File "HL-paper3.html"
Path: /IB QUESTIONBANKS/4 Fourth Edition - PAPER/HTML/Chemistry/Option A/HL-paper3html
File size: 454.47 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-746ec5d03ead8d9e8b3bb7d32173f2b4e2e22a05f0c5278e086ab55b3c9c238e.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-3c91afd8a2942c18d21ed2700e1bdec14ada97f1d3788ae229315e1276d81453.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../index.html">Home</a>
</li>
<li class="active dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Questionbanks
<b class="caret"></b>
</a><ul class="dropdown-menu">
<li>
<a href="../../geography.html" target="_blank">DP Geography</a>
</li>
<li>
<a href="../../physics.html" target="_blank">DP Physics</a>
</li>
<li>
<a href="../../chemistry.html" target="_blank">DP Chemistry</a>
</li>
<li>
<a href="../../biology.html" target="_blank">DP Biology</a>
</li>
<li>
<a href="../../furtherMath.html" target="_blank">DP Further Mathematics HL</a>
</li>
<li>
<a href="../../mathHL.html" target="_blank">DP Mathematics HL</a>
</li>
<li>
<a href="../../mathSL.html" target="_blank">DP Mathematics SL</a>
</li>
<li>
<a href="../../mathStudies.html" target="_blank">DP Mathematical Studies</a>
</li>
</ul></li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="images/logo.jpg" alt="Ib qb 46 logo">
</div>
</div>
</div><h2>HL Paper 3</h2><div class="specification">
<p>Heavy metal ions are an important environmental concern.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the name of one method, other than precipitation, of removing heavy metal ions from solution in water.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The solubility product, <em>K</em><sub>sp</sub> , of cadmium sulfide, CdS, is 8.0 × 10<sup>–27</sup>. Determine the concentration of cadmium ions in 1.0 dm<sup>3</sup> of a saturated solution of cadmium sulfide to which 0.10 mol of solid sodium sulfide has been added, stating any assumption you make.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Metal ions may cause unwanted environmental effects.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The presence of iron(III) ions can catalyse the formation of hydroxyl radicals from O<sub>2</sub><sup>−</sup> and H<sub>2</sub>O<sub>2</sub> in the Haber–Weiss reaction. State the equations for this process.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Zinc ions, toxic to aquatic life, may be removed by adding a solution containing hydroxide ions. Determine the concentration of zinc ions in a saturated solution of zinc hydroxide at 298K using information from section 32 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Aluminium is produced by the electrolysis of a molten electrolyte containing bauxite.</p>
</div>
<div class="specification">
<p>The graph of the resistance of aluminium with temperature is shown below.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-08_om_08.38.12.png" alt="M18/4/CHEMI/HP3/ENG/TZ1/05.d"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The diagram illustrates the crystal structure of aluminium metal with the unit cell indicated. Outline the significance of the unit cell.</p>
<p><img src="images/Schermafbeelding_2018-08-08_om_09.07.28.png" alt="M18/4/CHEMI/HP3/ENG/TZ1/05.b"></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>When X-rays of wavelength 0.154 nm are directed at a crystal of aluminium, the first order diffraction pattern is observed at 18°. Determine the separation of layers of aluminium atoms in the crystal, in m, using section 1 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce what the shape of the graph indicates about aluminium.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why the resistance of aluminium increases above 1.2 K.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The concentration of aluminium in drinking water can be reduced by precipitating aluminium hydroxide. Calculate the maximum concentration of aluminium ions in water of pH 7 at 298 K. Solubility product of aluminium hydroxide = 3.3 × 10<sup>−34</sup> at 298 K.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Rhodium and palladium are often used together in catalytic converters. Rhodium is a good reduction catalyst whereas palladium is a good oxidation catalyst.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Nickel(II) ions are least soluble at pH 10.5. Calculate the molar solubility of nickel(II) hydroxide at this pH. <em>K</em><sub>sp</sub>Ni(OH)<sub>2</sub> = 5.48 × 10<sup>–16</sup>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Rhodium is paramagnetic with an electron configuration of [Kr] 5s<sup>1</sup>4d<sup>8</sup>.</p>
<p>Explain, in terms of electron spin pairing, why paramagnetic substances are attracted to a magnetic field and diamagnetic substances are not.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Rhodium is a type 1 superconductor.</p>
<p>Sketch graphs of resistance against temperature for a conductor and superconductor.</p>
<p><img src="images/Schermafbeelding_2017-09-21_om_13.24.04.png" alt="M17/4/CHEMI/HP3/ENG/TZ2/05.c.ii"></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Contrast type 1 and type 2 superconductors by referring to <strong>three</strong> differences between them.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>Both HDPE (high density polyethene) and LDPE (low density polyethene) are produced by the polymerization of ethene.</p>
</div>
<div class="specification">
<p>An alternative method of polymerizing molecules is condensation polymerization. One of the earliest condensation polymers was nylon-6. A short section of the polymer chain of nylon-6 is shown below.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-08_om_08.31.45.png" alt="M18/4/CHEMI/HP3/ENG/TZ1/04.c"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the structure of the monomer from which nylon-6 is produced by a condensation reaction.</p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce, giving a reason, whether the atom economy of a condensation polymerization, such as this, would be greater or less than an addition polymerization, such as the formation of HDPE.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Vanadium forms a body centred cubic (BCC) crystal structure with an edge length of 303 pm, (303 × 10<sup>−12</sup> m).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the number of atoms per unit cell in vanadium.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the expected first order diffraction pattern angle, in degrees, if x-rays of wavelength 150 pm are directed at a crystal of vanadium. Assume the edge length of the crystal to be the same as separation of layers of vanadium atoms found by x-ray diffraction. Use section 1 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the average mass, in g, of a vanadium atom by using sections 2 and 6 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the volume, in cm<sup>3</sup>, of a vanadium unit cell.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the density, in g cm<sup>−3</sup>, of vanadium by using your answers to (a)(i), (a)(iii) and (a)(iv).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.v.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Vanadium and other transition metals can interfere with cell metabolism.</p>
<p>State and explain <strong>one </strong>process, other than by creating free radicals, by which transition metals interfere with cell metabolism.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Vanadium(IV) ions can create free radicals by a Fenton reaction.</p>
<p>Deduce the equation for the reaction of V<sup>4+</sup> with hydrogen peroxide.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Low density polyethene (LDPE) and high density polyethene (HDPE) are both addition polymers.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe how the monomers of addition polymers and of condensation polymers differ.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the type of intermolecular bonding that is responsible for Kevlar<sup>®</sup>’s strength.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Lanthanum has a hexagonal close packed (hcp) crystal structure. State the coordination number of each lanthanum atom.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Lanthanum becomes superconducting below 5 K. Explain, in terms of Bardeen–Cooper–Schrieffer (BCS) theory, how superconductivity occurs.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why superconductivity only occurs at low temperatures.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The development of materials with unique properties is critical to advances in industry.</p>
</div>
<div class="question">
<p>Explain why Type 2 superconductors are generally more useful than Type 1.</p>
</div>
<br><hr><br><div class="specification">
<p class="p1">Kevlar behaves as a lyotropic liquid crystal when dissolved in suitable solvents. Its structure is shown below.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-10-31_om_08.04.17.png" alt="M12/4/CHEMI/HP3/ENG/TZ1/C4"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the properties that a molecule, such as Kevlar, must have in order to enable it to behave as a liquid crystal.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Discuss the additional properties that a substance must have to make it suitable for commercial liquid-crystal displays.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain what is meant by the term <em>lyotropic</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Waste water can contain metal ions such as chromium. Chromium ions can cause damage to the liver and kidneys. Chromium ions can be removed from water by chemical precipitation using hydroxide ions.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Assuming chromium is present as \({\text{C}}{{\text{r}}^{3 + }}\), state an equation for its reaction with hydroxide ions, include state symbols.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State an expression for the solubility product constant, \({K_{{\text{sp}}}}\), for chromium(III) hydroxide.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The solubility product of chromium(III) hydroxide is \(1.00 \times {10^{ - 33}}{\text{ mo}}{{\text{l}}^{\text{4}}}{\text{d}}{{\text{m}}^{ - 12}}\) at 298 K. Calculate the concentration, in \({\text{mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\), of \({\text{C}}{{\text{r}}^{3 + }}\) in the solution, when chromium(III) hydroxide is precipitated.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>One method of removing heavy metal ions from a solution is by precipitation.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State an ionic equation, including state symbols, for the reaction taking place when an aqueous solution containing chloride ions is added to an aqueous solution containing lead(II) ions.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The solubility product, \({K_{{\text{sp}}}}\), of lead(II) chloride is \(1.7 \times {10^{ - 5}}\) at 298 K. Determine the concentration of lead(II) ions, in \({\text{mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\), when equal volumes of \({\text{1.0 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) aqueous potassium chloride and a solution of \({\text{0.50 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) lead(II) ions are mixed.</p>
<p>State any assumption used.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Heavy-metal ions such as \({\text{C}}{{\text{u}}^{2 + }}{\text{(aq)}}\) are often present in waste water sewage. The \({\text{C}}{{\text{u}}^{2 + }}{\text{(aq)}}\) ions can be removed from the sewage by means of chemical precipitation.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State an expression for the solubility product constant, \({K_{{\text{sp}}}}\), for copper(II) hydroxide.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The solubility product of copper(II) hydroxide is \(4.8 \times {10^{ - 20}}\) at a given temperature.</p>
<p>Determine the concentration, in \({\text{mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\), of \({\text{C}}{{\text{u}}^{2 + }}{\text{(aq)}}\) in the solution when copper(II) hydroxide is precipitated.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Iron ore can be reduced in a blast furnace.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-08-25_om_16.40.48.png" alt="N13/4/CHEMI/HP3/ENG/TZ0/10"></p>
</div>
<div class="question">
<p class="p1">The properties of a metal can be altered by alloying or heat treatment. Explain why alloying can modify the structure and properties of a metal.</p>
</div>
<br><hr><br><div class="specification">
<p>Chemical vapour deposition (CVD) produces multi-walled carbon nanotubes (MWCNT) of a more appropriate size for use in liquid crystals than production by arc discharge.</p>
</div>
<div class="question">
<p>MWCNT are very small in size and can greatly increase switching speeds in a liquid crystal allowing the liquid crystal to change orientation quickly.</p>
<p>Discuss <strong>two other </strong>properties a substance should have to be suitable for use in liquid crystal displays.</p>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Distinguish between thermotropic liquid crystals and lyotropic liquid crystals.</p>
<p class="p1">Thermotropic:</p>
<p class="p1">Lyotropic:</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Two substances that can be used in liquid crystals are commonly called PAA (4-azoxydianisole) and 5CB (4-pentyl-\({\text{4'}}\)-cyanobiphenyl).</p>
<p class="p2" style="text-align: center;"><img src="images/Schermafbeelding_2016-11-01_om_13.35.39.png" alt="M12/4/CHEMI/HP3/ENG/TZ2/C3.b"></p>
<p class="p1">Discuss on the molecular level <strong>three </strong>different factors that explain their liquid-crystal properties.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain the workings of liquid crystals made up of compounds such as 5CB in liquid-crystal displays.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Antimony and its compounds are toxic, so it is important to check that the catalyst is removed from the final product. One technique to detect antimony is Inductively Coupled Plasma Mass Spectroscopy (ICP-MS).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline the nature of the plasma state and how it is produced in ICP-MS.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hydrogen sulfide could be used to remove antimony(III) ions from a solution.</p>
<p>Determine the concentration of antimony(III) ions that would be required to precipitate antimony(III) sulfide in a solution saturated with hydrogen sulfide.</p>
<p>[S<sup>2−</sup>] in water saturated with hydrogen sulfide = 1.0 × 10<sup>−14</sup> mol dm<sup>−3</sup> </p>
<p><em>K</em><sub>sp</sub> (Sb<sub>2</sub>S<sub>3</sub>) = 1.6 × 10<sup>−93</sup></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify a ligand that could be used to chelate antimony(III) ions in solution.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Polymers can be classified as addition polymers or condensation polymers.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Outline the difference in the way in which polymerization occurs, stating a specific example of a polymer produced by each process.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Polymers can either soften when heated or remain rigid until they decompose or combust. Other than Kevlar, state the names of <strong>one </strong>polymer that softens and <strong>one </strong>that does not. Explain this difference on a molecular level.</p>
<p class="p1">Softening polymer:</p>
<p class="p1">Non-softening polymer:</p>
<p class="p1">Explanation:</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p class="p1">Raw sewage is the water-carried waste that flows away from a community. If it is discharged untreated into rivers and the sea it causes pollution. Therefore, waste water should be treated before it is discharged.</p>
<p class="p1">Phosphate ions are one of the pollutants removed from sewage water by chemical precipitation using calcium ions.</p>
<p class="p1">The solubility product, \({K_{{\text{sp}}}}\), of calcium phosphate, \({\text{C}}{{\text{a}}_{\text{3}}}{{\text{(P}}{{\text{O}}_{\text{4}}}{\text{)}}_{\text{2}}}\), is \(1.20 \times {10^{ - 26}}\) at 298 K.</p>
<p class="p1">Determine the concentration of phosphate ions, in \({\text{mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\), in a saturated solution of calcium phosphate.</p>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Kevlar<sup><span class="s1">® </span></sup>is a lyotropic liquid crystal. Explain the strength of Kevlar<sup><span class="s1">® </span></sup>and its solubility in concentrated sulfuric acid.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Describe the use of silicon in photovoltaic cells. Include the following in your description:</p>
<p class="p1">• why pure silicon is a better conductor than non-metals such as sulfur and phosphorus</p>
<p class="p1">• how a p-type semiconductor made from silicon is different from pure silicon</p>
<p class="p1">• how sunlight interacts with semiconductors.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Propene can polymerize to form polypropene.</p>
<p>Propene monomer: <img src="images/Schermafbeelding_2018-08-08_om_17.53.44.png" alt="M18/4/CHEMI/HP3/ENG/TZ2/05"></p>
</div>
<div class="question">
<p>Distinguish between the manufacture of polyester and polyethene.</p>
</div>
<br><hr><br><div class="specification">
<p class="p1">Antioxidants can be used to prolong the shelf life of food.</p>
</div>
<div class="question">
<p class="p1">\({{\text{(EDTA)}}^{4 - }}\), the ethylenediaminetetraacetate anion, is a chelate ligand with the following structure.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-10-03_om_19.09.46.png" alt="N09/4/CHEMI/HP3/ENG/TZ0/F2.d"></p>
<p class="p1">It has been found to inhibit the \({\text{F}}{{\text{e}}^{2 + }}\) catalysed oxidation of raw beef. Explain why \({{\text{(EDTA)}}^{4 - }}\) can be described as a chelate ligand.</p>
</div>
<br><hr><br><div class="specification">
<p class="p1">Chlorofluorocarbons, CFCs, deplete the ozone layer.</p>
</div>
<div class="specification">
<p class="p1">Chlorine atoms and nitrogen oxides react at the surface of ice particles in the arctic winter.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the equations that represent the depletion of ozone in the stratosphere which is catalysed by chlorine free radicals.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) Deduce the type of catalysis that occurs.</p>
<p class="p1">(ii) Outline why the depletion of ozone is greatest during the arctic spring.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">In order to make waste water acceptable for drinking, it is treated in a series of steps to remove hazardous substances.</p>
<p class="p1">Tertiary treatment removes phosphates, nitrates and heavy metal ions from water.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The solubility product constant, \({K_{{\text{sp}}}}\), of cadmium(II) sulfide, CdS, is \({\text{8.00}} \times {\text{1}}{{\text{0}}^{ - 28}}\) at 298 K. Determine the concentration of cadmium(II) ions, \({\text{C}}{{\text{d}}^{2 + }}{\text{(aq)}}\), in a saturated solution of cadmium(II) sulfide.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain how the addition of hydrogen sulfide gas can decrease the concentration of cadmium(II) ions in a saturated solution.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Compounds of heavy metals are one type of toxic substance found in water. Lead(II) ions, \({\text{P}}{{\text{b}}^{2 + }}\), can be removed by bubbling hydrogen sulfide, \({{\text{H}}_{\text{2}}}{\text{S}}\), through polluted water. The solubility product of lead sulfide is \({\text{1.25}} \times {\text{1}}{{\text{0}}^{ - 28}}{\text{ mo}}{{\text{l}}^{\text{2}}}{\text{d}}{{\text{m}}^{ - 6}}\) at 25 °C.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the concentration of \({\text{P}}{{\text{b}}^{2 + }}\) ions in a saturated solution of lead sulfide.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain how the addition of hydrogen sulfide decreases the concentration of \({\text{P}}{{\text{b}}^{2 + }}\) ions in a saturated solution.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Polymers, used extensively worldwide, are large molecular mass substances consisting of repeating monomer units.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the type of mechanism occurring in the manufacture of low-density poly(ethene).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Distinguish between <em>addition </em>and <em>condensation </em>polymers in terms of how the monomers react together.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Describe and explain how the properties of condensation polymers depend on three structural features.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Liquid-crystal displays are used in digital watches, calculators and laptops.</p>
</div>
<div class="specification">
<p class="p1">Kevlar is a condensation polymer that is often used in liquid-crystal displays. A section of the polymer is shown below.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-10-28_om_14.10.13.png" alt="M11/4/CHEMI/HP3/ENG/TZ2/C3.c"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain the strength of Kevlar in terms of its structure and bonding.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain why a bullet-proof vest made of Kevlar should be stored away from acids.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.iii.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Since the accidental discovery of polyethene in the 1930s, polymers have played an essential role in daily life because of their wide range of properties and uses.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Polyurethanes are made from dialcohol (diol) and diisocyanate monomers. By considering the structures of the two monomers and the repeating unit of the polymer given below, suggest why it could be argued that this reaction is <strong>not </strong>an example of a condensation polymer.</p>
<p class="p1"><img src="images/Schermafbeelding_2016-11-03_om_10.23.50.png" alt="N11/4/CHEMI/HP3/ENG/TZ0/C2.b"></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Kevlar is another example of a condensation polymer. Explain how the great strength of Kevlar depends on its structure.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Heavy metal ions are pollutants that can be removed in the tertiary stage of waste water treatment.</p>
<p class="p1">A water sample at 25 °<span class="s1">C </span>contains lead and sulfate ions in the following concentrations:</p>
<p class="p1">\[\begin{array}{*{20}{l}} {[{\text{P}}{{\text{b}}^{2 + }}] = 2.32 \times {{10}^{ - 6}}{\text{ mol}}\,{\text{d}}{{\text{m}}^{ - 3}}} \\ {[{\text{SO}}_4^{2 - }] = 4.15 \times {{10}^{ - 3}}{\text{ mol}}\,{\text{d}}{{\text{m}}^{ - 3}}} \end{array}\]</p>
<p class="p1">The solubility product constant, \({K_{{\text{sp}}}}\), of lead sulfate is \(1.80 \times {10^{ - 8}}\) at 25 °<span class="s1">C</span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the expression for the solubility product constant, \({K_{{\text{sp}}}}\), of lead sulfate.</p>
<div class="marks">[[N/A]]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce why lead sulfate will not precipitate out of the water sample at these concentrations.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Some magnesium sulfate is added to the water sample. Determine the increase in sulfate ion concentration needed for lead sulfate to precipitate.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p class="p1">Ethene is one of the major products of this process and much of it is converted to polyethene using the Ziegler-Natta process. State the catalysts used and the ways in which the conditions of this process differ from the free-radical polymerization process.</p>
</div>
<br><hr><br><div class="specification">
<p class="p1">Chemistry has made a significant contribution to the development of liquid-crystal displays (LCDs).</p>
<p class="p1">The diagram below is a representation of an LCD. The planes of polarization of the analyser and the polarizer are at right angles to each other.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-08-25_om_16.59.49.png" alt="N13/4/CHEMI/HP3/ENG/TZ0/12"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State what the observer would see if the liquid crystal was not present and there was no voltage between the electrodes \({{\text{E}}_{\text{1}}}\) and \({{\text{E}}_{\text{2}}}\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain how the addition of a liquid crystal to the cell changes what the observer sees.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain how the application of an electric field between the electrodes, \({{\text{E}}_{\text{1}}}\) and \({{\text{E}}_{\text{2}}}\), changes what the observer sees in b (i).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The molecule below has liquid-crystal display properties.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-08-25_om_17.18.14.png" alt="N13/4/CHEMI/HP3/ENG/TZ0/12.c"></p>
<p class="p1">Suggest <strong>two </strong>reasons why the molecule is suitable for use in liquid-crystal display devices.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Ethene can be polymerized to form poly(ethene) and, depending on the conditions used, either high-density poly(ethene) (HDPE) or low-density poly(ethene) (LDPE) is formed.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Other than density, state <strong>two </strong>differences in the physical properties of HDPE and LDPE.</p>
<p> </p>
<p> </p>
<p> </p>
<p>(ii) Outline how the differences in (a)(i) relate to differences in their chemical structure.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the conditions required to produce HDPE and LDPE and the name of each type of mechanism involved.</p>
<p><img src="images/Schermafbeelding_2016-08-15_om_14.14.55.png" alt="M14/4/CHEMI/HP3/ENG/TZ2/12.b"></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Kevlar can be made by reacting 1,4-diaminobenzene, \({{\text{H}}_{\text{2}}}{\text{N}}{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{4}}}{\text{N}}{{\text{H}}_{\text{2}}}\), with 1,4-benzenedicarbonyl chloride, \({\text{ClOC}}{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{4}}}{\text{COCl}}\). Write the equation for the reaction of n molecules of 1,4-diaminobenzene reacting with n molecules of 1,4-benzenedicarbonyl chloride.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Kevlar is an example of a lyotropic liquid crystal. Outline what is meant by <em>lyotropic </em><em>liquid crystal</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">\[{\text{n }}{{\text{H}}_2}{\text{N}}{{\text{C}}_6}{{\text{H}}_4}{\text{N}}{{\text{H}}_2} + {\text{n ClOC}}{{\text{C}}_6}{{\text{H}}_4}{\text{COCl}} \to {\rm{H\rlap{-} [HN}}{{\text{C}}_6}{{\text{H}}_4}{\text{NHOC}}{{\text{C}}_6}{{\text{H}}_4}{\text{CO}}{{\rm{\rlap{-} ]}}_{\text{n}}}{\text{Cl}} + {\text{2(n}} - {\text{1)HCl}}\]</p>
</div>
<div class="specification">
<p class="p1">The following diagram shows two adjacent molecules in a sample of solid Kevlar.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-22_om_14.41.30.png" alt="N12/4/CHEMI/HP3/ENG/TZ0/C4.b"></p>
</div>
<div class="specification">
<p class="p1">Kevlar is very unreactive but dissolves in concentrated sulfuric acid.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the type of polymerization involved.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) Identify the strongest type of intermolecular force between the two molecules.</p>
<p class="p1">(ii) Annotate the diagram (above) by adding dotted lines to show the strongest intermolecular forces.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Kevlar is five times as strong as steel, partly due to its strong intermolecular forces. State another feature of the molecules which gives Kevlar such great strength.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) Suggest how the sulfuric acid is able to separate the Kevlar chains.</p>
<p class="p1">(ii) Evaluate the long-term environmental impact of Kevlar.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Another polymer that has cross-linking is Kevlar. Kevlar can be made by reacting 1,4-diaminobenzene with benzene-1,4-dicarboxylic acid.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Draw the structural formula of the repeating unit in Kevlar.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain how the long rigid chains in Kevlar are able to form cross-links to build up a three-dimensional structure.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="question">
<p class="p1">Industrial effluent is found to be highly contaminated with silver and lead ions. A sample of water contains \(8.0 \times {10^{ - 3}}{\text{ mol}}\,{\text{d}}{{\text{m}}^{ - 3}}{\text{ A}}{{\text{g}}^ + }\) and \(1.9 \times {10^{ - 2}}{\text{ mol}}\,{\text{d}}{{\text{m}}^{ - 3}}{\text{ P}}{{\text{b}}^{2 + }}\). On the addition of chloride ions both \({\text{AgCl }}({K_{sp}} = 1.8 \times {10^{ - 10}})\) and \({\text{PbC}}{{\text{l}}_{\text{2}}}{\text{ }}({K_{sp}} = 1.7 \times {10^{ - 5}})\) precipitate from the solution. Determine the concentration of \({\text{C}}{{\text{l}}^ - }\) needed to initiate the precipitation of each salt and deduce which salt precipitates first.</p>
</div>
<br><hr><br><div class="specification">
<p>Polymers are made up of repeating monomer units which can be manipulated in various ways to give structures with desired properties.</p>
</div>
<div class="question">
<p>Fermentation of sugars from corn starch produces propane-1,3-diol, which can be polymerized with benzene-1,4-dicarboxylic acid to produce the PTT polymer (polytrimethylene terephthalate).</p>
<p>(i) Draw the molecular structure of each monomer.</p>
<p>(ii) Deduce the name of the linkage formed on polymerization between the two monomers and the name of the inorganic product.</p>
<p><img src=""></p>
</div>
<br><hr><br><div class="specification">
<p class="p1">The structure of 4-pentyl-4-cyanobiphenyl, a commercially available nematic crystalline material used in electrical display devices, is shown below.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-10-03_om_15.25.11.png" alt="N09/4/CHEMI/HP3/ENG/TZ0/C5"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain how the three different parts of the molecule contribute to the properties of the compound used in electrical display devices.</p>
<p class="p1">CN:</p>
<p class="p1">\({{\text{C}}_{\text{5}}}{{\text{H}}_{{\text{11}}}}\):</p>
<p class="p1"><img src="images/Schermafbeelding_2016-10-03_om_18.34.36.png" alt="N09/4/CHEMI/HP3/ENG/TZ0/C5.a">:</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Describe and explain in molecular terms the workings of a twisted nematic liquid crystal.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Liquid crystals are widely used in devices such as calculators, laptop computers and advanced optical materials.</p>
</div>
<div class="question">
<p>Kevlar<sup>®</sup> is a material used in bullet-proof vests.</p>
<p>(i) Deduce the products formed by a condensation polymerization reaction of the monomers benzene-1,4-diamine and benzene-1,4-dicarbonyl chloride to form Kevlar<sup>®</sup>.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-15_om_08.15.59.png" alt="M14/4/CHEMI/HP3/ENG/TZ1/10.c.i"></p>
<p>(ii) Describe the factors which account for the inherent strength of Kevlar<sup>®</sup>.</p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p>(iii) Outline why Kevlar<sup>®</sup> can dissolve in concentrated sulfuric acid.</p>
</div>
<br><hr><br><div class="question">
<p class="p1">(a) State <strong>one </strong>other example of a lyotropic liquid crystal and describe the difference between lyotropic and thermotropic liquid crystals.</p>
<p class="p1">(b) Name a thermotropic liquid crystal.</p>
<p class="p1">(c) Explain the liquid-crystal behaviour of the thermotropic liquid crystal named in part (b), on the molecular level.</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Heavy metal ions can be removed by adding hydroxide ions. When hydroxide ions are added to a solution containing nickel ions, a precipitate of nickel(II) hydroxide, \({\text{Ni(OH}}{{\text{)}}_{\text{2}}}\), is formed. The solubility product of nickel(II) hydroxide is \(6.50 \times {10^{ - 18}}\) at 298 K. Determine the mass of nickel ions that remains in one litre (\({\text{1.00 d}}{{\text{m}}^{\text{3}}}\)) of water at 298 K with a pH of 7 after the precipitation reaction has occurred.</p>
</div>
<br><hr><br><div class="specification">
<p>Aluminium is chemically reactive so it has to be extracted by the electrolysis of aluminium oxide dissolved in molten cryolite.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-22_om_12.15.41.png" alt="N14/4/CHEMI/HP3/ENG/TZ0/09"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Suggest why the aluminium oxide is dissolved in molten cryolite.</p>
<p> </p>
<p> </p>
<p>(ii) Deduce an equation for the discharge of the ions at each electrode.</p>
<p> </p>
<p>Positive electrode (anode):</p>
<p> </p>
<p> </p>
<p>Negative electrode (cathode):</p>
<p> </p>
<p> </p>
<p>(iii) Suggest why the anodes have to be replaced at regular intervals.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Outline why aluminium is alloyed with copper and magnesium when used to construct aircraft bodies.</p>
<p> </p>
<p> </p>
<p>(ii) State <strong>two </strong>properties of aluminium that make it suitable for use in overhead power cables.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The oxygen levels in water can change for a number of reasons.</p>
</div>
<div class="specification">
<p class="p1">The use of phosphate fertilizers can also produce changes in the oxygen concentrations in a river.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Phosphate ions can be removed from a solution by adding calcium ions. State the ionic equation for the reaction of calcium ions with phosphate ions.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce the expression for the solubility product constant, \({K_{{\text{sp}}}}\), of calcium phosphate.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><span class="s1">The solubility product of calcium phosphate is \({\text{2.07}} \times {\text{1}}{{\text{0}}^{ - 33}}\) </span>at 298 K. Determine the concentration, in \({\text{mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\), of calcium ions, \({\text{C}}{{\text{a}}^{2 + }}\), in a saturated aqueous solution of calcium phosphate.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.iii.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Poly(propene) has different forms. Isotactic poly(propene) is tough, while atactic poly(propene) is flexible.</p>
</div>
<div class="specification">
<p class="p1">Polyethylene terephthalate (PET), represented below, is an example of a condensation polymer.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-14_om_09.31.56.png" alt="M13/4/CHEMI/HP3/ENG/TZ1/C5.b"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Draw the structures of the monomers that form polyethylene terephthalate.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Predict whether polyethylene terephthalate or isotactic poly(propene) has a higher melting point. Explain your answer in terms of intermolecular forces.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Modern liquid crystals have a structure similar to this biphenyl nitrile.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-08-08_om_07.23.13.png" alt="m15/4/CHEMI/HP3/eng/TZ2/15"></p>
</div>
<div class="question">
<p class="p1">Explain how the structure of biphenyl nitriles makes them suitable for use in liquid-crystal devices.</p>
</div>
<br><hr><br><div class="specification">
<p>Liquid crystals are widely used in displays.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the meaning of the term liquid crystals.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>When a liquid-crystal display is warmed with a hairdryer, the display loses its clarity and may no longer be visible. Explain why this happens on a molecular level.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Polyethene is the world’s most widely used polymer. It can exist in two forms with distinctive physical properties.</p>
<p class="p1">The manufacture of low-density polyethene (LDPE) is initiated by the introduction into ethene of an organic peroxide, ROOR, which, at high temperature and pressure, forms free radicals.</p>
<p class="p1">\(ROOR \to 2RO \bullet \)</p>
</div>
<div class="specification">
<p class="p1">Polyacrylonitrile is an important polymer used in the manufacture of carbon fibres. The monomer has the structure below.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-25_om_16.50.34.png" alt="N13/4/CHEMI/HP3/ENG/TZ0/11.d"></p>
<p class="p1">Polyacrylonitrile is similar to polypropene and can exist in two forms.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Draw the structure of the isotactic form of polyacrylonitrile showing <strong>three</strong> repeating units.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain why the isotactic form is more suitable for the manufacture of strong fibres.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Thermotropic liquid crystals are widely used in display devices and sensors.</p>
</div>
<div class="question">
<p class="p1">Describe and explain, in molecular terms, the workings of a twisted nematic liquid crystal.</p>
</div>
<br><hr><br><div class="specification">
<p class="p1">Aluminium is produced by the electrolysis of aluminium oxide.</p>
</div>
<div class="question">
<p class="p1">State how a low operating temperature is achieved when aluminium oxide is electrolysed.</p>
</div>
<br><hr><br><div class="specification">
<p>Liquid crystals are an important component in many devices considered essential in modern life, such as smartphones.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the meaning of the term liquid crystal.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>List <strong>two</strong> properties needed for a substance to be used in a liquid-crystal display.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Soil degradation is a global problem that can lead to a reduction in food production.</p>
</div>
<div class="specification">
<p class="p1">Aluminium and magnesium ions are commonly found in different forms in soil. Magnesium ions are important for plant growth, but aluminium ions may be toxic if absorbed by plants. Both these ions can be precipitated in the soil by the formation of their hydroxides. The \({K_{{\text{sp}}}}\) values for magnesium hydroxide and aluminium hydroxide at 298 K are \(1.80 \times {10^{ - 11}}\) and \(3.00 \times {10^{ - 34}}\), respectively.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine the concentration of the magnesium and hydroxide ions in a saturated solution of magnesium hydroxide at 298 K, and calculate its pH. Assume there are no other ions present.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce, with a reason, whether the pH of a saturated solution of aluminium hydroxide, at the same temperature, would be greater or less than your answer to (i).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>EDTA is produced by reacting ethane-1,2-diamine with chloroethanoic acid, ClCH<sub>2</sub>COOH.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the other product formed.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why EDTA, a chelating agent, is more effective in removing heavy metal ions from solution than monodentate ligands.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Superconductors are materials that conduct electric current with practically zero resistance.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the Meissner effect.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline one difference between type 1 and type 2 superconductors.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Chromium forms coloured compounds and is used to make stainless and hard steel. The distance between layers of chromium atoms in the metal can be obtained using X-ray crystallography.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) The diagram below shows the diffraction of two X-ray beams, <strong>y</strong> and <strong>z</strong> of wavelength <strong>λ</strong>, shining on a chromium crystal whose planes are a distance <strong>d</strong> nm apart.</p>
<p style="text-align: center;"><img src=""></p>
<p>Deduce the extra distance travelled by the second beam,<strong> z</strong>, compared to the first one, <strong>y</strong>.</p>
<p>(ii) State the Bragg’s condition for the observed diffraction to be at its strongest (constructive interference).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) The mass of one unit cell of chromium metal is 17.28 × 10<sup>−23 </sup>g. Calculate the number of unit cells in one mole of chromium. <em>A</em><sub>r</sub>(Cr) = 52.00.</p>
<p>(ii) Deduce the number of atoms of chromium per unit cell.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Antimony oxide is widely used as a homogeneous catalyst for the reaction of benzene-1,4-dicarboxylic acid with ethane-1,2-diol in the production of polyethylene terephthalate (PETE).</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the repeating unit of the polymer and the other product of the reaction.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the class of polymer to which PETE belongs.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Iron may be extracted from an ore containing Fe<sub>2</sub>O<sub>3</sub> in a blast furnace by reaction with coke, limestone and air. Aluminium is obtained by electrolysis of an ore containing Al<sub>2</sub>O<sub>3</sub>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Outline the cause of electrical resistance in metallic conductors.</p>
<p>(ii) The resistance of two metals was measured as a function of temperature. The following graph was obtained.</p>
<p><img src="" alt></p>
<p>Explain the behaviour of metal II below temperature <strong>X</strong> in terms of the Bardeen–Cooper–Schrieffer (BCS) theory.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Polonium metal has a simple cubic structure. Construct a unit cell diagram and state the coordination number of each atom.</p>
<p>(ii) X-ray diffraction was carried out on polonium using radiation with a wavelength of 8.80×10<sup>−11</sup> m. The first order maximum in the diffraction pattern was observed at an angle of 13.0°. Determine the distance, in m, between layers of polonium atoms using section 1 of the data booklet.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Metals have various crystal structures. Cobalt forms a face-centred cubic (FCC) lattice. Two representations of FCC are shown.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the total number of cobalt atoms within its unit cell.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The atomic radius, <em>r</em>, of cobalt is 1.18 × 10<sup>–8</sup> cm. Determine the edge length, in cm, of the unit cell, <em>a</em>, using the second diagram.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine a value for the density of cobalt, in g cm<sup>–3</sup>, using data from sections 2 and 6 of the data booklet and your answers from (a) and (b) (i).</p>
<p>If you did not obtain an answer to (b) (i), use 3.00 × 10<sup>–8</sup> cm but this is not the correct answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Biphenyl nitriles, such as the molecule shown below, were the first thermotropic liquid crystal molecules to be synthesized.</p>
<p style="text-align: center;"><img src="" alt></p>
</div>
<div class="question">
<p>(i) The monomers from which Kevlar<sup>®</sup> is produced are given below.</p>
<p><img src="" alt></p>
<p>Deduce the formula of the repeating unit of Kevlar<sup>®</sup>.</p>
<p>(ii) State the structural feature of Kevlar<sup>®</sup> that is primarily responsible for its strength.</p>
</div>
<br><hr><br><div class="specification">
<p>Polymer nanocomposites often have better structural performance than conventional materials. Lithographic etching and metal coordination are two methods of assembling these nanocomposites.</p>
</div>
<div class="specification">
<p>Dendrimers are highly branched nanoparticles with a wide range of usage. One such dendrimer is PAMAM, or polyamidoamine.</p>
<p style="text-align: center;"><img src=""></p>
<p>The first step in the synthesis is to make the core by reacting ethane-1,2-diamine with methylpropenoate.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate the atom economy of this first step.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest, giving one reason, whether this is an addition or condensation reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Subsequent steps proceed under differing conditions, forming the dendrimer polymer with the following repeating unit.</p>
<p style="text-align: center;"><img src=""></p>
<p>State the name of <strong>one</strong> functional group in this repeating unit.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>The Fenton and Haber–Weiss reactions convert organic matter in waste water to carbon dioxide and water.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Compare and contrast the Fenton and Haber–Weiss reaction mechanisms.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Adsorption and chelation are two methods of removing heavy metal ion pollution from the environment.</p>
<p>(i) Describe the process of adsorption.</p>
<p>(ii) Deduce the structure of the complex ion formed by the reaction of three H<sub>2</sub>N−CH<sub>2</sub>−CH<sub>2</sub>−NH<sub>2</sub> chelating molecules with a mercury(II) ion.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br>