File "SL-paper2.html"

Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Math AI/Topic 4/SL-paper2html
File size: 1.07 MB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">

<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>SL Paper 2</h2><div class="specification">
<p>A wind turbine is designed so that the rotation of the blades generates electricity. The turbine is built on horizontal ground and is made up of a vertical tower and three blades.</p>
<p>The point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> is on the base of the tower directly below point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> at the top of the tower. The height of the tower, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AB</mtext></math>, is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>90</mn><mo>&#8202;</mo><mtext>m</mtext></math>. The blades of the turbine are centred at <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> and are each of length <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>40</mn><mo>&#8202;</mo><mtext>m</mtext></math>. This is shown in the following diagram.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The end of one of the blades of the turbine is represented by point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math> on the diagram. Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math> be the height of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math> above the ground, measured in metres, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math> varies as the blade rotates.</p>
</div>

<div class="specification">
<p>Find the</p>
</div>

<div class="specification">
<p>The blades of the turbine complete <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>12</mn></math> rotations per minute under normal conditions, moving at a constant rate.</p>
</div>

<div class="specification">
<p>The height, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math>, of point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math> can be modelled by the following function. Time, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>, is measured&nbsp;from the instant when the blade <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>[BC]</mtext></math> first passes <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>[AB]</mtext></math> and is measured in seconds.</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mfenced><mi>t</mi></mfenced><mo>=</mo><mn>90</mn><mo>-</mo><mn>40</mn><mo>&#8202;</mo><mi>cos</mi><mfenced><mrow><mn>72</mn><mi>t</mi><mo>&#176;</mo></mrow></mfenced><mo>,</mo><mo>&#160;</mo><mi>t</mi><mo>&#8805;</mo><mn>0</mn></math></p>
</div>

<div class="specification">
<p>Looking through his window, Tim has a partial view of the rotating wind turbine. The position&nbsp;of his window means that he cannot see any part of the wind turbine that is <strong>more than</strong> <math xmlns="http://www.w3.org/1998/Math/MathML"><mn mathvariant="bold">100</mn><mo mathvariant="bold">&#160;</mo><mtext mathvariant="bold">m</mtext></math>&nbsp;above the ground. This is illustrated in the following diagram.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>maximum value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>minimum value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the time, in seconds, it takes for the blade <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>[BC]</mtext></math> to make one complete rotation under these conditions.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the angle, in degrees, that the blade <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>[BC]</mtext></math> turns through in one second.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the amplitude of the function.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the period of the function.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch the function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>(</mo><mi>t</mi><mo>)</mo></math> for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>≤</mo><mi>t</mi><mo>≤</mo><mn>5</mn></math>, clearly labelling the coordinates of the maximum and minimum points.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the height of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math> above the ground when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>2</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the time, in seconds, that point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math> is above a height of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>100</mn><mo> </mo><mtext>m</mtext></math>, during each complete rotation.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>At any given instant, find the probability that point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math> is visible from Tim’s window.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The wind speed increases. The blades rotate at twice the speed, but still at a constant rate.</p>
<p>At any given instant, find the probability that Tim can see point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math> from his window. Justify your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The following table shows values of ln <em>x</em> and ln <em>y</em>.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">The relationship between ln <em>x</em> and ln <em>y</em> can be modelled by the regression equation ln <em>y</em> = <em>a</em> ln <em>x</em> + <em>b</em>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <em>a</em> and of <em>b</em>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the regression equation to estimate the value of <em>y</em> when<em> x</em> = 3.57.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The relationship between <em>x</em> and <em>y</em> can be modelled using the formula <em>y</em> = <em>kx<sup>n</sup></em>, where <em>k</em> ≠ 0 , <em>n</em> ≠ 0 , <em>n</em> ≠ 1.</p>
<p>By expressing ln <em>y</em> in terms of ln <em>x</em>, find the value of <em>n</em> and of <em>k</em>.</p>
<div class="marks">[7]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>In the month before their IB Diploma examinations, eight male students recorded the number of hours they spent on social media.</p>
<p>For each student, the number of hours spent on social media (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>) and the number of IB Diploma points obtained (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span>) are shown in the following table.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-03-07_om_07.43.52.png" alt="N16/5/MATSD/SP2/ENG/TZ0/01"></p>
</div>

<div class="specification">
<p>Use your graphic display calculator to find</p>
</div>

<div class="specification">
<p>Ten female students also recorded the number of hours they spent on social media in the month before their IB Diploma examinations. Each of these female students spent between 3 and 30 hours on social media.</p>
<p>The equation of the regression line <em>y </em>on <em>x </em>for these ten female students is</p>
<p><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="y = &nbsp;- \frac{2}{3}x + \frac{{125}}{3}.">
  <mi>y</mi>
  <mo>=</mo>
  <mo>−<!-- − --></mo>
  <mfrac>
    <mn>2</mn>
    <mn>3</mn>
  </mfrac>
  <mi>x</mi>
  <mo>+</mo>
  <mfrac>
    <mrow>
      <mn>125</mn>
    </mrow>
    <mn>3</mn>
  </mfrac>
  <mo>.</mo>
</math></span></p>
<p>An eleventh girl spent 34 hours on social media in the month before her IB Diploma examinations.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On graph paper, draw a scatter diagram for these data. Use a scale of 2 cm to represent 5 hours on the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>-axis and 2 cm to represent 10 points on the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span>-axis.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i)     <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\bar x}">
  <mrow>
    <mrow>
      <mover>
        <mi>x</mi>
        <mo stretchy="false">¯</mo>
      </mover>
    </mrow>
  </mrow>
</math></span>, the mean number of hours spent on social media;</p>
<p>(ii)     <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\bar y}">
  <mrow>
    <mrow>
      <mover>
        <mi>y</mi>
        <mo stretchy="false">¯</mo>
      </mover>
    </mrow>
  </mrow>
</math></span>, the mean number of IB Diploma points.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Plot the point <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(\bar x,{\text{ }}\bar y)">
  <mo stretchy="false">(</mo>
  <mrow>
    <mover>
      <mi>x</mi>
      <mo stretchy="false">¯</mo>
    </mover>
  </mrow>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mrow>
    <mover>
      <mi>y</mi>
      <mo stretchy="false">¯</mo>
    </mover>
  </mrow>
  <mo stretchy="false">)</mo>
</math></span> on your scatter diagram and label this point M.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the equation of the regression line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span> on <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> for these eight male students.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the regression line, from part (e), on your scatter diagram.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the given equation of the regression line to estimate the number of IB Diploma points that this girl obtained.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down a reason why this estimate is not reliable.</p>
<div class="marks">[1]</div>
<div class="question_part_label">h.</div>
</div>
<br><hr><br><div class="specification">
<p>A medical centre is testing patients for a certain disease. This disease occurs in <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo>%</mo></math> of&nbsp;the population.</p>
<p>They test every patient who comes to the centre on a particular day.</p>
</div>

<div class="specification">
<p>It is intended that if a patient has the disease, they test “positive”, and if a patient does not&nbsp;have the disease, they test “negative”.</p>
<p>However, the tests are not perfect, and only <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>99</mn><mo>%</mo></math> of people who have the disease test positive.&nbsp;Also, <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>%</mo></math> of people who <strong>do not</strong> have the disease test positive.</p>
<p>The tree diagram shows some of this information.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>Write down the value of</p>
</div>

<div class="specification">
<p>Use the tree diagram to find the probability that a patient selected at random</p>
</div>

<div class="specification">
<p>The staff at the medical centre looked at the care received by all visiting patients on a&nbsp;randomly chosen day. All the patients received at least one of these services: they had&nbsp;medical tests (<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>M</mi></math>), were seen by a nurse (<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi></math>), or were seen by a doctor (<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>D</mi></math>). It was found that:</p>
<ul>
<li><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>78</mn></math> had medical tests,</li>
<li><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>45</mn></math> were seen by a nurse;</li>
<li><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>30</mn></math> were seen by a doctor;</li>
<li><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>9</mn></math> had medical tests and were seen by a doctor and a nurse;</li>
<li><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>18</mn></math> had medical tests and were seen by a doctor but were not seen by a nurse;</li>
<li><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>11</mn></math> patients were seen by a nurse and had medical tests but were not seen by a doctor;</li>
<li><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn></math> patients were seen by a doctor without being seen by nurse and without having medical tests.</li>
</ul>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the sampling method being used.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>will not have the disease and will test positive.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>will test negative.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>has the disease given that they tested negative.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The medical centre finds the actual number of positive results in their sample is&nbsp;different than predicted by the tree diagram. Explain why this might be the case.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw a Venn diagram to illustrate this information, placing all relevant information on&nbsp;the diagram.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the total number of patients who visited the centre during this day.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>A group of 800 students answered 40 questions on a category of their choice out of History, Science and Literature.</p>
<p>For each student the category and the number of correct answers, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="N">
  <mi>N</mi>
</math></span>, was recorded. The results obtained are represented in the following table.</p>
<p><img src="images/Schermafbeelding_2018-02-13_om_14.11.54.png" alt="N17/5/MATSD/SP2/ENG/TZ0/01"></p>
</div>

<div class="specification">
<p>A <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\chi ^2}">
  <mrow>
    <msup>
      <mi>χ<!-- χ --></mi>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span> test at the 5% significance level is carried out on the results. The critical value for this test is 12.592.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State whether <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="N">
  <mi>N</mi>
</math></span> is a discrete or a continuous variable.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="N">
  <mi>N</mi>
</math></span>, the modal class;</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="N">
  <mi>N</mi>
</math></span>, the mid-interval value of the modal class.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your graphic display calculator to estimate the mean of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="N">
  <mi>N</mi>
</math></span>;</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your graphic display calculator to estimate the standard deviation of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="N">
  <mi>N</mi>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the expected frequency of students choosing the Science category and obtaining 31 to 40 correct answers.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the null hypothesis for this test;</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the number of degrees of freedom.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
  <mi>p</mi>
</math></span>-value for the test;</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\chi ^2}">
  <mrow>
    <msup>
      <mi>χ</mi>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span> statistic.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the result of the test. Give a reason for your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p>Fiona walks from her house to a bus stop where she gets a bus to school. Her time, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi></math> minutes,&nbsp;to walk to the bus stop is normally distributed with <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi><mo>~</mo><mtext>N</mtext><mfenced><mrow><mn>12</mn><mo>,</mo><mo>&nbsp;</mo><msup><mn>3</mn><mn>2</mn></msup></mrow></mfenced></math>.</p>
<p>Fiona always leaves her house at 07:15. The first bus that she can get departs at 07:30.</p>
</div>

<div class="specification">
<p>The length of time, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math> minutes, of the bus journey to Fiona’s school is normally distributed&nbsp;with <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi><mo>~</mo><mtext>N</mtext><mfenced><mrow><mn>50</mn><mo>,</mo><mo>&nbsp;</mo><msup><mi>σ</mi><mn>2</mn></msup></mrow></mfenced></math>. The probability that the bus journey takes less than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>60</mn></math> minutes is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>941</mn></math>.</p>
</div>

<div class="specification">
<p>If Fiona misses the first bus, there is a second bus which departs at 07:45. She must arrive&nbsp;at school by 08:30&nbsp;to be on time. Fiona will not arrive on time if she misses both buses.&nbsp;The variables <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>B</mi></math> are independent.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that it will take Fiona between <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>15</mn></math> minutes and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>30</mn></math> minutes to walk to the bus stop.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>σ</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that the bus journey takes less than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>45</mn></math> minutes.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that Fiona will arrive on time.</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>This year, Fiona will go to school on <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>183</mn></math> days.</p>
<p>Calculate the number of days Fiona is expected to arrive on time.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>A company performs an experiment on the efficiency of a liquid that is used to detect a nut allergy.</p>
<p>A group of 60 people took part in the experiment. In this group 26 are allergic to nuts. One person from the group is chosen at random.</p>
</div>

<div class="specification">
<p>A second person is chosen from the group.</p>
</div>

<div class="specification">
<p>When the liquid is added to a person’s blood sample, it is expected to turn blue if the person is allergic to nuts and to turn red if the person is not allergic to nuts.</p>
<p>The company claims that the probability that the test result is correct is 98% for people who are allergic to nuts and 95% for people who are not allergic to nuts.</p>
<p>It is known that 6 in every 1000 adults are allergic to nuts.</p>
<p>This information can be represented in a tree diagram.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-02-13_om_14.31.34.png" alt="N17/5/MATSD/SP2/ENG/TZ0/04.c.d.e.f.g"></p>
</div>

<div class="specification">
<p>An adult, who was not part of the original group of 60, is chosen at random and tested using this liquid.</p>
</div>

<div class="specification">
<p>The liquid is used in an office to identify employees who might be allergic to nuts. The liquid turned blue for <strong>38 </strong><strong>employees</strong>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that this person is <strong>not </strong>allergic to nuts.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that both people chosen are <strong>not </strong>allergic to nuts.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><strong>Copy </strong>and complete the tree diagram.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that this adult is allergic to nuts and the liquid turns blue.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that the liquid turns blue.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that the tested adult is allergic to nuts given that the liquid turned blue.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate the number of employees, from this 38, who are allergic to nuts.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p>A survey was conducted on a group of people. The first question asked how many pets they each own. The results are summarized in the following table.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>The second question asked each member of the group to state their age and preferred pet. The data obtained is organized in the following table.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>A <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\chi ^2}">
  <mrow>
    <msup>
      <mi>χ<!-- χ --></mi>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span> test is carried out at the 10 % significance level.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the total number of people, from this group, who are <strong>pet owners</strong>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the modal number of pets.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For these data, write down the median number of pets.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For these data, write down the lower quartile.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For these data, write down the upper quartile.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the ratio of teenagers to non-teenagers in its simplest form.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the null hypothesis.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the alternative hypothesis.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the number of degrees of freedom for this test.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the expected number of teenagers that prefer cats.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the conclusion for this test. Give a reason for your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">i.</div>
</div>
<br><hr><br><div class="specification">
<p>Sila High School has 110 students. They each take exactly one language class from a choice of English, Spanish or Chinese. The following table shows the number of female and male students in the three different language classes.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>A <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\chi ^2}">
  <mrow>
    <msup>
      <mi>χ<!-- χ --></mi>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span>&nbsp;test was carried out at the 5 % significance level to analyse the relationship between gender and student choice of language class.</p>
</div>

<div class="specification">
<p>Use your graphic display calculator to write down</p>
</div>

<div class="specification">
<p>The critical value at the 5 % significance level for this test is 5.99.</p>
</div>

<div class="specification">
<p>One student is chosen at random from this school.</p>
</div>

<div class="specification">
<p>Another student is chosen at random from this school.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the null hypothesis, H<sub>0 </sub>, for this test.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the number of degrees of freedom.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the expected frequency of female students who chose to take the Chinese class.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State whether or not H<sub>0</sub> should be rejected. Justify your statement.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that the student does not take the Spanish class.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that neither of the two students take the Spanish class.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that at least one of the two students is female.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>There are three fair six-sided dice. Each die has two green faces, two yellow faces and two red faces.</p>
<p>All three dice are rolled.</p>
</div>

<div class="specification">
<p>Ted plays a game using these dice. The rules are:</p>
<ul>
<li>Having a turn means to roll all three dice.</li>
<li>He wins $10 for each green face rolled and adds this to his winnings.</li>
<li>After a turn Ted can either:<br>
<ul>
<li>end the game (and keep his winnings), or</li>
<li>have another turn (and try to increase his winnings).</li>
</ul>
</li>
<li>If two or more red faces are rolled in a turn, all winnings are lost and the game ends.</li>
</ul>
</div>

<div class="specification">
<p>The random variable <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="D">
  <mi>D</mi>
</math></span> ($) represents how much is added to his winnings after a turn.</p>
<p>The following table shows the distribution for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="D">
  <mi>D</mi>
</math></span>, where $<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="w">
  <mi>w</mi>
</math></span> represents his winnings in the game so far.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability of rolling exactly one red face.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability of rolling two or more red faces.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that, after a turn, the probability that Ted adds exactly $10 to his winnings is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\frac{1}{3}}">
  <mrow>
    <mfrac>
      <mn>1</mn>
      <mn>3</mn>
    </mfrac>
  </mrow>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Ted will always have another turn if he expects an increase to his winnings.</p>
<p>Find the least value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="w">
  <mi>w</mi>
</math></span> for which Ted should end the game instead of having another turn.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Don took part in a project investigating wind speed,&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo> </mo><msup><mtext>km h</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></math>, and the time, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> minutes, to fully charge a solar powered robot.</p>
<p>The investigation was carried out six times. The results are recorded in the table.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>M</mtext></math> is the point with coordinates <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><menclose notation="top"><mi>x</mi></menclose><mo>,</mo><mo>&nbsp;</mo><menclose notation="top"><mi>y</mi></menclose><mo>)</mo></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><strong>On graph paper</strong>, draw a scatter diagram to show the results of Don’s investigation. Use a scale of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo> </mo><mtext>cm</mtext></math> to represent <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn></math> units on the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-axis, and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo> </mo><mtext>cm</mtext></math> to represent <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn></math> units on the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-axis.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate <math xmlns="http://www.w3.org/1998/Math/MathML"><menclose notation="top"><mi>x</mi></menclose></math>, the mean wind speed.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate <math xmlns="http://www.w3.org/1998/Math/MathML"><menclose notation="top"><mi>y</mi></menclose></math>, the mean time to fully charge the robot.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Plot and label the point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>M</mtext></math> on your scatter diagram.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math>, Pearson’s product–moment correlation coefficient.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the correlation between the wind speed and the time to fully charge the robot.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the equation of the regression line <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> on <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>, in the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mi>m</mi><mi>x</mi><mo>+</mo><mi>c</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw this regression line on your scatter diagram.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence or otherwise estimate the charging time when the wind speed is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>27</mn><mo> </mo><msup><mtext>km h</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Don concluded from his investigation: “There is no causation between wind speed and the time to fully charge the robot”.</p>
<p>In the context of the question, briefly explain the meaning of “no causation”.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>It is known that the weights of male Persian cats are normally distributed with mean <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>.</mo><mn>1</mn><mo> </mo><mtext>kg</mtext></math>&nbsp;and variance <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><msup><mn>5</mn><mn>2</mn></msup><mo> </mo><msup><mtext>kg</mtext><mn>2</mn></msup></math>.</p>
</div>

<div class="specification">
<p>A group of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>80</mn></math> male Persian cats are drawn from this population.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch a diagram showing the above information.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the proportion of male Persian cats weighing between <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo>.</mo><mn>5</mn><mo> </mo><mtext>kg</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>.</mo><mn>5</mn><mo> </mo><mtext>kg</mtext></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the expected number of cats in this group that have a weight of less&nbsp;than&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo>.</mo><mn>3</mn><mo> </mo><mtext>kg</mtext></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>It is found that <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>12</mn></math> of the cats weigh more than <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo> </mo><mtext>kg</mtext></math>. Estimate the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Ten of the cats are chosen at random. Find the probability that exactly one of them&nbsp;weighs over <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>.</mo><mn>25</mn><mo> </mo><mtext>kg</mtext></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>In a company it is found that 25 % of the employees encountered traffic on their way to work. From those who encountered traffic the probability of being late for work is 80 %.</p>
<p>From those who did not encounter traffic, the probability of being late for work is 15 %.</p>
<p>The tree diagram illustrates the information.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>The company investigates the different means of transport used by their employees in the past year to travel to work. It was found that the three most common means of transport used to travel to work were public transportation (<em>P </em>), car (<em>C </em>) and bicycle (<em>B </em>).</p>
<p>The company finds that 20 employees travelled by car, 28 travelled by bicycle and 19 travelled by public transportation in the last year.</p>
<p>Some of the information is shown in the Venn diagram.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>There are 54 employees in the company.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <em>a</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <em>b</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the tree diagram to find the probability that an employee&nbsp;encountered traffic and was late for work.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the tree diagram to find the probability that an employee&nbsp;was late for work.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the tree diagram to find the probability that an employee&nbsp;encountered traffic given that they were late for work.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <em>x</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <em>y</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the number of employees who, in the last year, did not travel to work by car, bicycle or public transportation.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n\left( {\left( {C \cup B} \right) \cap P'} \right)"> <mi>n</mi> <mrow> <mo>(</mo> <mrow> <mrow> <mo>(</mo> <mrow> <mi>C</mi> <mo>∪</mo> <mi>B</mi> </mrow> <mo>)</mo> </mrow> <mo>∩</mo> <msup> <mi>P</mi> <mo>′</mo> </msup> </mrow> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>In a school, all Mathematical Studies SL students were given a test. The test contained four questions, each one on a different topic from the syllabus. The quality of each response was classified as satisfactory or not satisfactory. Each student answered only three of the four questions, each on a separate answer sheet.</p>
<p>The table below shows the number of satisfactory and not satisfactory responses for each question.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-16_om_17.16.22.png" alt="M17/5/MATSD/SP2/ENG/TZ2/01"></p>
</div>

<div class="specification">
<p>A <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\chi ^2}">
  <mrow>
    <msup>
      <mi>χ<!-- χ --></mi>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span> test is carried out at the 5% significance level for the data in the table.</p>
</div>

<div class="specification">
<p>The critical value for this test is 7.815.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>If the teacher chooses a response at random, find the probability that it is a response to the Calculus question;</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>If the teacher chooses a response at random, find the probability that it is a satisfactory response to the Calculus question;</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>If the teacher chooses a response at random, find the probability that it is a satisfactory response, given that it is a response to the Calculus question.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The teacher groups the responses by topic, and chooses two responses to the Logic question. Find the probability that both are not satisfactory.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the null hypothesis for this test.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the expected frequency of satisfactory Calculus responses is 12.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the number of degrees of freedom for this test.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your graphic display calculator to find the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\chi ^2}">
  <mrow>
    <msup>
      <mi>χ</mi>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span> statistic for this data.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the conclusion of this <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\chi ^2}">
  <mrow>
    <msup>
      <mi>χ</mi>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span> test. Give a reason for your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p>Mackenzie conducted an experiment on the reaction times of teenagers. The results of the experiment are displayed in the following cumulative frequency graph.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>Use the graph to estimate the</p>
</div>

<div class="specification">
<p>Mackenzie created the cumulative frequency graph using the following grouped frequency table.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>Upon completion of the experiment, Mackenzie realized that some values were grouped&nbsp;incorrectly in the frequency table. Some reaction times recorded in the interval <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>&#60;</mo><mi>t</mi><mo>&#8804;</mo><mn>0</mn><mo>.</mo><mn>2</mn></math>&nbsp;should have been recorded in the interval <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>2</mn><mo>&#60;</mo><mi>t</mi><mo>&#8804;</mo><mn>0</mn><mo>.</mo><mn>4</mn></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>median reaction time.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>interquartile range of the reaction times.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the estimated number of teenagers who have a reaction time greater than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>4</mn></math> seconds.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>90</mn><mtext>th</mtext></math> percentile of the reaction times from the cumulative frequency graph.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the modal class from the table.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your graphic display calculator to find an estimate of the mean reaction time.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest how, if at all, the estimated mean and estimated median reaction times will change if the errors are corrected. Justify your response.</p>
<div class="marks">[4]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p>A pharmaceutical company has developed a new drug to decrease cholesterol. The final stage of testing the new drug is to compare it to their current drug. They have 150 volunteers, all recently diagnosed with high cholesterol, from which they want to select a sample of size 18. They require as close as possible 20% of the sample to be below the age of 30, 30% to be between the ages of 30 and 50 and 50% to be over the age of 50.</p>
</div>

<div class="specification">
<p>Half of the 18 volunteers are given the current drug and half are given the new drug. After six months each volunteer has their cholesterol level measured and the decrease during the six months is shown in the table.</p>
<p><img src=""></p>
</div>

<div class="specification">
<p>Calculate the mean decrease in cholesterol for</p>
</div>

<div class="specification">
<p>The company uses a t-test, at the 1% significance level, to determine if the new drug is more effective at decreasing cholesterol.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the name for this type of sampling technique.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the number of volunteers in the sample under the age of 30.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The new drug.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The current drug.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State an assumption that the company is making, in order to use a t-test.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the hypotheses for this t-test.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the p-value for this t-test.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the conclusion of this test, in context, giving a reason.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p>The following table shows a probability distribution for the random variable <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
  <mi>X</mi>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{E}}(X) = 1.2">
  <mrow>
    <mtext>E</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>1.2</mn>
</math></span>.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-15_om_06.18.09.png" alt="M17/5/MATME/SP2/ENG/TZ2/10"></p>
</div>

<div class="specification">
<p>A bag contains white and blue marbles, with at least three of each colour. Three marbles are drawn from the bag, without replacement. The number of blue marbles drawn is given by the random variable <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
  <mi>X</mi>
</math></span>.</p>
</div>

<div class="specification">
<p>A game is played in which three marbles are drawn from the bag of ten marbles, without replacement. A player wins a prize if three white marbles are drawn.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q">
  <mi>q</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
  <mi>p</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the probability of drawing three blue marbles.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the probability of drawing three white marbles is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{6}">
  <mfrac>
    <mn>1</mn>
    <mn>6</mn>
  </mfrac>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The bag contains a total of ten marbles of which <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="w">
  <mi>w</mi>
</math></span> are white. Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="w">
  <mi>w</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Grant plays the game until he wins two prizes. Find the probability that he wins his second prize on his eighth attempt.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Two events <em>A</em> and <em>B</em> are such that P(<em>A</em>) = 0.62 and P<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {A \cap B} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>A</mi>
      <mo>∩<!-- ∩ --></mo>
      <mi>B</mi>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span> = 0.18.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find P(<em>A</em> ∩ <em>B′ </em>).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that P((<em>A</em> ∪ <em>B</em>)′<em> </em>) = 0.19, find P(<em>A </em>|<em> </em><em>B</em>′<em> </em>).</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The weight, <em>W</em>, of basketball players in a tournament is found to be normally distributed with a mean of 65 kg and a standard deviation of 5 kg.</p>
</div>

<div class="specification">
<p>The probability that a basketball player has a weight that is within 1.5 standard deviations of the mean is <em>q</em>.</p>
</div>

<div class="specification">
<p>A basketball coach observed 60 of her players to determine whether their performance and their weight were independent of each other. Her observations were recorded as shown in the table.</p>
<p style="text-align: center;"><img src=""></p>
<p>She decided to conduct a <em>χ </em><sup>2</sup> test for independence at the 5% significance level.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that a basketball player has a weight that is less than 61 kg.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In a training session there are 40 basketball players.</p>
<p>Find the expected number of players with a weight less than 61 kg in this training session.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch a normal curve to represent this probability.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <em>q</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that P(<em>W</em> &gt; <em>k</em>) = 0.225 , find the value of <em>k</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For this test&nbsp;state the null hypothesis.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For this test find the<em> p</em>-value.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State a conclusion for this test. Justify your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>On one day 180 flights arrived at a particular airport. The distance travelled and the arrival status for each incoming flight was recorded. The flight was then classified as on time, slightly delayed, or heavily delayed.</p>
<p>The results are shown in the following table.</p>
<p><img src=""></p>
<p>A <em>χ</em><sup>2</sup> test is carried out at the 10 % significance level to determine whether the arrival status of incoming flights is independent of the distance travelled.</p>
</div>

<div class="specification">
<p>The critical value for this test is 7.779.</p>
</div>

<div class="specification">
<p>A flight is chosen at random from the 180 recorded flights.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the alternative hypothesis.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the expected frequency of flights travelling at most 500 km and arriving slightly delayed.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the number of degrees of freedom.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the <em>χ</em><sup>2</sup> statistic.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the associated <em>p</em>-value.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State, with a reason, whether you would reject the null hypothesis.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the probability that this flight arrived on time.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that this flight was not heavily delayed, find the probability that it travelled between 500 km and 5000 km.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Two flights are chosen at random from those which were slightly delayed.</p>
<p>Find the probability that each of these flights travelled at least 5000 km.</p>
<div class="marks">[3]</div>
<div class="question_part_label">h.</div>
</div>
<br><hr><br><div class="specification">
<p>A transportation company owns 30 buses. The distance that each bus has travelled since being purchased by the company is recorded. The cumulative frequency curve for these data is shown.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>It is known that 8 buses travelled more than <em>m</em> kilometres.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the number of buses that travelled a distance between 15000 and 20000 kilometres.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the cumulative frequency curve to find the median distance.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the cumulative frequency curve to find the lower quartile.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the cumulative frequency curve to find the upper quartile.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence write down the interquartile range.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the percentage of buses that travelled a distance greater than the upper quartile.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the number of buses that travelled a distance less than or equal to 12 000 km.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <em>m</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The smallest distance travelled by one of the buses was 2500 km.<br>The longest distance travelled by one of the buses was 23 000 km.</p>
<p><strong>On graph paper</strong>, draw a box-and-whisker diagram for these data. Use a scale of 2 cm to represent 5000 km.</p>
<div class="marks">[4]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p>A discrete random variable <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
  <mi>X</mi>
</math></span> has the following probability distribution.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-02-12_om_10.34.18.png" alt="N17/5/MATME/SP2/ENG/TZ0/04"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
  <mi>k</mi>
</math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(X = 2)">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo>=</mo>
  <mn>2</mn>
  <mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(X = 2|X &gt; 0)">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo>=</mo>
  <mn>2</mn>
  <mrow>
    <mo stretchy="false">|</mo>
  </mrow>
  <mi>X</mi>
  <mo>&gt;</mo>
  <mn>0</mn>
  <mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The scores of the eight highest scoring countries in the <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2019</mn></math> Eurovision song contest are&nbsp;shown in the following table.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>For this data, find</p>
</div>

<div class="specification">
<p>Chester is investigating the relationship between the highest-scoring countries&rsquo; Eurovision&nbsp;score and their population size to determine whether population size can reasonably be&nbsp;used to predict a country&rsquo;s score.</p>
<p>The populations of the countries, to the nearest million, are shown in the table.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>Chester finds that, for this data, the Pearson&rsquo;s product moment correlation coefficient&nbsp;is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi><mo>=</mo><mn>0</mn><mo>.</mo><mn>249</mn></math>.</p>
</div>

<div class="specification">
<p>Chester then decides to find the Spearman&rsquo;s rank correlation coefficient for this data,&nbsp;and creates a table of ranks.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>Write down the value of:</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the upper quartile.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the interquartile range.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine if the Netherlands’ score is an outlier for this data. Justify your answer.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State whether it would be appropriate for Chester to use the equation of a regression line for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> on <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> to predict a country’s Eurovision score. Justify your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of the Spearman’s rank correlation coefficient <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>r</mi><mi>s</mi></msub></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Interpret the value obtained for <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>r</mi><mi>s</mi></msub></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>When calculating the ranks, Chester incorrectly read the Netherlands’ score as <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>478</mn></math>. Explain why the value of the Spearman’s rank correlation <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>r</mi><mi>s</mi></msub></math> does not change despite this error.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p><strong>All lengths in this question are in metres.</strong></p>
<p>&nbsp;</p>
<p>Consider the function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = \sqrt {\frac{{4 - {x^2}}}{8}} ">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <msqrt>
    <mfrac>
      <mrow>
        <mn>4</mn>
        <mo>−<!-- − --></mo>
        <mrow>
          <msup>
            <mi>x</mi>
            <mn>2</mn>
          </msup>
        </mrow>
      </mrow>
      <mn>8</mn>
    </mfrac>
  </msqrt>
</math></span>, for −2 ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>&nbsp;≤ 2.&nbsp;In the following diagram, the shaded&nbsp;region is enclosed by the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> and the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>-axis.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">A container can be modelled by rotating this region by 360˚ about the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>-axis.</p>
</div>

<div class="specification">
<p>Water can flow in and out of the container.</p>
<p>The volume of water in the container is given by the function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( t \right)">
  <mi>g</mi>
  <mrow>
    <mo>(</mo>
    <mi>t</mi>
    <mo>)</mo>
  </mrow>
</math></span>, for 0 ≤ <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
  <mi>t</mi>
</math></span> ≤ 4 , where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
  <mi>t</mi>
</math></span> is measured in hours and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g\left( t \right)">
  <mi>g</mi>
  <mrow>
    <mo>(</mo>
    <mi>t</mi>
    <mo>)</mo>
  </mrow>
</math></span> is measured in m<sup>3</sup>. The rate of change of the volume of water in the container is given by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g'\left( t \right) = 0.9 - 2.5\,{\text{cos}}\left( {0.4{t^2}} \right)">
  <msup>
    <mi>g</mi>
    <mo>′</mo>
  </msup>
  <mrow>
    <mo>(</mo>
    <mi>t</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>0.9</mn>
  <mo>−<!-- − --></mo>
  <mn>2.5</mn>
  <mspace width="thinmathspace"></mspace>
  <mrow>
    <mtext>cos</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mn>0.4</mn>
      <mrow>
        <msup>
          <mi>t</mi>
          <mn>2</mn>
        </msup>
      </mrow>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>.</p>
</div>

<div class="specification">
<p>The volume of water in the container is increasing only when&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
  <mi>p</mi>
</math></span>&nbsp;&lt; <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
  <mi>t</mi>
</math></span>&nbsp;&lt; <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q">
  <mi>q</mi>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the volume of the container.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
  <mi>p</mi>
</math></span> and of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q">
  <mi>q</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>During the interval <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
  <mi>p</mi>
</math></span> &lt; <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
  <mi>t</mi>
</math></span> &lt; <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q">
  <mi>q</mi>
</math></span>, he volume of water in the container increases by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
  <mi>k</mi>
</math></span> m<sup>3</sup>. Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
  <mi>k</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>When <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
  <mi>t</mi>
</math></span> = 0, the volume of water in the container is 2.3 m<sup>3</sup>. It is known that the container is never completely full of water during the 4 hour period.</p>
<p> </p>
<p>Find the minimum volume of empty space in the container during the 4 hour period.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) =&nbsp; - 0.5{x^4} + 3{x^2} + 2x">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mo>−<!-- − --></mo>
  <mn>0.5</mn>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>4</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>3</mn>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mo>+</mo>
  <mn>2</mn>
  <mi>x</mi>
</math></span>. The following diagram shows part of the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span>.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-15_om_06.09.00.png" alt="M17/5/MATME/SP2/ENG/TZ2/08"></p>
<p>&nbsp;</p>
<p>There are <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>-intercepts at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 0">
  <mi>x</mi>
  <mo>=</mo>
  <mn>0</mn>
</math></span> and at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = p">
  <mi>x</mi>
  <mo>=</mo>
  <mi>p</mi>
</math></span>. There is a maximum at A where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = a">
  <mi>x</mi>
  <mo>=</mo>
  <mi>a</mi>
</math></span>, and a point of inflexion at B where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = b">
  <mi>x</mi>
  <mo>=</mo>
  <mi>b</mi>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
  <mi>p</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the coordinates of A.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the rate of change of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> at A.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the coordinates of B.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the the rate of change of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> at B.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="R">
  <mi>R</mi>
</math></span> be the region enclosed by the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> , the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>-axis, the line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = b">
  <mi>x</mi>
  <mo>=</mo>
  <mi>b</mi>
</math></span> and the line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = a">
  <mi>x</mi>
  <mo>=</mo>
  <mi>a</mi>
</math></span>. The region <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="R">
  <mi>R</mi>
</math></span> is rotated 360° about the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>-axis. Find the volume of the solid formed.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The marks obtained by nine Mathematical Studies SL students in their projects (<em>x</em>) and their final IB examination scores (<em>y</em>) were recorded. These data were used to determine whether the project mark is a good predictor of the examination score. The results are shown in the table.</p>
<p><img src=""></p>
</div>

<div class="specification">
<p>The equation of the regression line <em>y</em> on <em>x</em> is <em>y</em> = <em>mx</em> + <em>c</em>.</p>
</div>

<div class="specification">
<p>A tenth student, Jerome, obtained a project mark of 17.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your graphic display calculator to write down <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\bar y}">
  <mrow>
    <mrow>
      <mover>
        <mi>y</mi>
        <mo stretchy="false">¯</mo>
      </mover>
    </mrow>
  </mrow>
</math></span>, the mean examination score.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your graphic display calculator to write down <em>r </em>, Pearson’s product–moment correlation coefficient.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the exact value of <em>m</em> and of <em>c</em> for these data.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the regression line <em>y</em> on <em>x</em> to estimate Jerome’s examination score.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Justify whether it is valid to use the regression line y on x to estimate Jerome’s examination score.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A group of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1280</mn></math> students were asked which electronic device they preferred. The results per age group are given in the following table.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
</div>

<div class="specification">
<p>A student from the group is chosen at random. Calculate the probability that the student</p>
</div>

<div class="specification">
<p>A <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>&#967;</mi><mn>2</mn></msup></math> test for independence was performed on the collected data at the <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>%</mo></math> significance level. The critical value for the test is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>13</mn><mo>.</mo><mn>277</mn></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>prefers a tablet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>11</mn><mtext>–</mtext><mn>13</mn></math> years old and prefers a mobile phone.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>prefers a laptop <strong>given that</strong> they are <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>17</mn><mtext>–</mtext><mn>18</mn></math> years old.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>prefers a tablet or is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>14</mn><mtext>–</mtext><mn>16</mn></math> years old.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the null and alternative hypotheses.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the number of degrees of freedom.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>χ</mi><mn>2</mn></msup></math> test statistic.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math>-value.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the conclusion for the test in context. Give a reason for your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>160 students attend a dual language school in which the students are taught only in Spanish or taught only in English.</p>
<p>A survey was conducted in order to analyse the number of students studying Biology or Mathematics. The results are shown in the Venn diagram.</p>
<p>&nbsp;</p>
<p style="padding-left: 240px;">Set <em>S</em> represents those students who are <strong>taught</strong> in Spanish.</p>
<p style="padding-left: 240px;">Set <em>B</em> represents those students who <strong>study</strong> Biology.</p>
<p style="padding-left: 240px;">Set <em>M</em> represents those students who <strong>study</strong> Mathematics.</p>
<p style="padding-left: 210px;">&nbsp;</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>A student from the school is chosen at random.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the number of students in the school that are taught in Spanish.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the number of students in the school that study Mathematics in English.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the number of students in the school that study both Biology and Mathematics.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n\left( {S \cap \left( {M \cup B} \right)} \right)"> <mi>n</mi> <mrow> <mo>(</mo> <mrow> <mi>S</mi> <mo>∩</mo> <mrow> <mo>(</mo> <mrow> <mi>M</mi> <mo>∪</mo> <mi>B</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n\left( {B \cap M \cap S'} \right)"> <mi>n</mi> <mrow> <mo>(</mo> <mrow> <mi>B</mi> <mo>∩</mo> <mi>M</mi> <mo>∩</mo> <msup> <mi>S</mi> <mo>′</mo> </msup> </mrow> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that this student studies Mathematics.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that this student studies neither Biology nor Mathematics.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that this student is taught in Spanish, given that the student studies Biology.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>On a school excursion, <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>100</mn></math> students visited an amusement park. The amusement park’s&nbsp;main attractions are rollercoasters (<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext mathvariant="italic">R</mtext></math>), water slides (<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext mathvariant="italic">W</mtext></math>), and virtual reality rides (<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext mathvariant="italic">V</mtext></math>).</p>
<p>The students were asked which main attractions they visited. The results are shown in the&nbsp;Venn diagram.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>A total of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>74</mn></math> students visited the rollercoasters or the water slides.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the number of students who visited at least two types of main attraction.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>(</mo><mo> </mo><mi>R</mi><mo>∩</mo><mi>W</mi><mo>)</mo><mo> </mo></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that a randomly selected student visited the rollercoasters.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that a randomly selected student visited the virtual reality rides.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence determine whether the events in <strong>parts (d)(i)</strong> and <strong>(d)(ii)</strong> are independent. Justify your reasoning. </p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>The following table shows the hand lengths and the heights of five athletes on a sports team.</p>
<p style="text-align: center;"><img src=""></p>
<p>The relationship between <em>x</em> and <em>y</em> can be modelled by the regression line with equation <em>y</em> = <em>ax</em> + <em>b</em>.</p>
</div>

<div class="question">
<p>Another athlete on this sports team has a hand length of 21.5 cm. Use the regression equation to estimate the height of this athlete.</p>
</div>
<br><hr><br><div class="specification">
<p>The table below shows the distribution of test grades for 50 IB students at Greendale School.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-16_om_11.25.22.png" alt="M17/5/MATSD/SP2/ENG/TZ1/05"></p>
</div>

<div class="specification">
<p>A student is chosen at random from these 50 students.</p>
</div>

<div class="specification">
<p>A second student is chosen at random from these 50 students.</p>
</div>

<div class="specification">
<p>The number of minutes that the 50 students spent preparing for the test was normally distributed with a mean of 105 minutes and a standard deviation of 20 minutes.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the mean test grade of the students;</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the standard deviation.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the median test grade of the students.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the interquartile range.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that this student scored a grade 5 or higher.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that the first student chosen at random scored a grade 5 or higher, find the probability that both students scored a grade 6.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the probability that a student chosen at random spent at least 90 minutes preparing for the test.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the expected number of students that spent at least 90 minutes preparing for the test.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A dice manufacturer claims that for a novelty die he produces the probability of scoring the&nbsp;numbers <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn></math> are all equal, and the probability of a <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn></math> is two times the probability of&nbsp;scoring any of the other numbers.</p>
</div>

<div class="specification">
<p>To test the manufacture’s claim one of the novelty dice is rolled <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>350</mn></math> times and the numbers&nbsp;scored on the die are shown in the table below.</p>
<p style="padding-left: 30px;"><img src=""></p>
</div>

<div class="specification">
<p>A <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>χ</mi><mn>2</mn></msup></math> goodness of fit test is to be used with a <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo>%</mo></math> significance level.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability of scoring a six when rolling the novelty die.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability of scoring more than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn></math> sixes when this die is rolled <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn></math> times.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the expected frequency for each of the numbers if the manufacturer’s claim is true.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the null and alternative hypotheses.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the degrees of freedom for the test.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the conclusion of the test, clearly justifying your answer.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.iv.</div>
</div>
<br><hr><br><div class="specification">
<p>The stopping distances for bicycles travelling at <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>20</mn><mo> </mo><msup><mtext>km h</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></math> are assumed to follow a normal&nbsp;distribution with mean <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>.</mo><mn>76</mn><mo> </mo><mtext>m</mtext></math> and standard deviation <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>12</mn><mo> </mo><mtext>m</mtext></math>.</p>
</div>

<div class="specification">
<p>Under this assumption, find, correct to four decimal places, the probability that a bicycle&nbsp;chosen at random travelling at <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>20</mn><mo> </mo><msup><mtext>km h</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></math> manages to stop</p>
</div>

<div class="specification">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1000</mn></math> randomly selected bicycles are tested and their stopping distances when travelling&nbsp;at <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>20</mn><mo> </mo><msup><mtext>km h</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></math> are measured.</p>
</div>

<div class="specification">
<p>Find, correct to four significant figures, the expected number of bicycles tested that&nbsp;stop between</p>
</div>

<div class="specification">
<p>The measured stopping distances of the <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1000</mn></math> bicycles are given in the table.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>It is decided to perform a <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>χ</mi><mn>2</mn></msup></math> goodness of fit test at the <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo>%</mo></math> level of significance to decide&nbsp;whether the stopping distances of bicycles travelling at <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>20</mn><mo> </mo><msup><mtext>km h</mtext><mrow><mo>-</mo><mn>1</mn></mrow></msup></math> can be modelled by a&nbsp;normal distribution with mean <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>.</mo><mn>76</mn><mo> </mo><mtext>m</mtext></math> and standard deviation <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>12</mn><mo> </mo><mtext>m</mtext></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>in less than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>.</mo><mn>5</mn><mo> </mo><mtext>m</mtext></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>in more than&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>7</mn><mo> </mo><mtext>m</mtext></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>.</mo><mn>5</mn><mo> </mo><mtext>m</mtext></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>.</mo><mn>75</mn><mo> </mo><mtext>m</mtext></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>6</mn><mo>.</mo><mn>75</mn><mo> </mo><mtext>m</mtext></math>&nbsp;and&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>7</mn><mo> </mo><mtext>m</mtext></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the null and alternative hypotheses.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math>-value for the test.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the conclusion of the test. Give a reason for your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>The maximum temperature <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="T">
  <mi>T</mi>
</math></span>, in degrees Celsius, in a park on six randomly selected days is shown in the following table. The table also shows the number of visitors, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="N">
  <mi>N</mi>
</math></span>, to the park on each of those six days.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-14_om_17.34.22.png" alt="M17/5/MATME/SP2/ENG/TZ2/02"></p>
<p>The relationship between the variables can be modelled by the regression equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="N = aT + b">
  <mi>N</mi>
  <mo>=</mo>
  <mi>a</mi>
  <mi>T</mi>
  <mo>+</mo>
  <mi>b</mi>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
  <mi>a</mi>
</math></span> and of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
  <mi>b</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of&nbsp; <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
  <mi>r</mi>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the regression equation to estimate the number of visitors on a day when the maximum temperature is 15 °C.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A water container is made in the shape of a cylinder with internal height <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h">
  <mi>h</mi>
</math></span> cm and internal base radius <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
  <mi>r</mi>
</math></span> cm.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-03-07_om_08.31.01.png" alt="N16/5/MATSD/SP2/ENG/TZ0/06"></p>
<p>The water container has no top. The inner surfaces of the container are to be coated with a water-resistant material.</p>
</div>

<div class="specification">
<p>The volume of the water container is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0.5{\text{ }}{{\text{m}}^3}">
  <mn>0.5</mn>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>m</mtext>
      </mrow>
      <mn>3</mn>
    </msup>
  </mrow>
</math></span>.</p>
</div>

<div class="specification">
<p>The water container is designed so that the area to be coated is minimized.</p>
</div>

<div class="specification">
<p>One can of water-resistant material coats a surface area of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2000{\text{ c}}{{\text{m}}^2}">
  <mn>2000</mn>
  <mrow>
    <mtext>&nbsp;c</mtext>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>m</mtext>
      </mrow>
      <mn>2</mn>
    </msup>
  </mrow>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down a formula for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A"> <mi>A</mi> </math></span>, the surface area to be coated.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Express this volume in <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{c}}{{\text{m}}^3}"> <mrow> <mtext>c</mtext> </mrow> <mrow> <msup> <mrow> <mtext>m</mtext> </mrow> <mn>3</mn> </msup> </mrow> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down, in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r"> <mi>r</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h"> <mi>h</mi> </math></span>, an equation for the volume of this water container.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A = \pi {r^2} + \frac{{1\,000\,000}}{r}"> <mi>A</mi> <mo>=</mo> <mi>π</mi> <mrow> <msup> <mi>r</mi> <mn>2</mn> </msup> </mrow> <mo>+</mo> <mfrac> <mrow> <mn>1</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> <mspace width="thinmathspace"></mspace> <mn>000</mn> </mrow> <mi>r</mi> </mfrac> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{{\text{d}}A}}{{{\text{d}}r}}"> <mfrac> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>A</mi> </mrow> <mrow> <mrow> <mtext>d</mtext> </mrow> <mi>r</mi> </mrow> </mfrac> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using your answer to part (e), find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r"> <mi>r</mi> </math></span> which minimizes <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A"> <mi>A</mi> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of this minimum area.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the least number of cans of water-resistant material that will coat the area in part (g).</p>
<div class="marks">[3]</div>
<div class="question_part_label">h.</div>
</div>
<br><hr><br><div class="specification">
<p>A group of 66 people went on holiday to Hawaii. During their stay, three trips were arranged: a boat trip (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="B">
  <mi>B</mi>
</math></span>), a coach trip (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C">
  <mi>C</mi>
</math></span>) and a helicopter trip (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="H">
  <mi>H</mi>
</math></span>).</p>
<p>From this group of people:</p>
<table style="width: 691.333px;">
<tbody>
<tr>
<td style="width: 182px; text-align: right;">3&nbsp;</td>
<td style="width: 526.333px;">went on all three trips;</td>
</tr>
<tr>
<td style="width: 182px; text-align: right;">16&nbsp;</td>
<td style="width: 526.333px;">went on the coach trip <strong>only</strong>;</td>
</tr>
<tr>
<td style="width: 182px; text-align: right;">13&nbsp;</td>
<td style="width: 526.333px;">went on the boat trip <strong>only</strong>;</td>
</tr>
<tr>
<td style="width: 182px; text-align: right;">5&nbsp;</td>
<td style="width: 526.333px;">went on the helicopter trip <strong>only</strong>;</td>
</tr>
<tr>
<td style="width: 182px; text-align: right;"><em>x&nbsp;</em></td>
<td style="width: 526.333px;">went on the coach trip and the helicopter trip <strong>but not</strong> the boat trip;</td>
</tr>
<tr>
<td style="width: 182px; text-align: right;">2<em>x&nbsp;</em>
</td>
<td style="width: 526.333px;">went on the boat trip and the helicopter trip <strong>but not</strong> the coach trip;</td>
</tr>
<tr>
<td style="width: 182px; text-align: right;">4<em>x&nbsp;</em>
</td>
<td style="width: 526.333px;">went on the boat trip and the coach trip <strong>but not</strong> the helicopter trip;</td>
</tr>
<tr>
<td style="width: 182px; text-align: right;">8&nbsp;</td>
<td style="width: 526.333px;">did not go on any of the trips.</td>
</tr>
</tbody>
</table>
</div>

<div class="specification">
<p>One person in the group is selected at random.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw a Venn diagram to represent the given information, using sets labelled <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="B"> <mi>B</mi> </math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C"> <mi>C</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="H"> <mi>H</mi> </math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 3"> <mi>x</mi> <mo>=</mo> <mn>3</mn> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n(B \cap C)"> <mi>n</mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo>∩</mo> <mi>C</mi> <mo stretchy="false">)</mo> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that this person</p>
<p>(i)     went on at most one trip;</p>
<p>(ii)     went on the coach trip, given that this person also went on both the helicopter trip and the boat trip.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>As part of his mathematics exploration about classic books, Jason investigated the time taken by students in his school to read the book <em>The Old Man and the Sea</em>. He collected his data by stopping and asking students in the school corridor, until he reached his target of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn></math> students from <strong>each</strong> of the literature classes in his school.</p>
</div>

<div class="specification">
<p>Jason constructed the following box and whisker diagram to show the number of hours students in the sample took to read this book.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src="" width="458" height="149"></p>
<p style="text-align: center;">&nbsp;</p>
</div>

<div class="specification">
<p>Mackenzie, a member of the sample, took <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>25</mn></math> hours to read the novel. Jason believes Mackenzie’s time is not an outlier.</p>
</div>

<div class="specification">
<p>For each student interviewed, Jason recorded the time taken to read <em>The Old Man and the Sea</em> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mi>x</mi></mfenced></math>, measured in hours, and paired this with their percentage score on the final exam <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mi>y</mi></mfenced></math>. These data are represented on the scatter diagram.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>Jason correctly calculates the equation of the regression line <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> on <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> for these students to be</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mo>-</mo><mn>1</mn><mo>.</mo><mn>54</mn><mi>x</mi><mo>+</mo><mn>98</mn><mo>.</mo><mn>8</mn></math>.</p>
<p style="text-align: left;">He uses the equation to estimate the percentage score on the final exam for a student who&nbsp;read the book in <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>5</mn></math> hours.</p>
</div>

<div class="specification">
<p>Jason found a website that rated the ‘top <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>50</mn></math>’ classic books. He randomly chose eight of these&nbsp;classic books and recorded the number of pages. For example, Book <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>H</mtext></math> is rated <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>44</mn><mtext>th</mtext></math> and has&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mn>281</mn></math> pages. These data are shown in the table.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>Jason intends to analyse the data using Spearman’s rank correlation coefficient, <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>r</mi><mi>s</mi></msub></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State which of the two sampling methods, systematic or quota, Jason has used.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the median time to read the book.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the interquartile range.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine whether Jason is correct. Support your reasoning.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the correlation.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the percentage score calculated by Jason.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State whether it is valid to use the regression line <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math> on <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> for Jason’s estimate. Give a&nbsp;reason for your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Copy and complete the information in the following table.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">h.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>r</mi><mi>s</mi></msub></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">i.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Interpret your result.</p>
<div class="marks">[1]</div>
<div class="question_part_label">i.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Emlyn plays many games of basketball for his school team. The number of minutes he plays in each game follows a normal distribution with mean <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi></math> minutes.</p>
<p>In any game there is a <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>30</mn><mo> </mo><mo>%</mo></math> chance he will play less than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>13</mn><mo>.</mo><mn>6</mn><mo>&nbsp;</mo><mtext>minutes</mtext></math>.</p>
</div>

<div class="specification">
<p>In any game there is a <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>70</mn><mo> </mo><mo>%</mo></math> chance he will play less than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>17</mn><mo>.</mo><mn>8</mn><mo>&nbsp;</mo><mtext>minutes</mtext></math>.</p>
</div>

<div class="specification">
<p>The standard deviation of the number of minutes Emlyn plays in any game is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn></math>.</p>
</div>

<div class="specification">
<p>There is a <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>60</mn><mo> </mo><mo>%</mo></math> chance Emlyn plays less than <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> minutes in a game.</p>
</div>

<div class="specification">
<p>Emlyn will play in two basketball games today.</p>
</div>

<div class="specification">
<p>Emlyn and his teammate Johan each practise shooting the basketball multiple times from&nbsp;a point <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi></math>. A record of their performance over the weekend is shown in the table below.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>On Monday, Emlyn and Johan will practise and each will shoot <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>200</mn></math> times from point <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch a diagram to represent this information.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi><mo>=</mo><mn>15</mn><mo>.</mo><mn>7</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that Emlyn plays between <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>13</mn><mo> </mo><mtext>minutes</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>18</mn><mo> </mo><mtext>minutes</mtext></math> in a game.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that Emlyn plays more than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>20</mn><mo> </mo><mtext>minutes</mtext></math> in a game.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability he plays between <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>13</mn><mo> </mo><mtext>minutes</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>18</mn><mo> </mo><mtext>minutes</mtext></math> in one game and more than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>20</mn><mo> </mo><mtext>minutes</mtext></math> in the other game.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the expected number of successful shots Emlyn will make on Monday, based on the results from Saturday and Sunday.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Emlyn claims the results from Saturday and Sunday show that his expected number of successful shots will be more than Johan’s.</p>
<p>Determine if Emlyn’s claim is correct. Justify your reasoning.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p>A random variable <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
  <mi>X</mi>
</math></span> is normally distributed with mean, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mu ">
  <mi>μ<!-- μ --></mi>
</math></span>. In the following diagram, the shaded region between 9 and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mu ">
  <mi>μ<!-- μ --></mi>
</math></span> represents 30% of the distribution.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-14_om_10.15.49.png" alt="M17/5/MATME/SP2/ENG/TZ1/09"></p>
</div>

<div class="specification">
<p>The standard deviation of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
  <mi>X</mi>
</math></span> is 2.1.</p>
</div>

<div class="specification">
<p>The random variable <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="Y">
  <mi>Y</mi>
</math></span> is normally distributed with mean <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda ">
  <mi>λ<!-- λ --></mi>
</math></span> and standard deviation 3.5. The events <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X > 9">
  <mi>X</mi>
  <mo>&gt;</mo>
  <mn>9</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="Y > 9">
  <mi>Y</mi>
  <mo>&gt;</mo>
  <mn>9</mn>
</math></span> are independent, and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P\left( {(X > 9) \cap (Y > 9)} \right) = 0.4">
  <mi>P</mi>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mo stretchy="false">(</mo>
      <mi>X</mi>
      <mo>&gt;</mo>
      <mn>9</mn>
      <mo stretchy="false">)</mo>
      <mo>∩<!-- ∩ --></mo>
      <mo stretchy="false">(</mo>
      <mi>Y</mi>
      <mo>&gt;</mo>
      <mn>9</mn>
      <mo stretchy="false">)</mo>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mn>0.4</mn>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(X &lt; 9)">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo>&lt;</mo>
  <mn>9</mn>
  <mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mu ">
  <mi>μ</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda ">
  <mi>λ</mi>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="Y &gt; 9">
  <mi>Y</mi>
  <mo>&gt;</mo>
  <mn>9</mn>
</math></span>, find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(Y &lt; 13)">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>Y</mi>
  <mo>&lt;</mo>
  <mn>13</mn>
  <mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question">
<p>The heights of adult males in a country are normally distributed with a mean of 180 cm and a standard deviation of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sigma {\text{ cm}}">
  <mi>σ</mi>
  <mrow>
    <mtext> cm</mtext>
  </mrow>
</math></span>. 17% of these men are shorter than 168 cm. 80% of them have heights between <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(192 - h){\text{ cm}}">
  <mo stretchy="false">(</mo>
  <mn>192</mn>
  <mo>−</mo>
  <mi>h</mi>
  <mo stretchy="false">)</mo>
  <mrow>
    <mtext> cm</mtext>
  </mrow>
</math></span> and 192 cm.</p>
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="h">
  <mi>h</mi>
</math></span>.</p>
</div>
<br><hr><br><div class="specification">
<p>Arianne plays a game of darts.</p>
<p style="text-align: center;"><img src=""></p>
<p>The distance that her darts land from the centre, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math>, of the board can be modelled by a normal distribution with mean <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn><mo>&#8202;</mo><mtext>cm</mtext></math> and standard deviation <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mo>&#8202;</mo><mtext>cm</mtext></math>.</p>
</div>

<div class="specification">
<p>Find the probability that</p>
</div>

<div class="specification">
<p>Each of Arianne&rsquo;s throws is independent of her previous throws.</p>
</div>

<div class="specification">
<p>In a competition a player has three darts to throw on each turn. A point is scored if a player throws <strong>all</strong> three darts to land within a central area around <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math>. When Arianne throws a dart the probability that it lands within this area is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>8143</mn></math>.</p>
</div>

<div class="specification">
<p>In the competition Arianne has ten turns, each with three darts.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>a dart lands less than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>13</mn><mo> </mo><mtext>cm</mtext></math> from <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>a dart lands more than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>15</mn><mo> </mo><mtext>cm</mtext></math> from <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that Arianne throws two consecutive darts that land more than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>15</mn><mo> </mo><mtext>cm</mtext></math> from <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>O</mtext></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that Arianne does <strong>not</strong> score a point on a turn of three darts.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that Arianne scores at least <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn></math> points in the competition.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that Arianne scores at least <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn></math> points and less than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn></math> points.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that Arianne scores at least <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn></math> points, find the probability that Arianne scores less than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn></math> points.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>A group of 7 adult men wanted to see if there was a relationship between their Body Mass Index (BMI) and their waist size. Their waist sizes, in centimetres, were recorded and their BMI calculated. The following table shows the results.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">The relationship between <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span> can be modelled by the regression equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = ax + b">
  <mi>y</mi>
  <mo>=</mo>
  <mi>a</mi>
  <mi>x</mi>
  <mo>+</mo>
  <mi>b</mi>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
  <mi>a</mi>
</math></span> and of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
  <mi>b</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the correlation coefficient.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the regression equation to estimate the BMI of an adult man whose waist size is 95 cm.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Let&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = \frac{{16}}{x}">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mfrac>
    <mrow>
      <mn>16</mn>
    </mrow>
    <mi>x</mi>
  </mfrac>
</math></span>. The line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L">
  <mi>L</mi>
</math></span>&nbsp;is tangent to the graph of&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> at&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 8">
  <mi>x</mi>
  <mo>=</mo>
  <mn>8</mn>
</math></span>.</p>
</div>

<div class="specification">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L">
  <mi>L</mi>
</math></span> can be expressed in the form <em><strong>r</strong></em>&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext=" = \left( {\begin{array}{*{20}{c}}  8 \\   2  \end{array}} \right) + t">
  <mo>=</mo>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>8</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>2</mn>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
  <mo>+</mo>
  <mi>t</mi>
</math></span><em><strong>u</strong></em>.</p>
</div>

<div class="specification">
<p>The direction vector of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = x">
  <mi>y</mi>
  <mo>=</mo>
  <mi>x</mi>
</math></span> is&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}}  1 \\   1  \end{array}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>1</mn>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the gradient of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L"> <mi>L</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <em><strong>u</strong></em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the acute angle between <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = x"> <mi>y</mi> <mo>=</mo> <mi>x</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L"> <mi>L</mi> </math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {f \circ f} \right)\left( x \right)"> <mrow> <mo>(</mo> <mrow> <mi>f</mi> <mo>∘</mo> <mi>f</mi> </mrow> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, write down <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{f^{ - 1}}\left( x \right)"> <mrow> <msup> <mi>f</mi> <mrow> <mo>−</mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence or otherwise, find the obtuse angle formed by the tangent line to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span> at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 8"> <mi>x</mi> <mo>=</mo> <mn>8</mn> </math></span> and the tangent line to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span> at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 2"> <mi>x</mi> <mo>=</mo> <mn>2</mn> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>The weights, in grams, of oranges grown in an orchard, are normally distributed with a mean of 297 g. It is known that 79 % of the oranges weigh more than 289 g and 9.5 % of the oranges weigh more than 310 g.</p>
</div>

<div class="specification">
<p>The weights of the oranges have a standard deviation of σ.</p>
</div>

<div class="specification">
<p>The grocer at a local grocery store will buy the oranges whose weights exceed the&nbsp;35th percentile.</p>
</div>

<div class="specification">
<p>The orchard packs oranges in boxes of 36.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that an orange weighs between 289 g and 310 g.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the standardized value for 289 g.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, find the value of σ.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>To the nearest gram, find the minimum weight of an orange that the grocer will buy.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that the grocer buys more than half the oranges in a box&nbsp;selected at random.</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The grocer selects two boxes at random.</p>
<p>Find the probability that the grocer buys more than half the oranges in each box.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>The following table shows a probability distribution for the random variable <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
  <mi>X</mi>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{E}}(X) = 1.2">
  <mrow>
    <mtext>E</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mn>1.2</mn>
</math></span>.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-15_om_06.18.09.png" alt="M17/5/MATME/SP2/ENG/TZ2/10"></p>
</div>

<div class="specification">
<p>A bag contains white and blue marbles, with at least three of each colour. Three marbles are drawn from the bag, without replacement. The number of blue marbles drawn is given by the random variable <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
  <mi>X</mi>
</math></span>.</p>
</div>

<div class="specification">
<p>A game is played in which three marbles are drawn from the bag of ten marbles, without replacement. A player wins a prize if three white marbles are drawn.</p>
</div>

<div class="question">
<p>Jill plays the game nine times. Find the probability that she wins exactly two prizes.</p>
</div>
<br><hr><br><div class="specification">
<p>Ten students were surveyed about the number of hours, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>, they spent browsing the Internet during week 1 of the school year. The results of the survey are given below.</p>
<p><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="\sum\limits_{i = 1}^{10} {{x_i} = 252,{\text{ }}\sigma &nbsp;= 5{\text{ and median}} = 27.} ">
  <munderover>
    <mo movablelimits="false">∑<!-- ∑ --></mo>
    <mrow>
      <mi>i</mi>
      <mo>=</mo>
      <mn>1</mn>
    </mrow>
    <mrow>
      <mn>10</mn>
    </mrow>
  </munderover>
  <mrow>
    <mrow>
      <msub>
        <mi>x</mi>
        <mi>i</mi>
      </msub>
    </mrow>
    <mo>=</mo>
    <mn>252</mn>
    <mo>,</mo>
    <mrow>
      <mtext>&nbsp;</mtext>
    </mrow>
    <mi>σ<!-- σ --></mi>
    <mo>=</mo>
    <mn>5</mn>
    <mrow>
      <mtext>&nbsp;and median</mtext>
    </mrow>
    <mo>=</mo>
    <mn>27.</mn>
  </mrow>
</math></span></p>
</div>

<div class="specification">
<p>During week 4, the survey was extended to all 200 students in the school. The results are shown in the cumulative frequency graph:</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-03-03_om_16.35.16.png" alt="N16/5/MATME/SP2/ENG/TZ0/08.d"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the mean number of hours spent browsing the Internet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>During week 2, the students worked on a major project and they each spent an additional five hours browsing the Internet. For week 2, write down</p>
<p>(i)     the mean;</p>
<p>(ii)     the standard deviation.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>During week 3 each student spent 5% less time browsing the Internet than during week 1. For week 3, find</p>
<p>(i)     the median;</p>
<p>(ii)     the variance.</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i)     Find the number of students who spent between 25 and 30 hours browsing the Internet.</p>
<p>(ii)     Given that 10% of the students spent more than <em>k </em>hours browsing the Internet, find the maximum value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k"> <mi>k</mi> </math></span>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The following table shows the mean weight, <em>y</em> kg , of children who are <em>x</em> years old.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">The relationship between the variables is modelled by the regression line with equation&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = ax + b">
  <mi>y</mi>
  <mo>=</mo>
  <mi>a</mi>
  <mi>x</mi>
  <mo>+</mo>
  <mi>b</mi>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of<em> a</em> and of <em>b</em>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the correlation coefficient.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your equation to estimate the mean weight of a child that is 1.95 years old.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A healthy human body temperature is 37.0 °C. Eight people were medically examined and the difference in their body temperature (°C), from 37.0 °C, was recorded. Their heartbeat (beats per minute) was also recorded.</p>
<p><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down, for this set of data the mean temperature difference from 37 °C, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\bar x">
  <mrow>
    <mover>
      <mi>x</mi>
      <mo stretchy="false">¯</mo>
    </mover>
  </mrow>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down, for this set of data the mean number of heartbeats per minute, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\bar y">
  <mrow>
    <mover>
      <mi>y</mi>
      <mo stretchy="false">¯</mo>
    </mover>
  </mrow>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Plot and label the point M(<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\bar x">
  <mrow>
    <mover>
      <mi>x</mi>
      <mo stretchy="false">¯</mo>
    </mover>
  </mrow>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\bar y">
  <mrow>
    <mover>
      <mi>y</mi>
      <mo stretchy="false">¯</mo>
    </mover>
  </mrow>
</math></span>) on the scatter diagram.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your graphic display calculator to find the Pearson’s product–moment correlation coefficient, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
  <mi>r</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence describe the correlation between temperature difference from 37 °C and heartbeat.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the regression line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span> on <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> on the scatter diagram.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>A teacher is concerned about the amount of lesson time lost by <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn></math> students through arriving&nbsp;late at school. Over a period of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn></math> weeks he records the total number of minutes they are&nbsp;late. He also asks them how far they live from school. The results are shown in the table&nbsp;below.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question">
<p>Which of the correlation coefficients would you recommend is used to assess whether or not there is an association between total number of minutes late and distance from school? Fully justify your answer.</p>
</div>
<br><hr><br><div class="specification">
<p>Adam is a beekeeper who collected data about monthly honey production in his bee hives. The data for six of his hives is shown in the following table.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-02-12_om_10.46.13.png" alt="N17/5/MATME/SP2/ENG/TZ0/08"></p>
<p>The relationship between the variables is modelled by the regression line with equation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P = aN + b">
  <mi>P</mi>
  <mo>=</mo>
  <mi>a</mi>
  <mi>N</mi>
  <mo>+</mo>
  <mi>b</mi>
</math></span>.</p>
</div>

<div class="specification">
<p>Adam has 200 hives in total. He collects data on the monthly honey production of all the hives. This data is shown in the following cumulative frequency graph.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-02-12_om_10.49.33.png" alt="N17/5/MATME/SP2/ENG/TZ0/08.c.d.e"></p>
<p>Adam’s hives are labelled as low, regular or high production, as defined in the following table.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-02-12_om_10.51.25.png" alt="N17/5/MATME/SP2/ENG/TZ0/08.c.d.e_02"></p>
</div>

<div class="specification">
<p>Adam knows that 128 of his hives have a regular production.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
  <mi>a</mi>
</math></span> and of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
  <mi>b</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use this regression line to estimate the monthly honey production from a hive that has 270 bees.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the number of low production hives.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
  <mi>k</mi>
</math></span>;</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the number of hives that have a high production.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Adam decides to increase the number of bees in each low production hive. Research suggests that there is a probability of 0.75 that a low production hive becomes a regular production hive. Calculate the probability that 30 low production hives become regular production hives.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>The manager of a folder factory recorded the number of folders produced by the factory (in thousands) and the production costs (in thousand Euros), for six consecutive months.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-16_om_17.30.09.png" alt="M17/5/MATSD/SP2/ENG/TZ2/03"></p>
</div>

<div class="specification">
<p>Every month the factory sells all the folders produced. Each folder is sold for 2.99 Euros.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw a scatter diagram for this data. Use a scale of 2 cm for 5000 folders on the horizontal axis and 2 cm for 10 000 Euros on the vertical axis.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down, for this set of data the mean number of folders produced, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\bar x">
  <mrow>
    <mover>
      <mi>x</mi>
      <mo stretchy="false">¯</mo>
    </mover>
  </mrow>
</math></span>;</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down, for this set of data the mean production cost, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\bar C">
  <mrow>
    <mover>
      <mi>C</mi>
      <mo stretchy="false">¯</mo>
    </mover>
  </mrow>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Label the point <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{M}}(\bar x,{\text{ }}\bar C)">
  <mrow>
    <mtext>M</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mrow>
    <mover>
      <mi>x</mi>
      <mo stretchy="false">¯</mo>
    </mover>
  </mrow>
  <mo>,</mo>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mrow>
    <mover>
      <mi>C</mi>
      <mo stretchy="false">¯</mo>
    </mover>
  </mrow>
  <mo stretchy="false">)</mo>
</math></span> on the scatter diagram.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State a reason why the regression line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C">
  <mi>C</mi>
</math></span> on <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> is appropriate to model the relationship between these variables.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your graphic display calculator to find the equation of the regression line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C">
  <mi>C</mi>
</math></span> on <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the regression line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C">
  <mi>C</mi>
</math></span> on <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span> on the scatter diagram.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the equation of the regression line to estimate the least number of folders that the factory needs to sell in a month to exceed its production cost for that month.</p>
<div class="marks">[4]</div>
<div class="question_part_label">h.</div>
</div>
<br><hr><br><div class="specification">
<p>In a large university the probability that a student is left handed is 0.08. A sample of 150 students is randomly selected from the university. Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
  <mi>k</mi>
</math></span> be the expected number of left-handed students in this sample.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
  <mi>k</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, find the probability that exactly <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
  <mi>k</mi>
</math></span> students are left handed;</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, find the probability that fewer than <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
  <mi>k</mi>
</math></span> students are left handed.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Contestants in a TV gameshow try to get through three walls by passing through doors without falling into a trap. Contestants choose doors at random.<br>If they avoid a trap they progress to the next wall.<br>If a contestant falls into a trap they exit the game before the next contestant plays.<br>Contestants are not allowed to watch each other attempt the game.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">The first wall has four doors with a trap behind one door.</p>
<p style="text-align: left;">Ayako is a contestant.</p>
</div>

<div class="specification">
<p>Natsuko is the second contestant.</p>
</div>

<div class="specification">
<p>The second wall has five doors with a trap behind two of the doors.</p>
<p>The third wall has six doors with a trap behind three of the doors.</p>
<p>The following diagram shows the branches of a probability tree diagram for a contestant in the game.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the probability that Ayako avoids the trap in this wall.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that only one of Ayako and Natsuko falls into a trap while attempting to pass through a door <strong>in the first wall</strong>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><strong>Copy</strong> the probability tree diagram and write down the relevant probabilities along the branches.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A contestant is chosen at random. Find the probability that this contestant&nbsp;fell into a trap while attempting to pass through a door in the second wall.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A contestant is chosen at random. Find the probability that this contestant fell into a trap.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>120 contestants attempted this game.</p>
<p>Find the expected number of contestants who fell into a trap while attempting to pass through a door in the third wall.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>A manufacturer produces 1500 boxes of breakfast cereal every day.</p>
<p>The weights of these boxes are normally distributed with a mean of 502 grams and a standard deviation of 2 grams.</p>
</div>

<div class="specification">
<p>All boxes of cereal with a weight between 497.5 grams and 505 grams are sold. The manufacturer’s income from the sale of each box of cereal is $2.00.</p>
</div>

<div class="specification">
<p>The manufacturer recycles any box of cereal with a weight <strong>not </strong>between 497.5 grams and 505 grams. The manufacturer’s recycling cost is $0.16 per box.</p>
</div>

<div class="specification">
<p>A <strong>different </strong>manufacturer produces boxes of cereal with weights that are normally distributed with a mean of 350 grams and a standard deviation of 1.8 grams.</p>
<p>This manufacturer sells all boxes of cereal that are above a minimum weight, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="w">
  <mi>w</mi>
</math></span>.</p>
<p>They sell 97% of the cereal boxes produced.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw a diagram that shows this information.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) &nbsp; &nbsp; Find the probability that a box of cereal, chosen at random, is sold.</p>
<p>(ii) &nbsp; &nbsp; Calculate the manufacturer’s expected daily income from these sales.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the manufacturer’s expected daily recycling cost.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="w">
  <mi>w</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Jim writes a computer program to generate 500 values of a variable <em>Z</em>. He obtains the following table from his results.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>In this situation, state briefly what is meant by</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="indent2" style="margin-top:12.0pt;">Use a chi-squared goodness of fit test to investigate whether or not, at the 5 % level of significance, the N(0, 1) distribution can be used to model these results.</p>
<div class="marks">[12]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="indent2" style="margin-top:12.0pt;">a Type I error.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="indent2" style="margin-top:12.0pt;">a Type II error.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Casanova restaurant offers a set menu where a customer chooses <strong>one</strong> of the following meals: pasta, fish or shrimp.</p>
<p>The manager surveyed <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>150</mn></math> customers and recorded the customer’s age and chosen meal. The data is shown in the following table.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>A <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>χ</mi><mn>2</mn></msup></math> test was performed at the <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn><mo>%</mo></math> significance level. The critical value for this test is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>.</mo><mn>605</mn></math>.</p>
</div>

<div class="specification">
<p>Write down</p>
</div>

<div class="specification">
<p>A customer is selected at random.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>H</mtext><mn>0</mn></msub></math>, the null hypothesis for this test.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the number of degrees of freedom.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the expected number of children who chose shrimp is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>31</mn></math>, correct to two significant figures.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>χ</mi><mn>2</mn></msub></math> statistic.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math>-value.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the conclusion for this test. Give a reason for your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the probability that the customer is an adult.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the probability that the customer is an adult or that the customer chose shrimp.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that the customer is a child, calculate the probability that they chose pasta or fish.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>A nationwide study on reaction time is conducted on participants in two age groups. The participants in Group X are less than 40 years old. Their reaction times are normally distributed with mean 0.489 seconds and standard deviation 0.07 seconds.</p>
</div>

<div class="specification">
<p>The participants in Group Y are 40 years or older. Their reaction times are normally distributed with mean 0.592 seconds and standard deviation <em>σ</em> seconds.</p>
</div>

<div class="specification">
<p>In the study, 38 % of the participants are in Group X.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A randomly selected participant has a reaction time greater than 0.65 seconds. Find the probability that the participant is in Group X.</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Ten of the participants with reaction times greater than 0.65 are selected at random. Find the probability that at least two of them are in Group X.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>At Penna Airport the probability, P(<em>A</em>), that all passengers arrive on time for a flight is 0.70. The probability, P(<em>D</em>), that a flight departs on time is 0.85. The probability that all passengers arrive on time for a flight and it departs on time is 0.65.</p>
</div>

<div class="specification">
<p>The number of hours that pilots fly per week is normally distributed with a mean of 25 hours and a standard deviation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sigma ">
  <mi>σ<!-- σ --></mi>
</math></span>. 90 % of pilots fly less than 28 hours in a week.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that event <em>A</em> and event <em>D</em> are <strong>not</strong> independent.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {A \cap D'} \right)">
  <mrow>
    <mtext>P</mtext>
  </mrow>
  <mrow>
    <mo>(</mo>
    <mrow>
      <mi>A</mi>
      <mo>∩</mo>
      <msup>
        <mi>D</mi>
        <mo>′</mo>
      </msup>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p> Given that all passengers for a flight arrive on time, find the probability that the flight does <strong>not</strong> depart on time.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sigma ">
  <mi>σ</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>All flights have two pilots. Find the percentage of flights where <strong>both</strong> pilots flew more than 30 hours last week.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The following table shows the average body weight, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>, and the average weight of the brain, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span>, of seven species of mammal. Both measured in kilograms (kg).</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-16_om_10.57.27.png" alt="M17/5/MATSD/SP2/ENG/TZ1/01"></p>
</div>

<div class="specification">
<p>The average body weight of grey wolves is 36 kg.</p>
</div>

<div class="specification">
<p>In fact, the average weight of the brain of grey wolves is 0.120 kg.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the range of the average body weights for these seven species of mammal.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For the data from these seven species calculate <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
  <mi>r</mi>
</math></span>, the Pearson’s product–moment correlation coefficient;</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For the data from these seven species describe the correlation between the average body weight and the average weight of the brain.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the equation of the regression line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span> on <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>, in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = mx + c">
  <mi>y</mi>
  <mo>=</mo>
  <mi>m</mi>
  <mi>x</mi>
  <mo>+</mo>
  <mi>c</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your regression line to estimate the average weight of the brain of grey wolves.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the percentage error in your estimate in part (d).</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>A biased four-sided die is rolled. The following table gives the probability of each score.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of<em> k</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the expected value of the score.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The die is rolled 80 times. On how many rolls would you expect to obtain a three?</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The Malvern Aquatic Center hosted a 3 metre spring board diving event. The judges, Stan and&nbsp;Minsun awarded 8 competitors a score out of 10. The raw data is collated in the following table.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>The Commissioner for the event would like to find the Spearman’s rank correlation coefficient.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of the Pearson’s product–moment correlation coefficient, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
  <mi>r</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
  <mi>r</mi>
</math></span>, interpret the relationship between Stan’s score and Minsun’s score.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the equation of the regression line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
  <mi>y</mi>
</math></span> on <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
  <mi>x</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your regression equation from part (b) to estimate Minsun’s score when Stan awards a perfect 10.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State whether this estimate is reliable. Justify your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><strong>Copy</strong> and complete the information in the following table.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of the Spearman’s rank correlation coefficient, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{r_s}">
  <mrow>
    <msub>
      <mi>r</mi>
      <mi>s</mi>
    </msub>
  </mrow>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Comment on the result obtained for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{r_s}">
  <mrow>
    <msub>
      <mi>r</mi>
      <mi>s</mi>
    </msub>
  </mrow>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The Commissioner believes Minsun’s score for competitor G is too high and so decreases the score from 9.5 to 9.1.</p>
<p>Explain why the value of the Spearman’s rank correlation coefficient <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{r_s}">
  <mrow>
    <msub>
      <mi>r</mi>
      <mi>s</mi>
    </msub>
  </mrow>
</math></span> does not change.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>Lucy sells hot chocolate drinks at her snack bar and has noticed that she sells more&nbsp;hot chocolates on cooler days. On six different days, she records the maximum daily&nbsp;temperature, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math>, measured in degrees centigrade, and the number of hot chocolates sold, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>H</mi></math>.&nbsp;The results are shown in the following table.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The relationship between <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>H</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math> can be modelled by the regression line with&nbsp;equation&nbsp;<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>H</mi><mo>=</mo><mi>a</mi><mi>T</mi><mo>+</mo><mi>b</mi></math>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> and of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the correlation coefficient.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using the regression equation, estimate the number of hot chocolates that Lucy will sell on a day when the maximum temperature is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>12</mn><mo>°</mo><mtext>C</mtext></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The aircraft for a particular flight has <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>72</mn></math> seats. The airline&rsquo;s records show that historically for this flight only <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>90</mn><mo>%</mo></math> of the people who purchase a ticket arrive to board the flight. They assume this trend will continue and decide to sell extra tickets and hope that no more than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>72</mn></math> passengers will arrive.</p>
<p>The number of passengers that arrive to board this flight is assumed to follow a binomial distribution with a probability of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>9</mn></math>.</p>
</div>

<div class="specification">
<p>Each passenger pays <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>$</mo><mn>150</mn></math> for a ticket. If too many passengers arrive, then the airline will give <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>$</mo><mn>300</mn></math> in compensation to each passenger that cannot board.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The airline sells <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>74</mn></math> tickets for this flight. Find the probability that more than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>72</mn></math> passengers arrive to board the flight.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the expected number of passengers who will arrive to board the flight if <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>72</mn></math> tickets are sold.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the maximum number of tickets that could be sold if the expected number of passengers who arrive to board the flight must be less than or equal to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>72</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find, to the nearest integer, the expected increase or decrease in the money made by the airline if they decide to sell <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>74</mn></math> tickets rather than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>72</mn></math>.</p>
<div class="marks">[8]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The mass <em>M</em> of apples in grams is normally distributed with mean <em>μ</em>. The following table shows probabilities for values of <em>M</em>.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="specification">
<p>The apples are packed in bags of ten.</p>
<p>Any apples with a mass less than 95 g are classified as small.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <em>k</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <em>μ</em> = 106.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <em>P</em>(M &lt; 95) .</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that a bag of apples selected at random contains at most one small apple.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the expected number of bags in this crate that contain at most one small apple.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that at least 48 bags in this crate contain at most one small apple.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the function&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f\left( x \right) = {x^2}{{\text{e}}^{3x}}">
  <mi>f</mi>
  <mrow>
    <mo>(</mo>
    <mi>x</mi>
    <mo>)</mo>
  </mrow>
  <mo>=</mo>
  <mrow>
    <msup>
      <mi>x</mi>
      <mn>2</mn>
    </msup>
  </mrow>
  <mrow>
    <msup>
      <mrow>
        <mtext>e</mtext>
      </mrow>
      <mrow>
        <mn>3</mn>
        <mi>x</mi>
      </mrow>
    </msup>
  </mrow>
</math></span>,&nbsp;&nbsp;<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \in \mathbb{R}">
  <mi>x</mi>
  <mo>∈<!-- ∈ --></mo>
  <mrow>
    <mi mathvariant="double-struck">R</mi>
  </mrow>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f'\left( x \right)"> <msup> <mi>f</mi> <mo>′</mo> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span> has a horizontal tangent line at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 0"> <mi>x</mi> <mo>=</mo> <mn>0</mn> </math></span> and at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = a"> <mi>x</mi> <mo>=</mo> <mi>a</mi> </math></span>. Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The weights, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="W">
  <mi>W</mi>
</math></span>, of newborn babies in Australia are normally distributed with a mean 3.41 kg and standard deviation 0.57 kg. A newborn baby has a low birth weight if it weighs less than <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="w">
  <mi>w</mi>
</math></span> kg.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that 5.3% of newborn babies have a low birth weight, find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="w">
  <mi>w</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A newborn baby has a low birth weight.</p>
<p>Find the probability that the baby weighs at least 2.15 kg.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A discrete random variable <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi></math> has the following probability distribution.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math> which gives the largest value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>E</mtext><mfenced><mi>X</mi></mfenced></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, find the largest value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>E</mtext><mfenced><mi>X</mi></mfenced></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The following diagram shows the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = a\sin bx + c">
  <mi>f</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
  <mo>=</mo>
  <mi>a</mi>
  <mi>sin</mi>
  <mo>⁡<!-- ⁡ --></mo>
  <mi>b</mi>
  <mi>x</mi>
  <mo>+</mo>
  <mi>c</mi>
</math></span>, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 \leqslant x \leqslant 12">
  <mn>0</mn>
  <mo>⩽<!-- ⩽ --></mo>
  <mi>x</mi>
  <mo>⩽<!-- ⩽ --></mo>
  <mn>12</mn>
</math></span>.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-03-03_om_16.53.31.png" alt="N16/5/MATME/SP2/ENG/TZ0/10"></p>
<p style="text-align: center;">The graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> has a minimum point at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(3,{\text{ }}5)">
  <mo stretchy="false">(</mo>
  <mn>3</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>5</mn>
  <mo stretchy="false">)</mo>
</math></span> and a maximum point at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(9,{\text{ }}17)">
  <mo stretchy="false">(</mo>
  <mn>9</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>17</mn>
  <mo stretchy="false">)</mo>
</math></span>.</p>
</div>

<div class="specification">
<p>The graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
  <mi>g</mi>
</math></span> is obtained from the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
  <mi>f</mi>
</math></span> by a translation of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {\begin{array}{*{20}{c}} k \\ 0 \end{array}} \right)">
  <mrow>
    <mo>(</mo>
    <mrow>
      <mtable rowspacing="4pt" columnspacing="1em">
        <mtr>
          <mtd>
            <mi>k</mi>
          </mtd>
        </mtr>
        <mtr>
          <mtd>
            <mn>0</mn>
          </mtd>
        </mtr>
      </mtable>
    </mrow>
    <mo>)</mo>
  </mrow>
</math></span>. The maximum point on the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
  <mi>g</mi>
</math></span> has coordinates <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="(11.5,{\text{ }}17)">
  <mo stretchy="false">(</mo>
  <mn>11.5</mn>
  <mo>,</mo>
  <mrow>
    <mtext>&nbsp;</mtext>
  </mrow>
  <mn>17</mn>
  <mo stretchy="false">)</mo>
</math></span>.</p>
</div>

<div class="specification">
<p>The graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
  <mi>g</mi>
</math></span> changes from concave-up to concave-down when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = w">
  <mi>x</mi>
  <mo>=</mo>
  <mi>w</mi>
</math></span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i)     Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c">
  <mi>c</mi>
</math></span>.</p>
<p>(ii)     Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b = \frac{\pi }{6}">
  <mi>b</mi>
  <mo>=</mo>
  <mfrac>
    <mi>π</mi>
    <mn>6</mn>
  </mfrac>
</math></span>.</p>
<p>(iii)     Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
  <mi>a</mi>
</math></span>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i)     Write down the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
  <mi>k</mi>
</math></span>.</p>
<p>(ii)     Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g(x)">
  <mi>g</mi>
  <mo stretchy="false">(</mo>
  <mi>x</mi>
  <mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i)     Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="w">
  <mi>w</mi>
</math></span>.</p>
<p>(ii)     Hence or otherwise, find the maximum positive rate of change of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="g">
  <mi>g</mi>
</math></span>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A jar contains 5 red discs, 10 blue discs and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m">
  <mi>m</mi>
</math></span> green discs. A disc is selected at random and replaced. This process is performed four times.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the probability that the first disc selected is red.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
  <mi>X</mi>
</math></span> be the number of red discs selected. Find the smallest value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m">
  <mi>m</mi>
</math></span> for which <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{Var}}(X{\text{ }}) &lt; 0.6">
  <mrow>
    <mtext>Var</mtext>
  </mrow>
  <mo stretchy="false">(</mo>
  <mi>X</mi>
  <mrow>
    <mtext> </mtext>
  </mrow>
  <mo stretchy="false">)</mo>
  <mo>&lt;</mo>
  <mn>0.6</mn>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br>