File "SL-paper3.html"

Path: /IB QUESTIONBANKS/4 Fourth Edition - PAPER/HTML/Chemistry/Option D/SL-paper3html
File size: 366.2 KB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-746ec5d03ead8d9e8b3bb7d32173f2b4e2e22a05f0c5278e086ab55b3c9c238e.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-3c91afd8a2942c18d21ed2700e1bdec14ada97f1d3788ae229315e1276d81453.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../index.html">Home</a>
</li>
<li class="active dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Questionbanks
<b class="caret"></b>
</a><ul class="dropdown-menu">
<li>
<a href="../../geography.html" target="_blank">DP Geography</a>
</li>
<li>
<a href="../../physics.html" target="_blank">DP Physics</a>
</li>
<li>
<a href="../../chemistry.html" target="_blank">DP Chemistry</a>
</li>
<li>
<a href="../../biology.html" target="_blank">DP Biology</a>
</li>
<li>
<a href="../../furtherMath.html" target="_blank">DP Further Mathematics HL</a>
</li>
<li>
<a href="../../mathHL.html" target="_blank">DP Mathematics HL</a>
</li>
<li>
<a href="../../mathSL.html" target="_blank">DP Mathematics SL</a>
</li>
<li>
<a href="../../mathStudies.html" target="_blank">DP Mathematical Studies</a>
</li>
</ul></li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">

<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">



</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="images/logo.jpg" alt="Ib qb 46 logo">
</div>
</div>
</div><h2>SL Paper 3</h2><div class="specification">
<p>New drugs undergo thorough clinical trials before they are approved.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline the difference between the therapeutic index in animal studies and the&nbsp;therapeutic index in humans.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the method of drug administration that gives the maximum bioavailability.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Antiviral drugs are designed to take different approaches to fighting viruses.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how oseltamivir (Tamiflu<sup>&reg;</sup>) works.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Oseltamivir was commercially produced from shikimic acid, a precursor which is a&nbsp;metabolite in micro-organisms and plants.</p>
<p>Outline how green chemistry was used to develop the precursor for oseltamivir in order&nbsp;to overcome a shortage of the drug during the flu season.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why the administration of antibiotics to humans and animals can affect&nbsp;the environment.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Excess stomach acid leads to medical conditions that affect many people worldwide. These conditions can be treated with several types of medical drugs.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Ranitidine (Zantac) is a drug that inhibits stomach acid production. Outline why the development of this drug was based on a detailed knowledge of the structure of histamine, shown below.</p>
<p style="text-align: center;"><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Two other drugs, omeprazole (Prilosec) and esomeprazole (Nexium), directly prevent the release of acid into the stomach. Identify the site of action in the body.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A different approach to treating excess stomach acid is to neutralize it with antacids. Formulate an equation that shows the action of an antacid that can neutralize three moles of hydrogen ions, H<sup>+</sup>, per mole of antacid.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Magnesium hydroxide is the active ingredient in a common antacid.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Formulate the equation for the neutralization of stomach acid with magnesium hydroxide.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the mass of HCl, in g, that can be neutralized by the standard adult dose of 1.00g magnesium hydroxide.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Compare and contrast the use of omeprazole (Prilosec) and magnesium hydroxide.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Aspirin, paracetamol (acetaminophen), morphine and diamorphine (heroin) are all pain killers. Their structures are given in Table 20 of the Data Booklet.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Aspirin is thought to interfere with the production of prostaglandins. Explain how this produces an analgesic effect.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain how morphine can prevent pain.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Paracetamol (acetaminophen) is generally considered to be safe to use as an analgesic in small doses. Other than the possibility of death, outline the problems associated with taking larger doses of paracetamol.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State <strong>one </strong>important use for aspirin other than the relief of pain and fever.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain what is meant by the term <em>tolerance </em>and suggest why this is a particular problem for heroin users.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="question">
<p>Radioisotopes are used to diagnose and treat various diseases. Explain the low&nbsp;environmental impact of most medical nuclear waste.</p>
</div>
<br><hr><br><div class="question">
<p>Molecules of antibiotics often contain a beta-lactam ring. Explain the importance of the betalactam&nbsp;ring in the action of penicillin, using section 37 of the data booklet.</p>
</div>
<br><hr><br><div class="specification">
<p class="p1">Aspirin and paracetamol (acetaminophen) are mild analgesics.</p>
</div>

<div class="specification">
<p class="p1">Morphine is a strong analgesic which is administered parenterally.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain why it is dangerous to take aspirin when ethanol has also been consumed.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the meaning of the term <em>parenteral</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain how a strong analgesic such as morphine prevents pain.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The structures of morphine and diamorphine (heroin) are shown in Table 20 of the Data Booklet. State the name of a functional group present in diamorphine (heroin) but not in morphine.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>Some analgesics are derived from compounds found in plants.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Aspirin is a mild analgesic derived from salicylic acid found in willow bark.</p>
<p>Describe how mild analgesics function.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The strong analgesics morphine and codeine are opiates. Outline how codeine&nbsp;can be synthesized from morphine. The structures of morphine and codeine are&nbsp;in section 37 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why opiates are addictive.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The production of many pharmaceutical drugs involves the use of solvents.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest <strong>one</strong> problem associated with chlorinated organic solvents as chemical waste.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest how the principles of green chemistry can be used to solve the environmental&nbsp;problems caused by organic solvents.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Excess acid in the stomach can cause discomfort and more serious health issues.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain how ranitidine (Zantac) reduces stomach acid production.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The pH is maintained in different fluids in the body by the use of buffers.</p>
<p>Calculate the pH of a buffer solution of 0.0200 mol dm<sup>&ndash;3</sup> carbonic acid, H<sub>2</sub>CO<sub>3</sub>, and&nbsp;0.400 mol dm<sup>&ndash;3</sup> sodium hydrogen carbonate, NaHCO<sub>3</sub>. The p<em>K</em><sub>a</sub> of carbonic acid is&nbsp;6.35.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Many diseases are the result of infection of the body by either bacteria or viruses.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i)&nbsp; &nbsp; &nbsp;State the name of <strong>one </strong>disease caused by each.</p>
<p class="p1">Bacteria:</p>
<p class="p1">Viruses:</p>
<p class="p1">(ii)&nbsp; &nbsp; &nbsp;Discuss the differences between bacteria and viruses.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Describe <strong>two </strong>misuses of antibiotics that have led to some bacteria becoming resistant.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">It is much more difficult to produce effective antiviral drugs than drugs that kill bacteria. Describe <strong>two </strong>ways in which antiviral drugs work.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Oseltamivir (Tamiflu) and zanamivir (Relenza) are antiviral drugs used to prevent flu.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the names of <strong>two</strong> functional groups that <strong>both</strong> compounds contain, using section&nbsp;37 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain how oseltamivir and zanamivir can stop the spread of the flu virus in the body.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Medicines and drugs are natural or synthetic substances used for their effects on the body.</p>
</div>

<div class="question">
<p class="p1">List <strong>two </strong>general effects of medicines and drugs on the functioning of the body.</p>
</div>
<br><hr><br><div class="specification">
<p class="p1">Alexander Fleming, Howard Florey and Ernst Chain shared the Nobel Prize for &ldquo;the discovery of penicillin and its curative effect in various infectious diseases&rdquo;.</p>
</div>

<div class="specification">
<p class="p1">Ampicillin is a semi-synthetic penicillin used to treat lung infections. The structure of the antibiotic is shown below.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-10-06_om_07.52.07.png" alt="N09/4/CHEMI/SP3/ENG/TZ0/D1.b"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Describe the mode of action of penicillins in treating infectious diseases.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Identify <strong>two </strong>functional groups present in the side chain (R) of ampicillin by comparing its structure to that of penicillin in Table 20 in the Data Booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain why it is important to continue to develop semi-synthetic penicillins.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Medicines and drugs alter the physiological state of the body including consciousness and coordination.</p>
</div>

<div class="specification">
<p class="p1">Explain the meaning of the following terms:</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State <strong>one </strong>other effect of medicines and drugs on the body.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><em>therapeutic window.</em></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><em>tolerance.</em></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Outline the major stages in the development of a new drug.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">A well-known brand of antacids contains 0.160 g of aluminium hydroxide and 0.105 g of magnesium carbonate in each tablet.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the separate equations for the reactions of aluminium hydroxide and magnesium carbonate with hydrochloric acid.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine which of the two components of the tablet will neutralize the most acid.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">On the leaflet which comes with the tablets it states that one of the side effects of the tablets is belching. Explain why this might occur.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Two substances commonly used in antacid tablets are magnesium hydroxide and aluminium hydroxide.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State an equation to represent a neutralization reaction with one of the above antacids.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State and explain whether 0.1 mol of magnesium hydroxide is more effective or less effective than 0.1 mol of aluminium hydroxide.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Suggest why compounds such as sodium hydroxide or potassium hydroxide cannot be used as an antacid.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Analgesics are used to relieve pain in the body. Aspirin and paracetamol (acetaminophen) are both mild analgesics.</p>
</div>

<div class="specification">
<p class="p1">The structures of the strong analgesics morphine and heroin (diamorphine) can be found in Table 20 of the Data Book</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Compare how mild and strong analgesics relieve pain in the body.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Identify the amine functional group in the morphine molecule below by drawing a ring around it.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-10-17_om_09.49.31.png" alt="M09/4/CHEMI/SP3/ENG/TZ1/D1.c.i"></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the name of the functional group found in heroin but not in morphine.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State <strong>one </strong>advantage and <strong>one </strong>disadvantage of using morphine as a strong analgesic.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Penicillin was one of the first antibiotics to be isolated and identified for its ability to treat bacterial infections.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain the importance of the beta-lactam ring in the antibiotic activity of penicillin.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify <strong>two</strong> dangers of the overuse of antibiotics.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State <strong>two</strong> ways in which viruses are different from bacteria.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe <strong>two</strong> ways in which antiviral drugs work.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Two different antibacterials are sodium piperacillin and doxycycline. Sodium piperacillin is a type of penicillin and doxycycline belongs to a class of drugs known as the tetracyclines.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-20_om_07.33.40.png" alt="M13/4/CHEMI/SP3/ENG/TZ2/D3"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain how penicillins are able to cure certain diseases caused by bacteria.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Sodium piperacillin has a different side chain to the original penicillin developed by Florey and Chain. State <strong>one </strong>advantage of changing the side chain.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain why it may be necessary to give a mixture of several different types of antibacterials (such as penicillins and tetracyclines) to patients suffering from diseases such as tuberculosis (TB) or MRSA (a disease caused by the presence of the <em>staphylococcus aureus </em>bacterium).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The structures of morphine, diamorphine and codeine are given in section 37 of the&nbsp;data booklet.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why diamorphine passes more readily than morphine through the&nbsp;blood-brain barrier.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest a reagent used to prepare diamorphine from morphine.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest <strong>one</strong> reason why codeine is available without prescription in some countries&nbsp;whilst morphine is administered under strict medical supervision.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The buffer formed by carbon dioxide, CO<sub>2</sub>(aq) and hydrogen carbonate ion, HCO<sub>3</sub><sup>&minus;</sup>(aq),&nbsp;plays an important role in maintaining the pH of blood.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the pH of the buffer from the following data and section 1 of the data booklet.</p>
<p>p<em>K</em><sub>a</sub>(CO<sub>2</sub>) = 6.34</p>
<p>[HCO<sub>3</sub><sup>&minus;</sup>(aq)] = 1.40 &times; 10<sup>&minus;2</sup> mol\(\,\)dm<sup>&minus;3</sup></p>
<p>[CO<sub>2</sub>(aq)] = 1.25 &times; 10<sup>&minus;3</sup> mol\(\,\)dm<sup>&minus;3</sup></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain the effect of a large amount of aspirin on the pH of blood.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Mild analgesics such as aspirin, and strong analgesics such as opiates, differ not only in their potency but also in the ways they act on the central nervous system.</p>
</div>

<div class="question">
<p class="p1">(a)&nbsp; &nbsp; &nbsp;Describe how mild and strong analgesics provide pain relief.</p>
<p class="p1">Mild analgesics:</p>
<p class="p1">Strong analgesics:</p>
<p class="p1">(b)&nbsp; &nbsp; &nbsp;Discuss <strong>two </strong>advantages and <strong>two </strong>disadvantages of using morphine and other opiates for pain relief.</p>
<p class="p1">Advantages:</p>
<p class="p1">Disadvantages:</p>
</div>
<br><hr><br><div class="specification">
<p class="p1">The first penicillin to be used was benzylpenicillin (Penicillin G), its structure is shown below.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-10-07_om_14.44.41.png" alt="M10/4/CHEMI/SP3/ENG/TZ1/D2"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain how penicillins are able to act as antibacterials.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Modern penicillins have a similar structure to Penicillin G but a different side-chain.</p>
<p class="p1">State <strong>two </strong>advantages of modifying the side-chain.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Explain the meaning of the terms:</p>
</div>

<div class="specification">
<p class="p1">The effectiveness of a drug depends on the method of administration.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><em>side-effect</em></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><em>therapeutic window</em></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">One method of injecting drugs into the body results in the drug having a very rapid effect. State the method and explain its rapid action.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">List the <strong>two </strong>other methods which can be used to inject drugs into the body.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Identify the method of administration used to treat respiratory diseases such as asthma.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>Morphine and its derivatives work by temporarily bonding to receptor sites in the brain, preventing the transmission of pain impulses.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Discuss <strong>one </strong>advantage and <strong>two </strong>disadvantages of using morphine as an analgesic.</p>
<p>&nbsp;</p>
<p>Advantage:</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>Disadvantages:</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The structures of morphine and diamorphine (heroin) are shown in table 20 of the data booklet. Describe the difference in the two structures by naming the functional groups.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Aluminium hydroxide and calcium carbonate are both used as antacids.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State an equation for the reactions that occur in the stomach for both substances with hydrochloric acid.</p>
<p class="p2">&nbsp;</p>
<p class="p1">Aluminium hydroxide:</p>
<p class="p2">&nbsp;</p>
<p class="p2">&nbsp;</p>
<p class="p1">Calcium carbonate:</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">A typical antacid tablet has a mass of about 1 g. Determine which of the two antacids will neutralize the greater amount of hydrochloric acid if tablets of each are added to separate samples of acid. A detailed calculation is not required.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Potassium hydroxide also neutralizes hydrochloric acid. Suggest why it is not used as an antacid.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State <strong>one </strong>difference between viruses and bacteria.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Discuss <strong>three </strong>methods in which the activities of humans has created an increase in the resistance to penicillin in bacteria populations.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Depressants can have different effects depending on their doses.</p>
</div>

<div class="specification">
<p class="p1">A breathalyser containing crystals of potassium dichromate(VI) can be used by the police to detect whether a driver has consumed alcohol.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the chemical formula for potassium dichromate(VI).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Describe the colour change observed during its reaction with ethanol.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the oxidation number of chromium in the product.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce the <strong>full </strong>balanced chemical equation for the redox reaction of ethanol with acidified potassium dichromate(VI).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the name of the organic product formed.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.v.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">An intoximeter is used to determine an accurate value for the concentration of ethanol in the breath. Explain <strong>one </strong>technique used for the detection of ethanol in an intoximeter.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Ethanol is a depressant.</p>
</div>

<div class="specification">
<p class="p1">The presence of ethanol in the breath can be detected by blowing into a &ldquo;bag&rdquo; through a tube containing acidified potassium dichromate(VI). The half-equation for the dichromate reaction is:</p>
<p class="p1">\[{\text{C}}{{\text{r}}_2}{\text{O}}_7^{2 - }{\text{(aq)}} + {\text{14}}{{\text{H}}^ + }{\text{(aq)}} + {\text{6}}{{\text{e}}^ - } \to {\text{2C}}{{\text{r}}^{3 + }}{\text{(aq)}} + {\text{7}}{{\text{H}}_2}{\text{O(l)}}\]</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Describe the colour change observed when the dichromate ion reacts with the ethanol.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the name of the organic product formed during the reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">In order to quantify exactly how much ethanol is present in the blood, a person may be required to give a blood sample or may be asked to blow into an intoximeter. Explain the chemistry behind the techniques for determining the ethanol content in a blood sample and by using an intoximeter.</p>
<p class="p2">&nbsp;</p>
<p class="p1">Blood sample:</p>
<p class="p2">&nbsp;</p>
<p class="p2">&nbsp;</p>
<p class="p2">&nbsp;</p>
<p class="p1">Intoximeter:</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Ethanol may exert a synergistic effect when taken with other medicines. State the meaning of the term <em>synergistic effect</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The structures of aspirin and diamorphine (heroin) are given in Table 20 of the Data Booklet.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Other than the benzene (aromatic) ring, state the name of the functional group that is common to both aspirin and diamorphine.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Describe the different ways in which aspirin and diamorphine function when they relieve or prevent pain.</p>
<p class="p2">&nbsp;</p>
<p class="p1">Aspirin:</p>
<p class="p2">&nbsp;</p>
<p class="p2">&nbsp;</p>
<p class="p1">Diamorphine:</p>
<p class="p2">&nbsp;</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Other than the prevention of pain and/or the reduction of fever, state <strong>one </strong>reason why aspirin is often prescribed or recommended to some people for daily use.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Discuss <strong>one </strong>advantage and <strong>one </strong>disadvantage of taking diamorphine rather than morphine to relieve pain.</p>
<p class="p2">&nbsp;</p>
<p class="p1">Advantage:</p>
<p class="p2">&nbsp;</p>
<p class="p2">&nbsp;</p>
<p class="p1">Disadvantage:</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question">
<p class="p1">Describe and explain difficulties associated with solving the AIDS problem.</p>
</div>
<br><hr><br><div class="specification">
<p>Oseltamivir (Tamiflu) and zanamivir (Relenza) are both used as antivirals to help prevent the spread of the flu virus, but are administered by different methods.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Zanamivir must be taken by inhalation, not orally. Deduce what this suggests about the bioavailability of zanamivir if taken orally.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Oseltamivir does not possess the carboxyl group needed for activity until it is chemically changed in the body. Deduce the name of the functional group in oseltamivir which changes into a carboxyl group in the body. Use section 37 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The synthesis of oseltamivir is dependent on a supply of the precursor shikimic acid, which is available only in low yield from certain plants, notably Chinese star anise. State one alternative green chemistry source of shikimic acid.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Bacterial and viral infections require different types of medication.</p>
</div>

<div class="question">
<p class="p1">(a)&nbsp; &nbsp; &nbsp;Outline <strong>two </strong>differences between bacteria and viruses.</p>
<p class="p1">(b)&nbsp; &nbsp; &nbsp;Antiviral drugs are used for the treatment of HIV and other viral infections. Describe <strong>two</strong>&nbsp;ways in which antiviral drugs work.</p>
<p class="p1">(c)&nbsp; &nbsp; &nbsp;Discuss why viral infections are generally harder to treat than bacterial infections.</p>
</div>
<br><hr><br><div class="specification">
<p class="p1">During drug development, trials are conducted to determine the therapeutic window.</p>
</div>

<div class="question">
<p class="p1">Explain the meaning of the term <em>therapeutic window </em>and discuss its importance in drug administration.</p>
</div>
<br><hr><br><div class="specification">
<p class="p1">Drugs are most commonly taken orally.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Drugs are most commonly taken orally.</p>
<p class="p1">(a) State <strong>one </strong>advantage and <strong>one </strong>disadvantage of this.</p>
<p class="p1">Advantage:</p>
<p class="p1">Disadvantage:</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">List <strong>three </strong>methods, other than orally, that can be used for the administration of a drug.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p class="p1">Acquired immune deficiency syndrome (AIDS), a disease caused by the HIV virus, has resulted in millions of deaths worldwide since it was first identified in 1981.</p>
<p class="p1">Explain why viral infections, such as AIDS, are generally more difficult to treat than bacterial infections.</p>
</div>
<br><hr><br><div class="specification">
<p>Excess stomach acid can be counteracted by a range of medications.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>An antacid tablet contains 680 mg of calcium carbonate, CaCO<sub>3</sub>, and 80 mg of magnesium carbonate, MgCO<sub>3</sub>.</p>
<p>State the equation for the reaction of magnesium carbonate with hydrochloric acid.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the amount, in mol, of hydrochloric acid neutralized by <strong>one antacid </strong><strong>tablet</strong>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain how omeprazole (Prilosec) reduces stomach acidity.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Excess acid in the stomach is often treated with calcium carbonate.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Formulate a chemical equation for the neutralization of stomach acid with calcium carbonate.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the amount, in mol, of stomach acid neutralized by an antacid tablet containing 0.750 g calcium carbonate.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain how omeprazole (Prilosec) regulates pH in the stomach.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The walls of the human stomach contain cells that produce gastric juices. Sodium hydrogencarbonate is an antacid often used to neutralize excess acid.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State an equation for the reaction of stomach acid with this antacid.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calcium carbonate can also neutralize stomach acid. The same amounts (in moles) of sodium hydrogencarbonate and calcium carbonate are available. Deduce which antacid will neutralize the greater amount of acid present in the stomach and explain your reasoning.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Antibacterials are drugs that kill or inhibit the growth of microorganisms that cause infectious diseases. The general structure of penicillin, an antibacterial, is given below.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-10-19_om_18.08.38.png" alt="M09/4/CHEMI/SP3/ENG/TZ2/D4"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">With reference to the structure above, state what the letter R represents and discuss how penicillins can be made more resistant to the penicillinase enzyme.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Describe and explain <strong>one </strong>effect of overprescription of antibacterials.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Medicines have a variety of different effects on the body and act at the molecular level.</p>
</div>

<div class="specification">
<p>Morphine and codeine are strong analgesics. Their structures are given in section 37&nbsp;of the data booklet.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Dose response curves are determined for each drug.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-09-25_om_13.15.24.png" alt="M17/4/CHEMI/SP3/ENG/TZ1/XX"></p>
<p>Outline the significance of range &ldquo;a&rdquo;.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest the type of reaction used to convert morphine to codeine.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State and explain the action of opiates as painkillers.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Sodium hydrogencarbonate, NaHCO<sub><span class="s1">3</span></sub>, and magnesium hydroxide, Mg(OH)<sub><span class="s1">2</span></sub>, can both be used as antacids.</p>
</div>

<div class="question">
<p class="p1">(i)&nbsp; &nbsp; &nbsp;Give the equations for the reactions of sodium hydrogencarbonate and magnesium hydroxide with hydrochloric acid.</p>
<p class="p1">(ii)&nbsp; &nbsp; &nbsp;Compare the effectiveness of 1.00 g of sodium hydrogencarbonate to 0.50 g of magnesium hydroxide in combating acidity in the stomach.</p>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State <strong>two </strong>differences in structure between viruses and bacteria.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Describe <strong>two </strong>ways in which antiviral drugs work.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Discuss <strong>two </strong>difficulties associated with the development of drugs for the effective treatment of AIDS.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Ethanol, a depressant, is sufficiently volatile to pass into the lungs from the bloodstream. The roadside breathalyser test uses acidified potassium dichromate(VI) which reacts with any ethanol present in the breath and converts it to ethanoic acid.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the oxidation and reduction half-equations that occur in the breathalyser when ethanol is present in the breath.</p>
<p class="p1">Oxidation:</p>
<p class="p1">Reduction:</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Describe the colour change that occurs to the acidified dichromate(VI) if ethanol is present in the breath.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Police use the intoximeter, an infrared spectrophotometer to confirm a roadside breathalyser test. Explain how the amount of ethanol is determined from the infrared spectrum.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Antibiotics treat infections by stopping the growth of bacteria or destroying them.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Identify the side-chain by drawing a circle around the side-chain in the structure of benzyl penicillin given below (the structure of penicillin is given in Table 20 of the Data Booklet).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Discuss <strong>two </strong>problems associated with the overprescription of penicillin and explain how these are overcome.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Antiviral medications such as zanamivir (Relenza) are commonly available for consumer use.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the names of <strong>two </strong>functional groups present in zanamivir using section 37 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Distinguish between bacteria and viruses.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The discovery of penicillin by Alexander Fleming in 1928 is often given as an example of serendipity in science.</p>
</div>

<div class="question">
<p class="p1">Explain how penicillin works and why it is necessary to continue to develop new forms of penicillin with modified side chains.</p>
</div>
<br><hr><br><div class="specification">
<p class="p1">Dyspepsia, commonly known as indigestion, is due to excess acid in the stomach and can be treated using antacids.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the name of the acid found in the gastric juices of the stomach.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Two examples of antacids are aluminium hydroxide and calcium carbonate. State the equations to show the action of each antacid.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Creating a new pharmaceutical product is a long and complex process. Outline the main stages of this process in the correct order.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">There are various ways to administer drugs to a patient. One of the common methods, parenteral, is also known as injection. State and describe <strong>two </strong>other methods of administering drugs.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The efficiency of certain drugs is strongly dependent on the frequency and regularity of their administration. Explain the importance of patient compliance when the patient is treated with antibacterials.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Antiviral drugs are a major research focus.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Oseltamivir (Tamiflu) and zanamivir (Relenza) are used against flu viruses. Explain how these drugs function.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Shikimic acid, the precursor for oseltamivir (Tamiflu), was originally extracted from star anise, and is now produced using genetically modified <em>E. coli </em>bacteria.</p>
<p>Suggest <strong>one </strong>difficulty associated with synthesizing oseltamivir (Tamiflu) from star anise.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p class="p1">AIDS (acquired immune deficiency syndrome) has resulted in millions of deaths worldwide since it was first recorded in 1981. The control and treatment of HIV is made worse by the high price of anti-retroviral agents and sociocultural issues. Discuss <strong>one </strong>sociocultural difficulty facing society today associated with solving this global problem.</p>
</div>
<br><hr><br><div class="specification">
<p>Many common illnesses are caused by viral infections.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Acyclovir is an antiviral drug used to treat herpes infections. Outline <strong>two </strong>ways in which antiviral drugs work.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Discuss <strong>two </strong>difficulties associated with the development of drugs for the effective treatment of AIDS.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p class="p1">The therapeutic window is used as a measure of the safety of a drug. Define the term&nbsp;<em>therapeutic window</em>.</p>
</div>
<br><hr><br><div class="specification">
<p>Penicillins and aspirin are important medicines.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe how penicillin combats bacterial infections.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State how penicillins may be modified to increase their effectiveness.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the type of reaction used to synthesize aspirin from salicylic acid.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why aspirin is <strong>not </strong>stored in a hot, humid location.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p>Drug synthesis often involves solvents.</p>
<p>Identify a common hazardous solvent and a Green solvent that could replace it.</p>
<p><img src=""></p>
<p> </p>
</div>
<br><hr><br><div class="specification">
<p>A commonly used mild analgesic is aspirin, 2-acetoxybenzoic acid, whose structure is given in Table 20 of the Data Booklet.</p>
</div>

<div class="specification">
<p>One form of soluble aspirin is \({\text{Ca(}}{{\text{C}}_{\text{9}}}{{\text{H}}_{\text{7}}}{{\text{O}}_{\text{4}}}{{\text{)}}_{\text{2}}}\).</p>
</div>

<div class="specification">
<p>Morphine, codeine and diamorphine (heroin) are examples of strong analgesics. Their structures are given in Table 20 of the Data Booklet.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe how mild analgesics function.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i)&nbsp; &nbsp; &nbsp;Outline why this substance is more soluble than standard aspirin in water.</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>(ii)&nbsp; &nbsp; &nbsp;Deduce the balanced ionic equation for the reaction that occurs between soluble aspirin and the acid in the stomach.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i)&nbsp; &nbsp; &nbsp;Deduce <strong>two </strong>named functional groups present in both aspirin and diamorphine.</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>(ii)&nbsp; &nbsp; &nbsp;Deduce <strong>one </strong>named functional group present in morphine but not in diamorphine.</p>
<p>&nbsp;</p>
<p>(iii)&nbsp; &nbsp; &nbsp;State <strong>two </strong>short-term advantages and <strong>two </strong>long-term disadvantages of using codeine as a strong analgesic.</p>
<p>&nbsp;</p>
<p>Short-term advantages:</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>Long-term disadvantages:</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The structures of oseltamivir (Tamiflu) and zanamivir (Relenza) are given in section 37 of the&nbsp;data booklet.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Compare and contrast the structures of oseltamivir and zanamivir, stating the&nbsp;names of functional groups.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the wavenumber of one absorbance seen in the IR spectrum of only one&nbsp;of the compounds, using section 26 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest <strong>one</strong> ethical consideration faced by medical researchers when&nbsp;developing medications.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Maalox<sup>&reg;</sup> manufactures several different types of antacid. Maalox<sup>&reg;</sup> Extra Strength is a suspension. One teaspoon (\({\text{5.00 c}}{{\text{m}}^{\text{3}}}\)) contains 400 mg of magnesium hydroxide, \({\text{Mg(OH}}{{\text{)}}_{\text{2}}}\), 306 mg of aluminium hydroxide, \({\text{Al(OH}}{{\text{)}}_{\text{3}}}\), and 40.0 mg of simethicone. Maalox&reg; Extra Strength with Anti-gas comes in tablet form. Each tablet contains 1000 mg of calcium carbonate, \({\text{CaC}}{{\text{O}}_{\text{3}}}\), and 60.0 mg of simethicone.</p>
</div>

<div class="specification">
<p>Stomach acid approximates to \(1.00 \times {10^{ - 2}}{\text{ mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) hydrochloric acid. Assuming that simethicone does not react with acid, determine the volume, in \({\text{d}}{{\text{m}}^{\text{3}}}\), of stomach acid neutralized by:</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the equations for the reactions of magnesium hydroxide, aluminium hydroxide and calcium carbonate with hydrochloric acid.</p>
<p>&nbsp;</p>
<p>Magnesium hydroxide:</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>Aluminium hydroxide:</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>Calcium carbonate:</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) &nbsp; &nbsp; one teaspoon (\({\text{5.00 c}}{{\text{m}}^{\text{3}}}\)) of Maalox<sup>&reg;</sup> Extra Strength.</p>
<p>(ii) &nbsp; &nbsp; one tablet of Maalox<sup>&reg;</sup> Extra Strength with Anti-gas.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Adults can produce approximately \({\text{2 d}}{{\text{m}}^{\text{3}}}\) of gastric juice daily in the stomach.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The pH of gastric juice is 1.5. Identify the compound responsible for its acidity and state whether it is a strong or weak acid.</p>
<p>&nbsp;</p>
<p>Compound:</p>
<p>&nbsp;</p>
<p>Strong or weak acid:</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Antacid tablets are often taken for an upset stomach. Identify the reaction involved in this treatment and state the general ionic equation for this reaction type.</p>
<p>&nbsp;</p>
<p>Type of reaction:</p>
<p>&nbsp;</p>
<p>Ionic equation:</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>One active ingredient in a commercial brand of antacid tablets is a complex of aluminium hydroxide and sodium carbonate, dihydroxyaluminium sodium carbonate, \({\text{Al(OH}}{{\text{)}}_{\text{2}}}{\text{NaC}}{{\text{O}}_{\text{3}}}{\text{(s)}}\).</p>
<p>Deduce the balanced equation, including state symbols, for the reaction of \({\text{Al(OH}}{{\text{)}}_{\text{2}}}{\text{NaC}}{{\text{O}}_{\text{3}}}{\text{(s)}}\) with the acid present in gastric juice.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The development of new and improved medications for the reduction and management of pain is an important part of 21st-century medicine.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain the way that mild and strong analgesics prevent pain.</p>
<p>&nbsp;</p>
<p>Mild analgesics:</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>Strong analgesics:</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The structure of morphine and diamorphine (heroin) are shown in Table 20 of the Data Booklet. State the name of the functional group present in diamorphine that is not present in morphine.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Discuss <strong>two</strong> advantages and <strong>two</strong> disadvantages of the medical use of morphine and its derivatives.</p>
<p>&nbsp;</p>
<p>Advantages:</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>Disadvantages:</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Each capsule of Solpadol<sup>&reg;</sup>, a commercial analgesic, contains 500 mg of paracetamol (acetaminophen) and 30 mg of codeine (in the form of codeine phosphate hemihydrate).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Diamorphine (heroin) is an even stronger painkiller than codeine. The structures of codeine and diamorphine are given in Table 20 of the Data Booklet. Discuss, in terms of named functional groups, how the structure of diamorphine differs from the structure of codeine.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A normal aspirin tablet taken to relieve pain contains about 300 mg of aspirin. Certain adults who are not in pain are recommended by doctors to take a smaller 75 mg dose of aspirin each day. State one reason for this recommendation.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Analgesics can be either mild or strong.</p>
</div>

<div class="specification">
<p class="p1">Morphine, codeine and diamorphine (heroin) are all examples of strong analgesics. Their structures are found in Table 20 of the Data Booklet.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain how mild and strong analgesics prevent pain.</p>
<p class="p2">&nbsp;</p>
<p class="p1">Mild analgesics:</p>
<p class="p2">&nbsp;</p>
<p class="p2">&nbsp;</p>
<p class="p2">&nbsp;</p>
<p class="p1">Strong analgesics:</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State a reason why it is dangerous to use aspirin while consuming alcohol.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce from the structures the names of <strong>two </strong>functional groups present in all three analgesics.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce the name of <strong>one </strong>functional group present in diamorphine (heroin) but not in morphine or codeine.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A number of drugs have been developed to treat excess acidity in the stomach.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Two drugs are ranitidine (Zantac) and omeprazole (Prilosec). Outline how they function&nbsp;to reduce stomach acidity.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>0.500 g of solid anhydrous sodium carbonate, Na<sub>2</sub>CO<sub>3</sub>(s), is dissolved in 75.0 cm<sup>3</sup> of&nbsp;0.100 mol\(\,\)dm<sup>&minus;3</sup> sodium hydrogen carbonate solution, NaHCO<sub>3</sub>(aq). Assume the volume&nbsp;does not change when the salt dissolves.</p>
<p style="text-align: center;">HCO<sub>3</sub><sup>&minus;</sup>(aq) \( \rightleftharpoons \) CO<sub>3</sub><sup>2&minus;</sup>(aq) + H<sup>+</sup>(aq) &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; p<em>K</em><sub>a</sub> = 10.35.</p>
<p>Calculate the pH of the buffer solution.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Drug research and development is a lengthy and expensive process. Testing is required to determine the therapeutic window, tolerance and side-effects of a drug before it can be approved for use.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the meaning of the term therapeutic window.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why a narrow therapeutic window may be a problem.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the meaning of the term side-effects.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p class="p1">State the differences between the structures of morphine and diamorphine (heroin). State the names of all functional groups in the molecule of morphine.</p>
<p class="p1">Differences:</p>
<p class="p1">Functional groups:</p>
</div>
<br><hr><br><div class="specification">
<p>The first commercially available antibiotic came from a class of compounds known as the penicillins.</p>
</div>

<div class="question">
<p>Explain how penicillins work and why it is necessary to continually modify the side-chain.</p>
</div>
<br><hr><br><div class="specification">
<p>Diseases may be caused by bacteria or viruses.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain how penicillins work as antibacterials.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The R group in the general structure of penicillin shown below represents a side-chain which is regularly modified.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-11_om_05.44.22.png" alt="m15/4/CHEMI/SP3/eng/TZ2/18.a.ii"></p>
<p>Explain why this modification is necessary.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe <strong>two </strong>ways in which antiviral drugs work.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p class="p1">Discuss the term <em>therapeutic window</em>. Your answer should include its meaning, a quantitative description and an explanation of <strong>wide </strong>and <strong>narrow </strong>therapeutic windows.</p>
</div>
<br><hr><br><div class="question">
<p>Drug testing is necessary to determine safe and effective doses.</p>
<p>Distinguish between the lethal dose (LD<sub>50</sub>) and the toxic dose (TD<sub>50</sub>).</p>
</div>
<br><hr><br><div class="specification">
<p>Penicillin is an antibiotic which contains a beta-lactam ring. Its general structure is shown below.</p>
<p><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Outline what is meant by the term &ldquo;ring strain&rdquo;.</p>
<p>(ii) On the diagram above, label with asterisk/s (*) the carbon atom/s that experience ring strain.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Some antibiotic-resistant bacteria produce a beta-lactamase enzyme which destroys penicillin activity. Suggest how adding clavulanic acid to penicillin enables the antibiotic to retain its activity.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">(ii) Populations of antibiotic-resistant bacteria have increased significantly over the last 60 years. Outline why antibiotics such as penicillin should not be prescribed to people suffering from a viral infection.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>Morphine and diamorphine (heroin) are both opioids.</p>
<p>Explain why diamorphine is more potent than morphine using section 37 of the data booklet.</p>
</div>
<br><hr><br><div class="specification">
<p>The properties of four analgesics are summarized below.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-10_om_17.57.20.png" alt="M15/4/CHEMI/SP3/ENG/TZ1/03"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce which drugs could be morphine, aspirin and codeine.</p>
<p>&nbsp;</p>
<p>Morphine:</p>
<p>&nbsp;</p>
<p>Aspirin:</p>
<p>&nbsp;</p>
<p>Codeine:</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Compare the structures of diamorphine (heroin) and morphine. Their structures are given in table 20 of the data booklet.</p>
<p>&nbsp;</p>
<p>Two similarities:</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>One difference:</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Aspirin is one of the most widely used drugs in the world.</p>
</div>

<div class="specification">
<p>Aspirin was synthesized from 2.65 g of salicylic acid (2-hydroxybenzoic acid) (<em>M</em><sub>r</sub> = 138.13)&nbsp;and 2.51 g of ethanoic anhydride (<em>M</em><sub>r</sub> = 102.10).</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the amounts, in mol, of each reactant.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate, in g, the theoretical yield of aspirin.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State <strong>two</strong> techniques which could be used to confirm the identity of aspirin.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State how aspirin can be converted to water-soluble aspirin.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Compare, giving a reason, the bioavailability of soluble aspirin with aspirin.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The mild analgesic aspirin can be prepared in the laboratory from salicylic acid.</p>
<p style="text-align: center;">(CH<sub>3</sub>CO)<sub>2</sub>O + HOC<sub>6</sub>H<sub>4</sub>COOH&nbsp;&rarr; CH<sub>3</sub>CO<sub>2</sub>C<sub>6</sub>H<sub>4</sub>COOH + CH<sub>3</sub>COOH</p>
<p style="text-align: center;">Salicylic acid &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;Aspirin &nbsp; &nbsp; &nbsp;&nbsp;</p>
<p>&nbsp;</p>
<p>After the reaction is complete, the product is isolated, recrystallized, tested for purity and the experimental yield is measured. A student&rsquo;s results in a single trial are as follows.</p>
<p style="text-align: center;"><img src=""></p>
<p>Literature melting point data: aspirin = 138&ndash;140 &deg;C</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the percentage experimental yield of the product after recrystallization. The molar masses are as follows: <em>M</em>(salicylic acid) = 138.13 g mol<sup>&minus;1</sup>, <em>M</em>(aspirin) = 180.17 g mol<sup>&minus;1</sup>. (You do not need to process the uncertainties in the calculation.)</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why isolation of the crude product involved the addition of ice-cold water.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Justify the conclusion that recrystallization increased the purity of the product, by reference to <strong>two</strong> differences between the melting point data of the crude and recrystallized products.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State why aspirin is described as a mild analgesic with reference to its site of action.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Methadone, a synthetic opioid, binds to opioid receptors in the brain.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Compare and contrast the functional groups present in methadone and diamorphine (heroin), giving their names. Use section 37 of the data booklet.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Methadone is sometimes used to help reduce withdrawal symptoms in the treatment of heroin addiction. Outline <strong>one</strong> withdrawal symptom that an addict may experience.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Many drugs, including aspirin, penicillin, codeine and taxol, have been modified from&nbsp;compounds that occur naturally.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Aspirin is often taken to reduce pain, swelling or fever. State one other use of aspirin.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State what is meant by the bioavailability of a drug.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how the bioavailability of aspirin may be increased.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Compare and contrast the IR spectrum of aspirin with that of salicylic acid, using section 26 of the data booklet.</p>
<p><img src=""></p>
<p><img src=""></p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe how penicillin combats bacterial infections.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline <strong>two </strong>consequences of prescribing antibiotics such as penicillin unnecessarily.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State how penicillins may be modified to increase their effectiveness.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Morphine and codeine are strong analgesics. Outline how strong analgesics function.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest one reason why codeine is more widely used than morphine as an analgesic.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Opiates have been used for thousands of years to alleviate pain. The structures of opiates are found in section 37 of the data booklet.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Diamorphine (heroin) can be synthesized from morphine. Identify the reagent necessary for this reaction and the by-product of this reaction.</p>
<p style="text-align: center;"><img src="" alt></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The reaction can be monitored by infrared spectroscopy. Using section 26 of the data booklet, identify <strong>two</strong> IR absorbance ranges that would help distinguishing the two compounds.</p>
<p>Present in morphine but not in diamorphine:</p>
<p>Present in diamorphine but not in morphine:</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Discuss how the differences in structure between morphine and diamorphine affect their absorption in the body.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Solubility plays an important role in the bioavailability of drugs in the body.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why aspirin is <strong>slightly</strong> soluble in water. Refer to section 37 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Formulate an equation for the conversion of aspirin to a more water soluble derivative.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A student prepares aspirin from salicylic acid in the laboratory, extracts it from the&nbsp;reaction mixture, ensures the sample is dry and determines its melting point.</p>
<p style="text-align: center;"><img src=""></p>
<p>Suggest why the melting point of the student&rsquo;s sample is lower and not sharp compared&nbsp;to that of pure aspirin.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Organic molecules can be characterized using infrared (IR) spectroscopy.</p>
<p>Compare and contrast the infrared peaks above 1500 cm<sup>&minus;1</sup> in pure samples of aspirin&nbsp;and salicylic acid using section 26 of the data booklet.</p>
<p style="text-align: left;"><img src=""></p>
<p style="text-align: left;"><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The pharmaceutical industry is one of the largest producers of waste solvents.</p>
<p>State a green solution to the problem of organic solvent waste.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Radioactive isotopes are used in a variety of medical procedures including medical imaging and radiotherapy.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify examples of <strong>two</strong> types of medical radioactive waste and how <strong>each</strong> must be treated for proper disposal.</p>
<p style="text-align: center;"><img src="" alt></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline an ethical implication of using nuclear treatments in medicine.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br>