p>
<p><em>Accept &ldquo;reaction of NaOH with CO<sub>2</sub> &laquo;from air&raquo;&rdquo;. </em></p>
<p><em>Accept &ldquo;NaOH hygroscopic/absorbs moisture/H<sub>2</sub>O &laquo;from the air/atmosphere&raquo;&rdquo;. </em></p>
<p><em>Accept &ldquo;impurities in NaOH&rdquo;. </em></p>
<p><em>Accept "temperature changes during experiment". </em></p>
<p><em>Ignore a general reference to random errors.</em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Students were asked to investigate how a change in concentration of hydrochloric acid, HCl,&nbsp;affects the initial rate of its reaction with marble chips, CaCO<sub>3</sub>.</p>
<p>They decided to measure how long the reaction took to complete when similar chips were&nbsp;added to 50.0 cm<sup>3</sup> of 1.00 mol dm<sup>&minus;3</sup> acid and 50.0 cm<sup>3</sup> of 2.00 mol dm<sup>&minus;3</sup> acid.</p>
<p>Two methods were proposed:</p>
<p>(1)&nbsp; &nbsp; &nbsp;using small chips, keeping the acid in excess, and recording the time taken for the solid&nbsp;to disappear</p>
<p>(2)&nbsp; &nbsp; &nbsp;using large chips, keeping the marble in excess, and recording the time taken for&nbsp;bubbles to stop forming.</p>
</div>

<div class="specification">
<p>A group recorded the following results with 1.00 mol dm<sup>&minus;3</sup> hydrochloric acid:</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-09_om_15.47.04.png" alt="M18/4/CHEMI/SP3/ENG/TZ1/02.d"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Annotate the balanced equation below with state symbols.</p>
<p>CaCO<sub>3</sub>(__) + 2HCl(__) → CaCl<sub>2</sub>(__) + CO<sub>2</sub>(__) + H<sub>2</sub>O(__)</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Neither method actually gives the initial rate. Outline a method that would allow the initial rate to be determined.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce, giving a reason, which of the two methods would be least affected by the chips not having exactly the same mass when used with the different concentrations of acid.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State a factor, that has a significant effect on reaction rate, which could vary between marble chips of exactly the same mass.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Justify why it is inappropriate to record the uncertainty of the mean as ±0.01 s.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>If doubling the concentration doubles the reaction rate, suggest the mean time you would expect for the reaction with 2.00 mol dm<sup>−3</sup> hydrochloric acid.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Another student, working alone, always dropped the marble chips into the acid and then picked up the stopwatch to start it. State, giving a reason, whether this introduced a random or systematic error.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>CaCO<sub>3</sub>(s) + 2HCl(aq) → CaCl<sub>2</sub>(aq) + CO<sub>2</sub>(g) + H<sub>2</sub>O(l)</p>
<p> </p>
<p><em>Accept “CO</em><sub><em>2</em></sub><em>(aq)”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>measure the volume of gas at different times <strong>«</strong>plot a graph and extrapolate<strong>»</strong></p>
<p><strong><em>OR</em></strong></p>
<p>measure the mass of the reaction mixture at different times <strong>«</strong>plot a graph and extrapolate<strong>»</strong></p>
<p> </p>
<p><em>Accept other techniques that yield data </em><em>which can be plotted and extrapolated.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>method 2 <strong><em>AND </em></strong>marble is in excess <strong>«</strong>so a little extra has little effect<strong>»</strong></p>
<p><strong><em>OR</em></strong></p>
<p>large chips <strong><em>AND </em></strong>marble is in excess <strong>«</strong>so a little extra has little effect<strong>»</strong></p>
<p><strong><em>OR</em></strong></p>
<p>method 2 <strong><em>AND </em></strong>HCl is limiting reagent <strong>«</strong>so a little extra marble has little effect<strong>»</strong></p>
<p><strong><em>OR</em></strong></p>
<p>large chips <strong><em>AND </em></strong>HCl is limiting reagent <strong>«</strong>so a little extra marble has little effect<strong>»</strong></p>
<p> </p>
<p><em>Accept, as a reason, that “as the mass </em><em>is greater the percentage variation will </em><em>be lower”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>surface area</p>
<p><strong><em>OR</em></strong></p>
<p>purity <strong>«</strong>of the marble<strong>»</strong></p>
<p> </p>
<p><em>Accept “shape of the chip”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>variation of individual values is much greater <strong>«</strong>than this uncertainty<strong>»</strong></p>
<p><strong><em>OR</em></strong></p>
<p><strong>«</strong>uncertainty<strong>» </strong>does not take into account <strong>«</strong>student<strong>» </strong>reaction time</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>«</strong>\(\frac{{121.96{\text{ s}}}}{2}\) = 60.98 s<strong>»</strong> = 61 <strong>«</strong>s<strong>»</strong></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>systematic <strong><em>AND </em></strong>always makes the time shorter <strong>«</strong>than the actual value<strong>»</strong></p>
<p><strong><em>OR</em></strong></p>
<p>systematic <strong><em>AND </em></strong>it is an error in the method used <strong>«</strong>not an individual measurement<strong>»</strong></p>
<p><strong><em>OR</em></strong></p>
<p>systematic <strong><em>AND </em></strong>more repetitions would not reduce the error</p>
<p> </p>
<p><em>Accept, as reason, “it always affects the </em><em>value in the same direction” </em><strong><em>OR </em></strong><em>“the </em><em>error is consistent”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">d.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.iii.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Water purity is often assessed by reference to its oxygen content.</p>
</div>

<div class="specification">
<p class="p1">The Winkler method uses redox reactions to find the concentration of oxygen in water. \({\text{100 c}}{{\text{m}}^{\text{3}}}\) of water was taken from a river and analysed using this method. The reactions taking place are summarized below.</p>
<p class="p1">\[\begin{array}{*{20}{l}} {{\text{Step 1}}}&amp;{{\text{2M}}{{\text{n}}^{2 + }}{\text{(aq)}} + {\text{4O}}{{\text{H}}^ - }{\text{(aq)}} + {{\text{O}}_2}{\text{(aq)}} \to {\text{2Mn}}{{\text{O}}_2}{\text{(s)}} + {\text{2}}{{\text{H}}_2}{\text{O(l)}}} \\ {{\text{Step 2}}}&amp;{{\text{Mn}}{{\text{O}}_2}{\text{(s)}} + {\text{2}}{{\text{I}}^ - }{\text{(aq)}} + {\text{4}}{{\text{H}}^ + }{\text{(aq)}} \to {\text{M}}{{\text{n}}^{2 + }}{\text{(aq)}} + {{\text{I}}_2}{\text{(aq)}} + {\text{2}}{{\text{H}}_2}{\text{O(l)}}} \\ {{\text{Step 3}}}&amp;{{\text{2}}{{\text{S}}_2}{\text{O}}_3^{2 - }{\text{(aq)}} + {{\text{I}}_2}{\text{(aq)}} \to {{\text{S}}_4}{\text{O}}_6^{2 - }{\text{(aq)}} + {\text{2}}{{\text{I}}^ - }{\text{(aq)}}} \end{array}\]</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Outline the meaning of the term <em>biochemical oxygen demand </em>(BOD).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State what happened to the \({{\text{O}}_{\text{2}}}\) in step 1 in terms of electrons.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the change in oxidation number for manganese in step 2.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">0.0002 moles of \({{\text{I}}^ - }\) were formed in step 3. Calculate the amount, in moles, of oxygen, \({{\text{O}}_{\text{2}}}\), dissolved in water.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">amount of oxygen needed to decompose organic matter;</p>
<p class="p1">in a specified time/five days / at a specified temp/ 20 &deg;C;</p>
<p class="p1"><em>Second mark can only be awarded if reasonable attempt made to define BOD.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">gained electrons;</p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">+4 to +2 / decrease by 2;</p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(0.00005/5 \times {10^{ - 5}}\) (moles);</p>
<div class="question_part_label">c.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">In part (a) the term <em>biochemical oxygen demand (BOD) </em>was not well known. Very few candidates could explain that it is related to the level of organic waste in the water measured at a specific temperature for a specific time period.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Many candidates understood that oxygen gained electrons.</p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Many candidates understood that the oxidation number of manganese dropped from +4 to +2.</p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Many candidates understood that oxygen gained electrons in (c) (i) and that the oxidation number of manganese dropped from +4 to +2 in (ii). However, they struggled to calculate the moles of dissolved oxygen.</p>
<div class="question_part_label">c.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the following lipid and carbohydrate.</p>
<p><img src=""></p>
</div>

<div class="specification">
<p>In order to determine the number of carbon-carbon double bonds in a molecule of&nbsp;linoleic acid, 1.24 g of the lipid were dissolved in 10.0 cm<sup>3</sup> of non-polar solvent.</p>
<p>The solution was titrated with a 0.300 mol dm<sup>&ndash;3</sup> solution of iodine, I<sub>2</sub>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the empirical formula of linoleic acid.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The empirical formula of fructose is CH<sub>2</sub>O. Suggest why linoleic acid releases&nbsp;more energy per gram than fructose.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the type of reaction occurring during the titration.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the volume of iodine solution used to reach the end-point.&nbsp;</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline the importance of linoleic acid for human health.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>C<sub>9</sub>H<sub>16</sub>O</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>ratio of oxygen to carbon in linoleic acid lower</p>
<p><em><strong>OR</strong></em></p>
<p>linoleic acid less oxidized</p>
<p><em><strong>OR</strong></em></p>
<p>linoleic acid more reduced</p>
<p><em>Accept &ldquo;&laquo;average&raquo; oxidation state of&nbsp;carbon in linoleic acid is lower&rdquo;.</em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>&laquo;electrophilic&raquo; addition/A<sub>E</sub></p>
<p><em><strong>OR</strong></em></p>
<p>oxidation&ndash;reduction/redox</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>&laquo;\(\frac{{1.24\,{\text{g}}}}{{280.50\,{\text{g}}\,{\text{mo}}{{\text{l}}^{ - 1}}}}\) =&raquo; 0.00442 &laquo;mol&raquo;</p>
<p>0.00884 mol of C=C</p>
<p><em><strong>OR</strong></em></p>
<p>ratio of linoleic acid : iodine&nbsp;= 1:2</p>
<p>&laquo;volume of I<sub>2</sub> solution&nbsp;=&nbsp;\(\frac{{0.00884\,{\text{mol}}}}{{0.300\,{\text{mol}}\,{\text{d}}{{\text{m}}^{ - 3}}}}\) =&raquo; 0.0295 &laquo;dm<sup>3</sup>&raquo; / 29.5 &laquo;cm<sup>3</sup>&raquo;</p>
<p><em>Award <strong>[3]</strong> for correct final answer.</em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Any two of:</em></p>
<p>increases &laquo;ratio of&raquo; HDL &laquo;to LDL&raquo; cholesterol</p>
<p><em><strong>OR</strong></em></p>
<p>decreases LDL cholesterol &laquo;level&raquo;</p>
<p>removes plaque from/unblocks arteries</p>
<p><em><strong>OR</strong></em></p>
<p>decreases risk of heart disease</p>
<p>decreases risk of stroke &laquo;in the brain&raquo;</p>
<p><em>Accept "essential fatty acid".</em></p>
<p><em>Do <strong>not</strong> accept &ldquo;bad cholesterol&rdquo; for&nbsp;&ldquo;LDL cholesterol&rdquo; <strong>OR</strong> &ldquo;good cholesterol&rdquo;&nbsp;for &ldquo;HDL cholesterol&rdquo;.</em></p>
<p><em>Do <strong>not</strong> accept general answers such as&nbsp;&ldquo;source of energy&rdquo; <strong>OR</strong> &ldquo;forms&nbsp;triglycerides&rdquo; <strong>OR</strong> &ldquo;regulates permeability&nbsp;of cell membranes&rdquo; etc.</em></p>
<p><strong><em>[Max 2 Marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>In a class experiment, students were asked to determine the value of <strong>x</strong> in the formula of a hydrated salt, BaCl<sub>2</sub><strong>・x</strong>H<sub>2</sub>O. They followed these instructions:</p>
<ol>
<li>Measure the mass of an empty crucible and lid.</li>
<li>Add approximately 2 g sample of hydrated barium chloride to the crucible and record the mass.</li>
<li>Heat the crucible using a Bunsen burner for five minutes, holding the lid at an angle so gas can escape.</li>
<li>After cooling, reweigh the crucible, lid and contents.</li>
<li>Repeat steps 3 and 4.</li>
</ol>
<p>Their results in three trials were as follows:</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State and explain the further work students need to carry out in trial 2 before they can process the results alongside trial 1.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In trial 3, the students noticed that after heating, the crucible had turned black on the outside. Suggest what may have caused this, and how this might affect the calculated value for <strong>x</strong> in the hydrated salt.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>List <strong>two</strong> assumptions made in this experiment.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>repeat steps 3 and 4<br><em><strong>OR<br></strong></em>repeat step 5<br><em><strong>OR<br></strong></em>conduct a third heating<br><em><strong>OR<br></strong></em>&laquo;re&raquo;heat <em><strong>AND</strong></em> &laquo;re&raquo;weigh &nbsp;</p>
<p>water still present<br><em><strong>OR<br></strong></em>need two consistent readings<br><em><strong>OR<br></strong></em>heat to constant mass</p>
<p><em>Accept &ldquo;ensure even/strong heating&rdquo; for M1.<br>Do <strong>not</strong> accept &ldquo;cleaning/washing the crucible&rdquo;.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>soot/carbon deposited<br><em><strong>OR<br></strong></em>incomplete combustion<br><em><strong>OR<br></strong></em>air hole of Bunsen burner closed/not fully open</p>
<p><em>Accept &ldquo;using a yellow &laquo;Bunsen burner&raquo; flame&rdquo; for M1.</em></p>
<p>&nbsp;</p>
<p>&laquo;value of <strong>x</strong>&raquo; lower</p>
<p><em>Only award M2 if M1 correct.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>all mass loss is due to water loss</p>
<p>all the water &laquo;of crystallization&raquo; is lost</p>
<p>crucible does not absorb/lose water</p>
<p>crystal/BaCl<sub>2</sub> does not decompose/hydrolyse/oxidize/react with oxygen/air &laquo;when heated&raquo;</p>
<p><em>Accept &ldquo;no loss of crystals/BaCl<sub>2</sub> occurs&rdquo;, &ldquo;no impurities in the &laquo;weighed hydrated&raquo; salt&rdquo;, &ldquo;reaction goes to completion&rdquo;, &ldquo;heat was consistent/strong&rdquo;, &ldquo;crystal/BaCl<sub>2</sub> does not absorb water during cooling&rdquo;, &ldquo;balance has been calibrated&rdquo; or &ldquo;crucible was clean at the start&rdquo;. </em></p>
<p><em>Do <strong>not</strong> accept &rdquo;heat loss to surroundings&rdquo; or &ldquo;no carbon deposited on crucible&rdquo;. </em></p>
<p><em>Reference to defects in apparatus not accepted. </em></p>
<p><em>Do <strong>not</strong> penalize if BaCl<sub>2</sub>.<strong>x</strong>H<sub>2</sub>O is used for BaCl<sub>2</sub>.</em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A class was determining the concentration of aqueous sodium hydroxide by titrating it with&nbsp;hydrochloric acid, whilst monitoring the pH of the solution. The sodium hydroxide solution was&nbsp;added into a glass beaker from a measuring cylinder and the hydrochloric acid added using a&nbsp;burette. One group of students accidentally used a temperature probe rather than a pH probe.&nbsp;Their results are given below.</p>
<p>Volume of aqueous NaOH = 25.0 &plusmn; 0.5 cm<sup>3</sup></p>
<p>Concentration of HCl = 1.00 &plusmn; 0.01 mol dm<sup>&minus;3</sup></p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question">
<p>State and explain how the graph would differ if 1 mol\(\,\)dm<sup>&minus;3</sup> sulfuric acid had been used instead&nbsp;of 1 mol\(\,\)dm<sup>&minus;3</sup> hydrochloric acid.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>graph would peak/maximum at 17.5 cm<sup>3</sup><br><em><strong>OR</strong></em><br>smaller volume of acid &laquo;needed to reach equivalence&raquo;&nbsp;</p>
<p>sulfuric acid is dibasic/diprotic</p>
<p>higher temperature would be reached</p>
<p>&nbsp;</p>
<p><em>Accept &ldquo;gradient/slope &laquo;of graph&raquo; is&nbsp;greater/steeper&rdquo; for M1.</em></p>
<p><em>Accept &ldquo;one mole of sulfuric acid&nbsp;neutralizes two moles of NaOH&rdquo; for M2.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>A class was determining the concentration of aqueous sodium hydroxide by titrating it with&nbsp;hydrochloric acid, whilst monitoring the pH of the solution. The sodium hydroxide solution was&nbsp;added into a glass beaker from a measuring cylinder and the hydrochloric acid added using a&nbsp;burette. One group of students accidentally used a temperature probe rather than a pH probe.&nbsp;Their results are given below.</p>
<p>Volume of aqueous NaOH = 25.0 &plusmn; 0.5 cm<sup>3</sup></p>
<p>Concentration of HCl = 1.00 &plusmn; 0.01 mol dm<sup>&minus;3</sup></p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question">
<p>Suggest how the end point of the titration might be estimated from the graph.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>volume &laquo;found by extrapolation of the two best fit lines&raquo; required to give the&nbsp;highest temperature<br><em><strong>OR</strong></em><br>extrapolate &laquo;two best fit&raquo; lines to the point where they meet</p>
<p>&nbsp;</p>
<p><em>Accept &ldquo;where lines through the points&nbsp;meet&rdquo;.</em></p>
<p><em>Accept &ldquo;at maximum temperature&rdquo;.</em></p>
<p><em>Accept &ldquo;at 35 cm<sup>3</sup> of HCl&rdquo;.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="specification">
<p>Disposable plastic lighters contain butane gas. In order to determine the molar mass of&nbsp;butane, the gas can be collected over water as illustrated below:</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>List the data the student would need to collect in this experiment.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why this experiment might give a low result for the molar mass of butane.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest <strong>one</strong> improvement to the investigation.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>mass/<em>m</em> of lighter before <em><strong>AND</strong> </em>after the experiment</p>
<p>volume of gas/<em>V</em><sub>gas</sub> &laquo;collected in the cylinder&raquo;</p>
<p>&laquo;ambient&raquo; pressure/<em>P</em> &laquo;of the room&raquo;</p>
<p>temperature/<em>T</em></p>
<p>&nbsp;</p>
<p><em>Accept &ldquo;change in mass of lighter&rdquo;.</em></p>
<p><em>Accept &ldquo;weight&rdquo; for &ldquo;mass&rdquo;.</em></p>
<p><em>Do <strong>not</strong> accept just &ldquo;mass of lighter/gas&rdquo;.</em></p>
<p><em>Accept &ldquo;volume of water displaced&rdquo;.</em></p>
<p><em>Do <strong>not</strong> accept &ldquo;amount&rdquo; for &ldquo;volume&rdquo; or&nbsp;&ldquo;mass&rdquo;.</em></p>
<p><strong><em>[4 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Any two of:</em></p>
<p>pressure of gas not equalized with atmospheric/room pressure</p>
<p>too large a recorded volume &laquo;of gas produces a lower value for molar mass of&nbsp;butane&raquo;<br><em><strong>OR</strong></em><br>cylinder tilted</p>
<p>difficult to dry lighter &laquo;after experiment&raquo;<br><em><strong>OR</strong></em><br>higher mass of lighter due to moisture<br><em><strong>OR</strong></em><br>smaller change in mass but same volume &laquo;produces lower value for molar mass&nbsp;of butane&raquo;</p>
<p>using degrees Celcius/&deg;C instead of Kelvin/K for temperature</p>
<p>&nbsp;</p>
<p><em>Accept &ldquo;vapour pressure of water not&nbsp;accounted for&rdquo; <strong>OR&nbsp;</strong>&ldquo;incorrect vapour&nbsp;pressure of water used&rdquo; <strong>OR&nbsp;</strong>&ldquo;air bubbles&nbsp;trapped in cylinder&rdquo;. Do <strong>not</strong> accept&nbsp;&ldquo;gas/bubbles escaping &laquo;the cylinder&raquo;&rdquo;&nbsp;or other results leading to a larger molar&nbsp;mass.</em></p>
<p><em>Accept &ldquo;lighter might contain mixture of&nbsp;propane and butane&rdquo;.</em></p>
<p><em>Do <strong>not</strong> accept only &ldquo;human errors&rdquo; <strong>OR&nbsp;</strong>&ldquo;faulty equipment&rdquo; (without a clear&nbsp;explanation given for each) or &ldquo;mistakes&nbsp;in calculations&rdquo;.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>record vapour pressure of water &laquo;at that temperature&raquo;<br><em><strong>OR</strong></em><br>equalize pressure of gas in cylinder with atmospheric/room pressure<br><em><strong>OR</strong></em><br>tap cylinder before experiment &laquo;to dislodge trapped air&raquo;<br><em><strong>OR</strong></em><br>collect gas using a &laquo;gas&raquo; syringe/eudiometer/narrower/more precise graduated&nbsp;tube<br><em><strong>OR</strong></em><br>collect gas through tubing &laquo;so lighter does not get wet&raquo;<br><em><strong>OR</strong></em><br>dry lighter &laquo;before and after experiment&raquo;<br><em><strong>OR</strong></em><br>hold &laquo;measuring&raquo; cylinder vertical<br><em><strong>OR</strong></em><br>commence experiment with cylinder filled with water</p>
<p>&nbsp;</p>
<p><em>Accept &ldquo;adjust cylinder &laquo;up or down&raquo; to&nbsp;ensure water level inside cylinder&nbsp;matches level outside&rdquo;.</em></p>
<p><em>Accept &ldquo;repeat experiment/readings &laquo;to&nbsp;eliminate random errors&raquo;&rdquo;.</em></p>
<p><em>Accept &ldquo;use pure butane gas&rdquo;.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Palmitic acid has a molar mass of 256.5 g mol<sup>&minus;1</sup>.</p>
<p style="text-align: left;"><img src=""></p>
</div>

<div class="specification">
<p>The apparatus in the diagram measures the surface pressure created by palmitic acid&nbsp;molecules on the surface of water. This pressure is caused by palmitic acid molecules&nbsp;colliding with the fixed barrier. The pressure increases as the area, <strong>A</strong>, available to the&nbsp;palmitic acid is reduced by the movable barrier.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-09_om_15.37.49.png" alt="M18/4/CHEMI/SP3/ENG/TZ1/01.b_01"></p>
<p>When a drop of a solution of palmitic acid in a volatile solvent is placed between the&nbsp;barriers, the solvent evaporates leaving a surface layer. The graph of pressure against&nbsp;area was obtained as the area <strong>A </strong>was reduced.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-09_om_15.39.43.png" alt="M18/4/CHEMI/SP3/ENG/TZ1/01.b_02"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Part of this molecule is hydrophilic (bonds readily to water) and part hydrophobic (does not bond readily to water). Draw a circle around all of the hydrophilic part of the molecule.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>When a small amount of palmitic acid is placed in water it disperses to form a layer on the surface that is only one molecule thick. Explain, in terms of intermolecular forces, why this occurs.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why there is a small increase in the surface pressure as the area is reduced to about 240 cm<sup>2</sup>, but a much faster increase when it is further reduced.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The solution of palmitic acid had a concentration of 0.0034 mol dm<sup>−3</sup>. Calculate the number of molecules of palmitic acid present in the 0.050 cm<sup>3</sup> drop, using section 2 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Assuming the sudden change in gradient occurs at 240 cm<sup>2</sup>, calculate the area, in cm<sup>2</sup>, that a single molecule of palmitic acid occupies on surface of the water.</p>
<p>If you did not obtain an answer for (b)(ii) use a value of 8.2 × 10<sup>16</sup>, but this is not the correct answer.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2018-08-09_om_16.46.42.png" alt="M18/4/CHEMI/SP3/ENG/TZ1/01.a.i/M"></p>
<p> </p>
<p><em>Must cut CH</em><sub><em>2</em></sub><em>–CO bond </em><strong><em>AND </em></strong><em>enclose all </em><em>of the –COOH group.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Any two of:</em></p>
<p>–COOH/CO/OH/carboxylate/carboxyl/hydroxyl/hydroxy group forms hydrogen bonds/H-bonds to water</p>
<p>London/dispersion/instantaneous induced dipole-induced dipole forces occur between hydrocarbon chains</p>
<p>hydrocarbon chain cannot form hydrogen bonds/H-bonds to water</p>
<p>strong hydrogen bonds/H-bonds between water molecules exclude hydrocarbon chains <strong>«</strong>from the body of the water<strong>»</strong></p>
<p> </p>
<p> </p>
<p><em>Accept “hydrophilic part/group forms </em><em>hydrogen bonds/H-bonds to water”.</em></p>
<p><em>Accept “hydrophobic section” instead of </em><em>“hydrocarbon chain”.</em></p>
<p><em>Award </em><strong><em>[1 max] </em></strong><em>for answers based on </em><em>“the –COOH group being polar </em><strong><em>AND </em></strong><em>the </em><em>hydrocarbon chain being non-polar”.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Above about 240 cm</em><sup><em>2</em></sup><em>:</em></p>
<p>greater collision frequency/collisions per second between <strong>«</strong>palmitic acid<strong>»</strong> molecules and the barrier <strong>«</strong>as area reduced<strong>»</strong></p>
<p> </p>
<p><em>At less than about 240 cm</em><sup><em>2</em></sup><em>:</em></p>
<p>molecules completely cover the surface</p>
<p><strong><em>OR</em></strong></p>
<p>there is no space between molecules</p>
<p><strong><em>OR</em></strong></p>
<p>force from movable barrier transmitted directly through the molecules to the fixed barrier</p>
<p><strong><em>OR</em></strong></p>
<p><strong>«</strong>palmitic acid<strong>» </strong>molecules are pushed up/down/out of layer</p>
<p> </p>
<p><em>For both M1 and M2 accept “particles” </em><em>for “molecules”.</em></p>
<p><em>For M1 accept “space/area between </em><em>molecules reduced” </em><strong><em>OR </em></strong><em>“molecules </em><em>moving closer together”.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>amount of acid = <strong>«</strong>5.0 × 10<sup>–5</sup> dm<sup>3</sup> × 0.0034 mol dm<sup>–3</sup><strong>» =</strong> 1.7 × 10<sup>–7</sup> <strong>«</strong>mol<strong>»</strong></p>
<p>number of molecules = <strong>«</strong>1.7 × 10<sup>–7</sup> mol × 6.02 × 10<sup>23</sup> mol<sup>–1</sup> =<strong>» </strong>1.0 × 10<sup>17</sup></p>
<p> </p>
<p><em>Award </em><strong><em>[2] </em></strong><em>for correct final answer.</em></p>
<p><em>Award </em><strong><em>[1] </em></strong><em>for “1.0 ×</em><em> </em><em>10</em><sup><em>20</em></sup><em>”.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>«</strong>area = \(\frac{{240{\text{ c}}{{\text{m}}^2}}}{{1.0 \times {{10}^{17}}}}\) <strong>» </strong>2.4 × 10<sup>–15</sup> <strong>«</strong>cm<sup>2</sup><strong>»</strong></p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>Sodium chloride, NaCl, can be spread on icy roads to lower the freezing point of water.</p>
<p>The diagram shows the effects of temperature and percentage by mass of NaCl on the&nbsp;composition of a mixture of NaCl and H<sub>2</sub>O.</p>
<p><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate the lowest freezing point of water that can be reached by adding sodium&nbsp;chloride.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate the percentage by mass of NaCl dissolved in a saturated sodium chloride&nbsp;solution at +10 &ordm;C.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the percentage of water by mass in the NaCl&bull;2H<sub>2</sub>O crystals. Use the data&nbsp;from section 6 of the data booklet and give your answer to two decimal places.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest a concern about spreading sodium chloride on roads.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>&ndash;21 &laquo;&ordm;C&raquo;</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p>28 &laquo;%&raquo;</p>
<p><em>Accept any specific answer in the range&nbsp;27 to 29 &laquo;%&raquo;.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>M</em><sub>r</sub>&nbsp;= 94.48</p>
<p>&laquo;\(2\frac{{\left( {1.01 \times 2 + 16.00} \right)}}{{94.48}} \times 100 = \)&raquo; 38.15 &laquo;%&raquo;</p>
<p><em>Award M2 only if answer is to 2 decimal&nbsp;places.</em></p>
<p><em>Award <strong>[2]</strong> for correct final answer.</em></p>
<p><em>Award <strong>[1 max]</strong> for 38.10 %.</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>rust/corrosion &laquo;of cars and bridges&raquo;<br><em><strong>OR</strong></em><br>waste of important raw material<br><em><strong>OR</strong></em><br>soil/water salination/pollution &laquo;from run off&raquo;<br><em><strong>OR</strong></em><br>erosion of/damage to the road surface<br><em><strong>OR</strong></em><br>specific example of damage to the ecosystem<br><em><strong>OR</strong></em><br>&laquo;outdoor&raquo; temperatures may go below effective levels for NaCl &laquo;to lower freezing&nbsp;point&raquo; so NaCl could be wasted<br><em><strong>OR</strong></em><br>roads can refreeze causing hazards</p>
<p><em>Do <strong>not</strong> accept &ldquo;tyre damage&rdquo;.</em></p>
<p><em>Do <strong>not</strong> accept &ldquo;economic issues&rdquo; <strong>OR&nbsp;</strong>&ldquo;environmental issues&rdquo; unless specified&nbsp;(eg accept &ldquo;increase in costs for local councils road budgets&rdquo; but <strong>not</strong> &ldquo;cost&rdquo;&nbsp;alone).</em></p>
<p><em>Do <strong>not</strong> accept &ldquo;makes roads more slippery&rdquo;.</em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br>