File "HL-paper3.html"
Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Math AI/Topic 4/HL-paper3html
File size: 682.53 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 3</h2><div class="specification">
<p><em>This question explores methods to determine the area bounded by an unknown curve.</em></p>
<p>The curve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)">
<mi>y</mi>
<mo>=</mo>
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span> is shown in the graph, for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="0 \leqslant x \leqslant 4.4">
<mn>0</mn>
<mo>⩽<!-- ⩽ --></mo>
<mi>x</mi>
<mo>⩽<!-- ⩽ --></mo>
<mn>4.4</mn>
</math></span>.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">The curve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)">
<mi>y</mi>
<mo>=</mo>
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span> passes through the following points.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">It is required to find the area bounded by the curve, the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-axis, the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>-axis and the line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 4.4">
<mi>x</mi>
<mo>=</mo>
<mn>4.4</mn>
</math></span>.</p>
</div>
<div class="specification">
<p>One possible model for the curve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)">
<mi>y</mi>
<mo>=</mo>
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span> is a cubic function.</p>
</div>
<div class="specification">
<p>A second possible model for the curve <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = f\left( x \right)">
<mi>y</mi>
<mo>=</mo>
<mi>f</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span> is an exponential function, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = p{{\text{e}}^{qx}}">
<mi>y</mi>
<mo>=</mo>
<mi>p</mi>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mi>q</mi>
<mi>x</mi>
</mrow>
</msup>
</mrow>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p{\text{,}}\,\,q \in \mathbb{R}">
<mi>p</mi>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>q</mi>
<mo>∈<!-- ∈ --></mo>
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the trapezoidal rule to find an estimate for the area.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>With reference to the shape of the graph, explain whether your answer to part (a)(i) will be an over-estimate or an underestimate of the area.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use all the coordinates in the table to find the equation of the least squares cubic regression curve.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the coefficient of determination.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down an expression for the area enclosed by the cubic function, the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-axis, the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>-axis and the line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 4.4">
<mi>x</mi>
<mo>=</mo>
<mn>4.4</mn>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of this area.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ln}}\,y = qx + {\text{ln}}\,p">
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>y</mi>
<mo>=</mo>
<mi>q</mi>
<mi>x</mi>
<mo>+</mo>
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>p</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence explain how a straight line graph could be drawn using the coordinates in the table.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By finding the equation of a suitable regression line, show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p = 1.83">
<mi>p</mi>
<mo>=</mo>
<mn>1.83</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="q = 0.986">
<mi>q</mi>
<mo>=</mo>
<mn>0.986</mn>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the area enclosed by the exponential function, the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span>-axis, the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y">
<mi>y</mi>
</math></span>-axis and the line <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x = 4.4">
<mi>x</mi>
<mo>=</mo>
<mn>4.4</mn>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.iv.</div>
</div>
<br><hr><br><div class="specification">
<p><em>In this question you will explore possible models for the spread of an infectious disease</em></p>
<p>An infectious disease has begun spreading in a country. The National Disease Control Centre (NDCC) has compiled the following data after receiving alerts from hospitals.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">A graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n">
<mi>n</mi>
</math></span> against <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d">
<mi>d</mi>
</math></span> is shown below.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">The NDCC want to find a model to predict the total number of people infected, so they can plan for medicine and hospital facilities. After looking at the data, they think an exponential function in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n = a{b^d}">
<mi>n</mi>
<mo>=</mo>
<mi>a</mi>
<mrow>
<msup>
<mi>b</mi>
<mi>d</mi>
</msup>
</mrow>
</math></span> could be used as a model.</p>
</div>
<div class="specification">
<p>Use your answer to part (a) to predict</p>
</div>
<div class="specification">
<p>The NDCC want to verify the accuracy of these predictions. They decide to perform a <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\chi ^2}">
<mrow>
<msup>
<mi>χ<!-- χ --></mi>
<mn>2</mn>
</msup>
</mrow>
</math></span> goodness of fit test.</p>
</div>
<div class="specification">
<p>The predictions given by the model for the first five days are shown in the table.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>In fact, the first day when the total number of people infected is greater than 1000 is day 14, when a total of 1015 people are infected.</p>
</div>
<div class="specification">
<p>Based on this new data, the NDCC decide to try a logistic model in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n = \frac{L}{{1 + c{e^{ - kd}}}}">
<mi>n</mi>
<mo>=</mo>
<mfrac>
<mi>L</mi>
<mrow>
<mn>1</mn>
<mo>+</mo>
<mi>c</mi>
<mrow>
<msup>
<mi>e</mi>
<mrow>
<mo>−<!-- − --></mo>
<mi>k</mi>
<mi>d</mi>
</mrow>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span>.</p>
</div>
<div class="specification">
<p>Use the data from days 1–5, together with day 14, to find the value of</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use an exponential regression to find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span> and of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
<mi>b</mi>
</math></span>, correct to 4 decimal places.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the number of new people infected on day 6.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>the day when the total number of people infected will be greater than 1000.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your answer to part (a) to show that the model predicts 16.7 people will be infected on the first day.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the number of degrees of freedom is 2.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Perform a <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\chi ^2}">
<mrow>
<msup>
<mi>χ</mi>
<mn>2</mn>
</msup>
</mrow>
</math></span> goodness of fit test at the 5% significance level. You should clearly state your hypotheses, the p-value, and your conclusion.</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Give two reasons why the prediction in part (b)(ii) might be lower than 14.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="L">
<mi>L</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c">
<mi>c</mi>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
<mi>k</mi>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence predict the total number of people infected by this disease after several months.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the logistic model to find the day when the rate of increase of people infected is greatest.</p>
<div class="marks">[3]</div>
<div class="question_part_label">h.</div>
</div>
<br><hr><br><div class="specification">
<p>A smartphone’s battery life is defined as the number of hours a fully charged battery can be used before the smartphone stops working. A company claims that the battery life of a model of smartphone is, on average, 9.5 hours. To test this claim, an experiment is conducted on a random sample of 20 smartphones of this model. For each smartphone, the battery life, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
<mi>b</mi>
</math></span> hours, is measured and the sample mean, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\bar b}">
<mrow>
<mrow>
<mover>
<mi>b</mi>
<mo stretchy="false">¯<!-- ¯ --></mo>
</mover>
</mrow>
</mrow>
</math></span>, calculated. It can be assumed the battery lives are normally distributed with standard deviation 0.4 hours.</p>
</div>
<div class="specification">
<p>It is then found that this model of smartphone has an average battery life of 9.8 hours.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State suitable hypotheses for a two-tailed test.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the critical region for testing <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\bar b}">
<mrow>
<mrow>
<mover>
<mi>b</mi>
<mo stretchy="false">¯</mo>
</mover>
</mrow>
</mrow>
</math></span> at the 5 % significance level.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability of making a Type II error.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Another model of smartphone whose battery life may be assumed to be normally distributed with mean <em>μ</em> hours and standard deviation 1.2 hours is tested. A researcher measures the battery life of six of these smartphones and calculates a confidence interval of [10.2, 11.4] for <em>μ</em>.</p>
<p>Calculate the confidence level of this interval.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>This question will connect Markov chains and directed graphs.</p>
<p>Abi is playing a game that involves a fair coin with heads on one side and tails on the other, together with two tokens, one with a fish’s head on it and one with a fish’s tail on it. She starts off with no tokens and wishes to win them both. On each turn she tosses the coin, if she gets a head she can claim the fish’s head token, provided that she does not have it already and if she gets a tail she can claim the fish’s tail token, provided she does not have it already. There are 4 states to describe the tokens in her possession; A: no tokens, B: only a fish’s head token, C: only a fish’s tail token, D: both tokens. So for example if she is in state B and tosses a tail she moves to state D, whereas if she tosses a head she remains in state B.</p>
</div>
<div class="specification">
<p>After <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n">
<mi>n</mi>
</math></span> throws the probability vector, for the 4 states, is given by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\mathbf{v}}_n} = \left( {\begin{array}{*{20}{c}} {{a_n}} \\ {{b_n}} \\ {{c_n}} \\ {{d_n}} \end{array}} \right)">
<mrow>
<msub>
<mrow>
<mrow>
<mi mathvariant="bold">v</mi>
</mrow>
</mrow>
<mi>n</mi>
</msub>
</mrow>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mrow>
<mrow>
<msub>
<mi>a</mi>
<mi>n</mi>
</msub>
</mrow>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mrow>
<msub>
<mi>b</mi>
<mi>n</mi>
</msub>
</mrow>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mrow>
<msub>
<mi>c</mi>
<mi>n</mi>
</msub>
</mrow>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mrow>
<msub>
<mi>d</mi>
<mi>n</mi>
</msub>
</mrow>
</mrow>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
</math></span> where the numbers represent the probability of being in that particular state, e.g. <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{b_n}">
<mrow>
<msub>
<mi>b</mi>
<mi>n</mi>
</msub>
</mrow>
</math></span> is the probability of being in state B after <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n">
<mi>n</mi>
</math></span> throws. Initially <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\mathbf{v}}_0} = \left( {\begin{array}{*{20}{c}} 1 \\ 0 \\ 0 \\ 0 \end{array}} \right)">
<mrow>
<msub>
<mrow>
<mrow>
<mi mathvariant="bold">v</mi>
</mrow>
</mrow>
<mn>0</mn>
</msub>
</mrow>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mn>1</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>0</mn>
</mtd>
</mtr>
<mtr>
<mtd>
<mn>0</mn>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw a transition state diagram for this Markov chain problem.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why for any transition state diagram the sum of the out degrees of the directed edges from a vertex (state) must add up to +1.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the transition matrix <strong>M</strong>, for this Markov chain problem.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the steady state probability vector for this Markov chain problem.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain which part of the transition state diagram confirms this.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why having a steady state probability vector means that the matrix <strong>M</strong> must have an eigenvalue of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda = 1"> <mi>λ</mi> <mo>=</mo> <mn>1</mn> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\mathbf{v}}_1}{\text{,}}\,\,{{\mathbf{v}}_2}{\text{,}}\,\,{{\mathbf{v}}_3}{\text{,}}\,\,{{\mathbf{v}}_4}\,"> <mrow> <msub> <mrow> <mrow> <mi mathvariant="bold">v</mi> </mrow> </mrow> <mn>1</mn> </msub> </mrow> <mrow> <mtext>,</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <msub> <mrow> <mrow> <mi mathvariant="bold">v</mi> </mrow> </mrow> <mn>2</mn> </msub> </mrow> <mrow> <mtext>,</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <msub> <mrow> <mrow> <mi mathvariant="bold">v</mi> </mrow> </mrow> <mn>3</mn> </msub> </mrow> <mrow> <mtext>,</mtext> </mrow> <mspace width="thinmathspace"></mspace> <mspace width="thinmathspace"></mspace> <mrow> <msub> <mrow> <mrow> <mi mathvariant="bold">v</mi> </mrow> </mrow> <mn>4</mn> </msub> </mrow> <mspace width="thinmathspace"></mspace> </math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, deduce the form of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\mathbf{v}}_n}"> <mrow> <msub> <mrow> <mrow> <mi mathvariant="bold">v</mi> </mrow> </mrow> <mi>n</mi> </msub> </mrow> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain how your answer to part (f) fits with your answer to part (c).</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the minimum number of tosses of the coin that Abi will have to make to be at least 95% certain of having finished the game by reaching state C.</p>
<div class="marks">[4]</div>
<div class="question_part_label">h.</div>
</div>
<br><hr><br><div class="specification">
<p><strong>This question explores models for the height of water in a cylindrical container as water drains out.</strong></p>
<p><br>The diagram shows a cylindrical water container of height <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn><mo>.</mo><mn>2</mn></math> metres and base radius <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math> metre. At the base of the container is a small circular valve, which enables water to drain out.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">Eva closes the valve and fills the container with water.</p>
<p style="text-align: left;">At time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn></math>, Eva opens the valve. She records the height, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math> metres, of water remaining in the container every <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn></math> minutes.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">Eva first tries to model the height using a linear function, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mi>a</mi><mi>t</mi><mo>+</mo><mi>b</mi></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>,</mo><mo> </mo><mi>b</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>.</p>
</div>
<div class="specification">
<p>Eva uses the equation of the regression line of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math> on <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>, to predict the time it will take for all the water to drain out of the container.</p>
</div>
<div class="specification">
<p>Eva thinks she can improve her model by using a quadratic function, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>=</mo><mi>p</mi><msup><mi>t</mi><mn>2</mn></msup><mo>+</mo><mi>q</mi><mi>t</mi><mo>+</mo><mi>r</mi></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi><mo>,</mo><mo> </mo><mi>q</mi><mo>,</mo><mo> </mo><mi>r</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>.</p>
</div>
<div class="specification">
<p>Eva uses this equation to predict the time it will take for all the water to drain out of the container and obtains an answer of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math> minutes.</p>
</div>
<div class="specification">
<p>Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi></math> be the volume, in cubic metres, of water in the container at time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> minutes.<br>Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>R</mi></math> be the radius, in metres, of the circular valve.</p>
<p>Eva does some research and discovers a formula for the rate of change of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>V</mi></math>.</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>V</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mo>-</mo><mi>π</mi><msup><mi>R</mi><mn>2</mn></msup><msqrt><mn>70</mn><mo> </mo><mn>560</mn><mi>h</mi></msqrt></math></p>
</div>
<div class="specification">
<p>Eva measures the radius of the valve to be <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>023</mn></math> metres. Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math> be the time, in minutes, it takes for all the water to drain out of the container.</p>
</div>
<div class="specification">
<p>Eva wants to use the container as a timer. She adjusts the initial height of water in the container so that all the water will drain out of the container in <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>15</mn></math> minutes.</p>
</div>
<div class="specification">
<p>Eva has another water container that is identical to the first one. She places one water container above the other one, so that all the water from the highest container will drain into the lowest container. Eva completely fills the highest container, but only fills the lowest container to a height of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math> metre, as shown in the diagram.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>At time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>0</mn></math> Eva opens both valves. Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>H</mi></math> be the height of water, in metres, in the lowest container at time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of the regression line of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi></math> on <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Interpret the meaning of parameter <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> in the context of the model.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why Eva’s use of the linear regression equation in this way could be unreliable.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of the least squares quadratic regression curve.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, write down a suitable domain for Eva’s function <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mfenced><mi>t</mi></mfenced><mo>=</mo><mi>p</mi><msup><mi>t</mi><mn>2</mn></msup><mo>+</mo><mi>q</mi><mi>t</mi><mo>+</mo><mi>r</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>h</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mo>-</mo><msup><mi>R</mi><mn>2</mn></msup><msqrt><mn>70</mn><mo> </mo><mn>560</mn><mi>h</mi></msqrt></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By solving the differential equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>h</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>=</mo><mo>-</mo><msup><mi>R</mi><mn>2</mn></msup><msqrt><mn>70</mn><mo> </mo><mn>560</mn><mi>h</mi></msqrt></math>, show that the general solution is given by <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>=</mo><mn>17</mn><mo> </mo><mn>640</mn><msup><mfenced><mrow><mi>c</mi><mo>-</mo><msup><mi>R</mi><mn>2</mn></msup><mi>t</mi></mrow></mfenced><mn>2</mn></msup></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the general solution from part (d) and the initial condition <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>h</mi><mo>(</mo><mn>0</mn><mo>)</mo><mo>=</mo><mn>3</mn><mo>.</mo><mn>2</mn></math> to predict the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>T</mi></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find this new height.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mo>d</mo><mi>H</mi></mrow><mrow><mo>d</mo><mi>t</mi></mrow></mfrac><mo>≈</mo><mn>0</mn><mo>.</mo><mn>2514</mn><mo>-</mo><mn>0</mn><mo>.</mo><mn>009873</mn><mi>t</mi><mo>-</mo><mn>0</mn><mo>.</mo><mn>1405</mn><msqrt><mi>H</mi></msqrt></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>≤</mo><mi>t</mi><mo>≤</mo><mi>T</mi></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">g.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use Euler’s method with a step length of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>5</mn></math> minutes to estimate the maximum value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>H</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">g.ii.</div>
</div>
<br><hr><br><div class="specification">
<p><strong>This question uses statistical tests to investigate whether advertising leads to increased profits for a grocery store.</strong></p>
<p><br>Aimmika is the manager of a grocery store in Nong Khai. She is carrying out a statistical analysis on the number of bags of rice that are sold in the store each day. She collects the following sample data by recording how many bags of rice the store sells each day over a period of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>90</mn></math> days.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>She believes that her data follows a Poisson distribution.</p>
</div>
<div class="specification">
<p>Aimmika knows from her historic sales records that the store sells an average of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>.</mo><mn>2</mn></math> bags of rice each day. The following table shows the expected frequency of bags of rice sold each day during the <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>90</mn></math> day period, assuming a Poisson distribution with mean <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>.</mo><mn>2</mn></math>.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
</div>
<div class="specification">
<p>Aimmika decides to carry out a <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>χ</mi><mn>2</mn></msup></math> goodness of fit test at the <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo>%</mo></math> significance level to see whether the data follows a Poisson distribution with mean <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>.</mo><mn>2</mn></math>.</p>
</div>
<div class="specification">
<p>Aimmika claims that advertising in a local newspaper for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>300</mn></math> Thai Baht <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>(THB)</mtext></math> per day will increase the number of bags of rice sold. However, Nichakarn, the owner of the store, claims that the advertising will <strong>not</strong> increase the store’s overall profit.</p>
<p>Nichakarn agrees to advertise in the newspaper for the next <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>60</mn></math> days. During that time, Aimmika records that the store sells <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>282</mn></math> bags of rice with a profit of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>495</mn><mo> </mo><mtext>THB</mtext></math> on each bag sold.</p>
</div>
<div class="specification">
<p>Aimmika wants to carry out an appropriate hypothesis test to determine whether the number of bags of rice sold during the <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>60</mn></math> days increased when compared with the historic sales records.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the mean and variance for the sample data given in the table.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence state why Aimmika believes her data follows a Poisson distribution.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State one assumption that Aimmika needs to make about the sales of bags of rice to support her belief that it follows a Poisson distribution.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>, of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>, and of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math>. Give your answers to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn></math> decimal places.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the number of degrees of freedom for her test.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Perform the <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>χ</mi><mn>2</mn></msup></math> goodness of fit test and state, with reason, a conclusion.</p>
<div class="marks">[7]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By finding a critical value, perform this test at a <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo> </mo><mo>%</mo></math> significance level.</p>
<div class="marks">[6]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence state the probability of a Type I error for this test.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By considering the claims of both Aimmika and Nichakarn, explain whether the advertising was beneficial to the store.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p><em>This question explores methods to analyse the scores in an exam.</em></p>
<p>A random sample of 149 scores for a university exam are given in the table.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>The university wants to know if the scores follow a normal distribution, with the mean and variance found in part (a).</p>
</div>
<div class="specification">
<p>The expected frequencies are given in the table.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>The university assigns a pass grade to students whose scores are in the top 80%.</p>
</div>
<div class="specification">
<p>The university also wants to know if the exam is gender neutral. They obtain random samples of scores for male and female students. The mean, sample variance and sample size are shown in the table.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>The university awards a distinction to students who achieve high scores in the exam. Typically, 15% of students achieve a distinction. A new exam is trialed with a random selection of students on the course. 5 out of 20 students achieve a distinction.</p>
</div>
<div class="specification">
<p>A different exam is trialed with 16 students. Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
<mi>p</mi>
</math></span> be the percentage of students achieving a distinction. It is desired to test the hypotheses</p>
<p style="text-align: center;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{H_0}\,{\text{:}}\,p = 0.15">
<mrow>
<msub>
<mi>H</mi>
<mn>0</mn>
</msub>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>:</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>p</mi>
<mo>=</mo>
<mn>0.15</mn>
</math></span> against <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{H_1}\,{\text{:}}\,p > 0.15">
<mrow>
<msub>
<mi>H</mi>
<mn>1</mn>
</msub>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>:</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>p</mi>
<mo>></mo>
<mn>0.15</mn>
</math></span></p>
<p>It is decided to reject the null hypothesis if the number of students achieving a distinction is greater than 3.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find unbiased estimates for the population mean.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find unbiased estimates for the population Variance.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the expected frequency for 20 < <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> ≤ 4 is 31.5 correct to 1 decimal place.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Perform a suitable test, at the 5% significance level, to determine if the scores follow a normal distribution, with the mean and variance found in part (a). You should clearly state your hypotheses, the degrees of freedom, the<em> p</em>-value and your conclusion.</p>
<div class="marks">[8]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the normal distribution model to find the score required to pass.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Perform a suitable test, at the 5% significance level, to determine if there is a difference between the mean scores of males and females. You should clearly state your hypotheses, the<em> p</em>-value and your conclusion.</p>
<div class="marks">[6]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Perform a suitable test, at the 5% significance level, to determine if it is easier to achieve a distinction on the new exam. You should clearly state your hypotheses, the critical region and your conclusion.</p>
<div class="marks">[6]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability of making a Type I error.</p>
<div class="marks">[3]</div>
<div class="question_part_label">g.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p = 0.2">
<mi>p</mi>
<mo>=</mo>
<mn>0.2</mn>
</math></span> find the probability of making a Type II error.</p>
<div class="marks">[3]</div>
<div class="question_part_label">g.ii.</div>
</div>
<br><hr><br><div class="specification">
<p><strong>Juliet is a sociologist who wants to investigate if income affects happiness amongst doctors. This question asks you to review Juliet’s methods and conclusions.</strong></p>
<p>Juliet obtained a list of email addresses of doctors who work in her city. She contacted them and asked them to fill in an anonymous questionnaire. Participants were asked to state their annual income and to respond to a set of questions. The responses were used to determine <em>a happiness score</em> out of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>100</mn></math>. Of the <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>415</mn></math> doctors on the list, <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>11</mn></math> replied.</p>
</div>
<div class="specification">
<p>Juliet’s results are summarized in the following table.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>For the remaining ten responses in the table, Juliet calculates the mean happiness score to be <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>52</mn><mo>.</mo><mn>5</mn></math>.</p>
</div>
<div class="specification">
<p>Juliet decides to carry out a hypothesis test on the correlation coefficient to investigate whether increased annual income is associated with greater happiness.</p>
</div>
<div class="specification">
<p>Juliet wants to create a model to predict how changing annual income might affect happiness scores. To do this, she assumes that annual income in dollars, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi></math>, is the independent variable and the happiness score, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Y</mi></math>, is the dependent variable.</p>
<p>She first considers a linear model of the form</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Y</mi><mo>=</mo><mi>a</mi><mi>X</mi><mo>+</mo><mi>b</mi></math>.</p>
</div>
<div class="specification">
<p>Juliet then considers a quadratic model of the form</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Y</mi><mo>=</mo><mi>c</mi><msup><mi>X</mi><mn>2</mn></msup><mo>+</mo><mi>d</mi><mi>X</mi><mo>+</mo><mi>e</mi></math>.</p>
</div>
<div class="specification">
<p>After presenting the results of her investigation, a colleague questions whether Juliet’s sample is representative of all doctors in the city.</p>
<p>A report states that the mean annual income of doctors in the city is <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>$</mo><mn>80</mn><mo> </mo><mn>000</mn></math>. Juliet decides to carry out a test to determine whether her sample could realistically be taken from a population with a mean of <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>$</mo><mn>80</mn><mo> </mo><mn>000</mn></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe <strong>one</strong> way in which Juliet could improve the reliability of her investigation.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe <strong>one</strong> criticism that can be made about the validity of Juliet’s investigation.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Juliet classifies response <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>K</mtext></math> as an outlier and removes it from the data. Suggest <strong>one </strong>possible justification for her decision to remove it.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the mean <strong>annual income</strong> for these remaining responses.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math>, Pearson’s product-moment correlation coefficient, for these remaining responses.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State why the hypothesis test should be one-tailed.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the null and alternative hypotheses for this test.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The critical value for this test, at the <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo>%</mo></math> significance level, is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>549</mn></math>. Juliet assumes that the population is bivariate normal.</p>
<p>Determine whether there is significant evidence of a positive correlation between annual income and happiness. Justify your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use Juliet’s data to find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> and of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Interpret, referring to income and happiness, what the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> represents.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi></math>, of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math> and of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the coefficient of determination for each of the two models she considers.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence compare the two models.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.v.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Juliet decides to use the coefficient of determination to choose between these two models.</p>
<p>Comment on the validity of her decision.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.vi.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the name of the test which Juliet should use.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the null and alternative hypotheses for this test.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Perform the test, using a <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo>%</mo></math> significance level, and state your conclusion in context.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>A random variable <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
<mi>X</mi>
</math></span> has a distribution with mean <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mu ">
<mi>μ<!-- μ --></mi>
</math></span> and variance 4. A random sample of size 100 is to be taken from the distribution of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
<mi>X</mi>
</math></span>.</p>
</div>
<div class="specification">
<p>Josie takes a different random sample of size 100 to test the null hypothesis that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mu = 60">
<mi>μ<!-- μ --></mi>
<mo>=</mo>
<mn>60</mn>
</math></span> against the alternative hypothesis that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mu > 60">
<mi>μ<!-- μ --></mi>
<mo>></mo>
<mn>60</mn>
</math></span> at the 5 % level.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the central limit theorem as applied to a random sample of size <span class="mjpage"><math alttext="n" xmlns="http://www.w3.org/1998/Math/MathML"> <mi>n</mi> </math></span>, taken from a distribution with mean <span class="mjpage"><math alttext="\mu " xmlns="http://www.w3.org/1998/Math/MathML"> <mi>μ</mi> </math></span> and variance <span class="mjpage"><math alttext="{\sigma ^2}" xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <msup> <mi>σ</mi> <mn>2</mn> </msup> </mrow> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Jack takes a random sample of size 100 and calculates that <span class="mjpage"><math alttext="\bar x = 60.2" xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <mover> <mi>x</mi> <mo stretchy="false">¯</mo> </mover> </mrow> <mo>=</mo> <mn>60.2</mn> </math></span>. Find an approximate 90 % confidence interval for <span class="mjpage"><math alttext="\mu " xmlns="http://www.w3.org/1998/Math/MathML"> <mi>μ</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the critical region for Josie’s test, giving your answer correct to two decimal places.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the probability that Josie makes a Type I error.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that the probability that Josie makes a Type II error is 0.25, find the value of <span class="mjpage"><math alttext="\mu " xmlns="http://www.w3.org/1998/Math/MathML"> <mi>μ</mi> </math></span>, giving your answer correct to three significant figures.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.iii.</div>
</div>
<br><hr><br><div class="specification">
<p><strong>A firm wishes to review its recruitment processes. This question considers the validity and reliability of the methods used.</strong></p>
<p>Every year an accountancy firm recruits new employees for a trial period of one year from a large group of applicants.</p>
<p>At the start, all applicants are interviewed and given a rating. Those with a rating of either <em>Excellent</em>, <em>Very good</em> or <em>Good</em> are recruited for the trial period. At the end of this period, some of the new employees will stay with the firm.</p>
<p>It is decided to test how valid the interview rating is as a way of predicting which of the new employees will stay with the firm.</p>
<p>Data is collected and recorded in a contingency table.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>The next year’s group of applicants are asked to complete a written assessment which is then analysed. From those recruited as new employees, a random sample of size <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>18</mn></math> is selected.</p>
<p>The sample is stratified by department. Of the <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>91</mn></math> new employees recruited that year, <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>55</mn></math> were placed in the national department and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>36</mn></math> in the international department.</p>
</div>
<div class="specification">
<p>At the end of their first year, the level of performance of each of the <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>18</mn></math> employees in the sample is assessed by their department manager. They are awarded a score between <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math> (low performance) and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn></math> (high performance).</p>
<p>The marks in the written assessment and the scores given by the managers are shown in both the table and the scatter diagram.</p>
<p style="text-align: center;"><img src=""></p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The firm decides to find a Spearman’s rank correlation coefficient, <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>r</mi><mi>s</mi></msub></math>, for this data.</p>
</div>
<div class="specification">
<p>The same seven employees are given the written assessment a second time, at the end of the first year, to measure its reliability. Their marks are shown in the table below.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>The written assessment is in five sections, numbered <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn></math>. At the end of the year, the employees are also given a score for each of five professional attributes: <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>V</mtext><mo>,</mo><mo> </mo><mtext>W</mtext><mo>,</mo><mo> </mo><mtext>X</mtext><mo>,</mo><mo> </mo><mtext>Y</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Z</mtext></math>.</p>
<p>The firm decides to test the hypothesis that there is a correlation between the mark in a section and the score for an attribute.</p>
<p>They compare marks in <strong>each</strong> of the sections with scores for <strong>each</strong> of the attributes.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use an appropriate test, at the <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo>%</mo></math> significance level, to determine whether a new employee staying with the firm is independent of their interview rating. State the null and alternative hypotheses, the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math>-value and the conclusion of the test.</p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>11</mn></math> employees are selected for the sample from the national department.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Without calculation, explain why it might not be appropriate to calculate a correlation coefficient for the whole sample of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>18</mn></math> employees.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>r</mi><mi>s</mi></msub></math> for the seven employees working in the <strong>international</strong> department.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence comment on the validity of the written assessment as a measure of the level of performance of employees in this department. Justify your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the name of this type of test for reliability.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For the data in this table, test the null hypothesis, <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>H</mtext><mn>0</mn></msub><mo>:</mo><mi>ρ</mi><mo>=</mo><mn>0</mn></math>, against the alternative hypothesis, <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>H</mtext><mn>1</mn></msub><mo>:</mo><mi>ρ</mi><mo>></mo><mn>0</mn></math>, at the <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo>%</mo></math> significance level. You may assume that all the requirements for carrying out the test have been met.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence comment on the reliability of the written assessment.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the number of tests they carry out.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The tests are performed at the <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo>%</mo></math> significance level.<br><br>Assuming that:</p>
<ul>
<li>there is no correlation between the marks in any of the sections and scores in any of the attributes,</li>
<li>the outcome of each hypothesis test is independent of the outcome of the other hypothesis tests,</li>
</ul>
<p>find the probability that at least one of the tests will be significant.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The firm obtains a significant result when comparing section <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn></math> of the written assessment and attribute <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>X</mtext></math>. Interpret this result.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>The random variables <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="U,{\text{ }}V">
<mi>U</mi>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>V</mi>
</math></span> follow a bivariate normal distribution with product moment correlation coefficient <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\rho ">
<mi>ρ<!-- ρ --></mi>
</math></span>.</p>
</div>
<div class="specification">
<p>A random sample of 12 observations on <em>U</em>, <em>V</em> is obtained to determine whether there is a correlation between <em>U and</em> <em>V</em>. The sample product moment correlation coefficient is denoted by <em>r</em>. A test to determine whether or not <em>U</em>, <em>V</em> are independent is carried out at the 1% level of significance.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State suitable hypotheses to investigate whether or not <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="U">
<mi>U</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="V">
<mi>V</mi>
</math></span> are independent.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the least value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="|r|">
<mrow>
<mo stretchy="false">|</mo>
</mrow>
<mi>r</mi>
<mrow>
<mo stretchy="false">|</mo>
</mrow>
</math></span> for which the test concludes that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\rho \ne 0">
<mi>ρ</mi>
<mo>≠</mo>
<mn>0</mn>
</math></span>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A farmer sells bags of potatoes which he states have a mean weight of 7 kg . An inspector, however, claims that the mean weight is less than 7 kg . In order to test this claim, the inspector takes a random sample of 12 of these bags and determines the weight, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> kg , of each bag. He finds that <span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="\sum {x = 83.64;{\text{ }}\sum {{x^2} = 583.05.} } ">
<mo>∑<!-- ∑ --></mo>
<mrow>
<mi>x</mi>
<mo>=</mo>
<mn>83.64</mn>
<mo>;</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mo>∑<!-- ∑ --></mo>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mn>583.05.</mn>
</mrow>
</mrow>
</math></span> You may assume that the weights of the bags of potatoes can be modelled by the normal distribution <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{N}}(\mu ,{\text{ }}{\sigma ^2})">
<mrow>
<mtext>N</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>μ<!-- μ --></mi>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<msup>
<mi>σ<!-- σ --></mi>
<mn>2</mn>
</msup>
</mrow>
<mo stretchy="false">)</mo>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State suitable hypotheses to test the inspector’s claim.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find unbiased estimates of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mu ">
<mi>μ</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\sigma ^2}">
<mrow>
<msup>
<mi>σ</mi>
<mn>2</mn>
</msup>
</mrow>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Carry out an appropriate test and state the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
<mi>p</mi>
</math></span>-value obtained.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using a 10% significance level and justifying your answer, state your conclusion in context.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Two IB schools, A and B, follow the IB Diploma Programme but have different teaching methods. A research group tested whether the different teaching methods lead to a similar final result.</p>
<p>For the test, a group of eight students were randomly selected from each school. Both samples were given a standardized test at the start of the course and a prediction for total IB points was made based on that test; this was then compared to their points total at the end of the course.</p>
<p>Previous results indicate that both the predictions from the standardized tests and the final IB points can be modelled by a normal distribution.</p>
<p>It can be assumed that:</p>
<ul>
<li>the standardized test is a valid method for predicting the final IB points</li>
<li>that variations from the prediction can be explained through the circumstances of the student or school.</li>
</ul>
</div>
<div class="specification">
<p>The data for school A is shown in the following table.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>For each student, the change from the predicted points to the final points <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {f - p} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mi>f</mi>
<mo>−<!-- − --></mo>
<mi>p</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span> was calculated.</p>
</div>
<div class="specification">
<p>The data for school B is shown in the following table.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>School A also gives each student a score for effort in each subject. This effort score is based on a scale of 1 to 5 where 5 is regarded as outstanding effort.</p>
<p style="text-align: center;"><img src=""></p>
<p>It is claimed that the effort put in by a student is an important factor in improving upon their predicted IB points.</p>
</div>
<div class="specification">
<p>A mathematics teacher in school A claims that the comparison between the two schools is not valid because the sample for school B contained mainly girls and that for school A, mainly boys. She believes that girls are likely to show a greater improvement from their predicted points to their final points.</p>
<p>She collects more data from other schools, asking them to class their results into four categories as shown in the following table.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify a test that might have been used to verify the null hypothesis that the predictions from the standardized test can be modelled by a normal distribution.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State why comparing only the final IB points of the students from the two schools would not be a valid test for the effectiveness of the two different teaching methods.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the mean change.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the standard deviation of the changes.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use a paired <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span>-test to determine whether there is significant evidence that the students in school A have improved their IB points since the start of the course.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use an appropriate test to determine whether there is evidence, at the 5 % significance level, that the students in school B have improved more than those in school A.</p>
<div class="marks">[5]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State why it was important to test that both sets of points were normally distributed.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Perform a test on the data from school A to show it is reasonable to assume a linear relationship between effort scores and improvements in IB points. You may assume effort scores follow a normal distribution.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, find the expected improvement between predicted and final points for an increase of one unit in effort grades, giving your answer to one decimal place.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use an appropriate test to determine whether showing an improvement is independent of gender.</p>
<div class="marks">[6]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>If you were to repeat the test performed in part (e) intending to compare the quality of the teaching between the two schools, suggest <strong>two</strong> ways in which you might choose your sample to improve the validity of the test.</p>
<div class="marks">[2]</div>
<div class="question_part_label">h.</div>
</div>
<br><hr><br><div class="specification">
<p>The weights, <em>X</em> kg, of the males of a species of bird may be assumed to be normally distributed with mean 4.8 kg and standard deviation 0.2 kg.</p>
</div>
<div class="specification">
<p>The weights, <em>Y</em> kg, of female birds of the same species may be assumed to be normally distributed with mean 2.7 kg and standard deviation 0.15 kg.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that a randomly chosen male bird weighs between 4.75 kg and 4.85 kg.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that the weight of a randomly chosen male bird is more than twice the weight of a randomly chosen female bird.</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Two randomly chosen male birds and three randomly chosen female birds are placed on a weighing machine that has a weight limit of 18 kg. Find the probability that the total weight of these five birds is greater than the weight limit.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Mr Sailor owns a fish farm and he claims that the weights of the fish in one of his lakes have a mean of 550 grams and standard deviation of 8 grams.</p>
<p>Assume that the weights of the fish are normally distributed and that Mr Sailor’s claim is true.</p>
</div>
<div class="specification">
<p>Kathy is suspicious of Mr Sailor’s claim about the mean and standard deviation of the weights of the fish. She collects a random sample of fish from this lake whose weights are shown in the following table.</p>
<p><img src=""></p>
<p>Using these data, test at the 5% significance level the null hypothesis <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{H_0}\,{\text{:}}\,\mu = 550">
<mrow>
<msub>
<mi>H</mi>
<mn>0</mn>
</msub>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>:</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>μ<!-- μ --></mi>
<mo>=</mo>
<mn>550</mn>
</math></span> against the alternative hypothesis <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{H_1}\,{\text{:}}\,\mu < 550">
<mrow>
<msub>
<mi>H</mi>
<mn>1</mn>
</msub>
</mrow>
<mspace width="thinmathspace"></mspace>
<mrow>
<mtext>:</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>μ<!-- μ --></mi>
<mo><</mo>
<mn>550</mn>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mu ">
<mi>μ<!-- μ --></mi>
</math></span> grams is the population mean weight.</p>
</div>
<div class="specification">
<p>Kathy decides to use the same fish sample to test at the 5% significance level whether or not there is a positive association between the weights and the lengths of the fish in the lake. The following table shows the lengths of the fish in the sample. The lengths of the fish can be assumed to be normally distributed.</p>
<p><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that a fish from this lake will have a weight of more than 560 grams.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The maximum weight a hand net can hold is 6 kg. Find the probability that a catch of 11 fish can be carried in the hand net.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the distribution of your test statistic, including the parameter.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the <em>p</em>-value for the test.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the conclusion of the test, justifying your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State suitable hypotheses for the test.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the product-moment correlation coefficient <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="r">
<mi>r</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the <em>p</em>-value and interpret it in this context.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use an appropriate regression line to estimate the weight of a fish with length 360 mm.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The times <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span>, in minutes, taken by a random sample of 75 workers of a company to travel to work can be summarized as follows</p>
<p style="text-align: center;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sum {t = 2165} ">
<mo>∑<!-- ∑ --></mo>
<mrow>
<mi>t</mi>
<mo>=</mo>
<mn>2165</mn>
</mrow>
</math></span> , <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sum {{t^2} = 76475} ">
<mo>∑<!-- ∑ --></mo>
<mrow>
<mrow>
<msup>
<mi>t</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mn>76475</mn>
</mrow>
</math></span>.</p>
<p style="text-align: left;">Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="T">
<mi>T</mi>
</math></span> be the random variable that represents the time taken to travel to work by a worker of this company.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find unbiased estimates of the mean of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="T">
<mi>T</mi>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find unbiased estimates of the variance of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="T">
<mi>T</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Assuming that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="T">
<mi>T</mi>
</math></span> is normally distributed, find</p>
<p>(i) the 90% confidence interval for the mean time taken to travel to work by the workers of this company,</p>
<p>(ii) the 95% confidence interval for the mean time taken to travel to work by the workers of this company.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Before seeing these results the managing director believed that the mean time was 26 minutes.</p>
<p>Explain whether your answers to part (b) support her belief.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Anne is a farmer who grows and sells pumpkins. Interested in the weights of pumpkins produced, she records the weights of eight pumpkins and obtains the following results in kilograms.</p>
<p><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="{\text{7.7}}\quad {\text{7.5}}\quad {\text{8.4}}\quad {\text{8.8}}\quad {\text{7.3}}\quad {\text{9.0}}\quad {\text{7.8}}\quad {\text{7.6}}">
<mrow>
<mtext>7.7</mtext>
</mrow>
<mspace width="1em"></mspace>
<mrow>
<mtext>7.5</mtext>
</mrow>
<mspace width="1em"></mspace>
<mrow>
<mtext>8.4</mtext>
</mrow>
<mspace width="1em"></mspace>
<mrow>
<mtext>8.8</mtext>
</mrow>
<mspace width="1em"></mspace>
<mrow>
<mtext>7.3</mtext>
</mrow>
<mspace width="1em"></mspace>
<mrow>
<mtext>9.0</mtext>
</mrow>
<mspace width="1em"></mspace>
<mrow>
<mtext>7.8</mtext>
</mrow>
<mspace width="1em"></mspace>
<mrow>
<mtext>7.6</mtext>
</mrow>
</math></span></p>
<p>Assume that these weights form a random sample from a <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="N(\mu ,{\text{ }}{\sigma ^2})">
<mi>N</mi>
<mo stretchy="false">(</mo>
<mi>μ<!-- μ --></mi>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<msup>
<mi>σ<!-- σ --></mi>
<mn>2</mn>
</msup>
</mrow>
<mo stretchy="false">)</mo>
</math></span> distribution. </p>
<p> </p>
</div>
<div class="specification">
<p>Anne claims that the mean pumpkin weight is 7.5 kilograms. In order to test this claim, she sets up the null hypothesis <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{H}}_0}:\mu = 7.5">
<mrow>
<msub>
<mrow>
<mtext>H</mtext>
</mrow>
<mn>0</mn>
</msub>
</mrow>
<mo>:</mo>
<mi>μ<!-- μ --></mi>
<mo>=</mo>
<mn>7.5</mn>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine unbiased estimates for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mu ">
<mi>μ</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\sigma ^2}">
<mrow>
<msup>
<mi>σ</mi>
<mn>2</mn>
</msup>
</mrow>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use a two-tailed test to determine the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
<mi>p</mi>
</math></span>-value for the above results.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Interpret your <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
<mi>p</mi>
</math></span>-value at the 5% level of significance, justifying your conclusion.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A shop sells carrots and broccoli. The weights of carrots can be modelled by a normal distribution with variance <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>25</mn><mo> </mo><msup><mtext>grams</mtext><mn>2</mn></msup></math> and the weights of broccoli can be modelled by a normal distribution with variance <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>80</mn><mo> </mo><msup><mtext>grams</mtext><mn>2</mn></msup></math>. The shopkeeper claims that the mean weight of carrots is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>130</mn><mo> </mo><mtext>grams</mtext></math> and the mean weight of broccoli is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>400</mn><mo> </mo><mtext>grams</mtext></math>.</p>
</div>
<div class="specification">
<p>Dong Wook decides to investigate the shopkeeper’s claim that the mean weight of carrots is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>130</mn><mo> </mo><mtext>grams</mtext></math>. He plans to take a random sample of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math> carrots in order to calculate a <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>98</mn><mo> </mo><mo>%</mo></math> confidence interval for the population mean weight.</p>
</div>
<div class="specification">
<p>Anjali thinks the mean weight, <math xmlns="http://www.w3.org/1998/Math/MathML"><mpadded lspace="-1px"><mi>μ</mi><mo> </mo><mi>grams</mi></mpadded></math>, of the broccoli is less than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>400</mn><mo> </mo><mtext>grams</mtext></math>. She decides to perform a hypothesis test, using a random sample of size <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn></math>. Her hypotheses are</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>H</mi><mn>0</mn></msub><mo> </mo><mo>:</mo><mo> </mo><mi>μ</mi><mo>=</mo><mn>400</mn><mo> </mo><mo> </mo><mo>;</mo><mo> </mo><mo> </mo><msub><mi>H</mi><mn>1</mn></msub><mo> </mo><mo>:</mo><mo> </mo><mi>μ</mi><mo><</mo><mn>400</mn></math>.</p>
<p>She decides to reject <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>H</mi><mn>0</mn></msub></math> if the sample mean is less than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>395</mn><mo> </mo><mtext>grams</mtext></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Assuming that the shopkeeper’s claim is correct, find the probability that the weight of six randomly chosen carrots is more than two times the weight of one randomly chosen broccoli.</p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the least value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math> required to ensure that the width of the confidence interval is less than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo> </mo><mtext>grams</mtext></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the significance level for this test.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that the weights of the broccoli actually follow a normal distribution with mean <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>392</mn><mo> </mo><mtext>grams</mtext></math> and variance <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>80</mn><mo> </mo><msup><mtext>grams</mtext><mn>2</mn></msup></math>, find the probability of Anjali making a Type II error.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Two independent random variables <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
<mi>X</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="Y">
<mi>Y</mi>
</math></span> follow Poisson distributions.</p>
<p>Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{E}}\left( X \right) = 3">
<mrow>
<mtext>E</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mi>X</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>3</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{E}}\left( Y \right) = 4">
<mrow>
<mtext>E</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mi>Y</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>4</mn>
</math></span>, calculate</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{E}}\left( {2X + 7Y} \right)">
<mrow>
<mtext>E</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mn>2</mn>
<mi>X</mi>
<mo>+</mo>
<mn>7</mn>
<mi>Y</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Var<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {4X - 3Y} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mn>4</mn>
<mi>X</mi>
<mo>−</mo>
<mn>3</mn>
<mi>Y</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{E}}\left( {{X^2} - {Y^2}} \right)">
<mrow>
<mtext>E</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mrow>
<msup>
<mi>X</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>−</mo>
<mrow>
<msup>
<mi>Y</mi>
<mn>2</mn>
</msup>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><strong>This question is about modelling the spread of a computer virus to predict the number of computers in a city which will be infected by the virus.</strong></p>
<p><br>A systems analyst defines the following variables in a model:</p>
<ul>
<li><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> is the number of days since the first computer was infected by the virus.</li>
<li><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Q</mi><mo>(</mo><mi>t</mi><mo>)</mo></math> is the total number of computers that have been infected up to and including day <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>.</li>
</ul>
<p>The following data were collected:</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>A model for the early stage of the spread of the computer virus suggests that</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Q</mi><mo>'</mo><mfenced><mi>t</mi></mfenced><mo>=</mo><mi>β</mi><mi>N</mi><mi>Q</mi><mfenced><mi>t</mi></mfenced></math></p>
<p style="text-align: left;">where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi></math> is the total number of computers in a city and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>β</mi></math> is a measure of how easily the virus is spreading between computers. Both <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>β</mi></math> are assumed to be constant.</p>
</div>
<div class="specification">
<p>The data above are taken from city X which is estimated to have <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>.</mo><mn>6</mn></math> million computers.<br>The analyst looks at data for another city, Y. These data indicate a value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>β</mi><mo>=</mo><mn>9</mn><mo>.</mo><mn>64</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>8</mn></mrow></msup></math>.</p>
</div>
<div class="specification">
<p>An estimate for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Q</mi><mo>′</mo><mo>(</mo><mi>t</mi><mo>)</mo><mo>,</mo><mo> </mo><mi>t</mi><mo>≥</mo><mn>5</mn></math>, can be found by using the formula:</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Q</mi><mo>'</mo><mfenced><mi>t</mi></mfenced><mo>≈</mo><mfrac><mrow><mi>Q</mi><mfenced><mrow><mi>t</mi><mo>+</mo><mn>5</mn></mrow></mfenced><mo>-</mo><mi>Q</mi><mfenced><mrow><mi>t</mi><mo>-</mo><mn>5</mn></mrow></mfenced></mrow><mn>10</mn></mfrac></math>.</p>
<p>The following table shows estimates of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Q</mi><mo>'</mo><mo>(</mo><mi>t</mi><mo>)</mo></math> for city X at different values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>An improved model for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Q</mi><mo>(</mo><mi>t</mi><mo>)</mo></math>, which is valid for large values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>, is the logistic differential equation</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Q</mi><mo>'</mo><mfenced><mi>t</mi></mfenced><mo>=</mo><mi>k</mi><mi>Q</mi><mfenced><mi>t</mi></mfenced><mfenced><mrow><mn>1</mn><mo>-</mo><mfrac><mrow><mi>Q</mi><mfenced><mi>t</mi></mfenced></mrow><mi>L</mi></mfrac></mrow></mfenced></math></p>
<p>where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math> are constants.</p>
<p>Based on this differential equation, the graph of <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mi>Q</mi><mo>'</mo><mfenced><mi>t</mi></mfenced></mrow><mrow><mi>Q</mi><mfenced><mi>t</mi></mfenced></mrow></mfrac></math> against <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Q</mi><mo>(</mo><mi>t</mi><mo>)</mo></math> is predicted to be a straight line.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of the regression line of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Q</mi><mo>(</mo><mi>t</mi><mo>)</mo></math> on <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math>, Pearson’s product-moment correlation coefficient.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why it would not be appropriate to conduct a hypothesis test on the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math> found in (a)(ii).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the general solution of the differential equation <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Q</mi><mo>'</mo><mfenced><mi>t</mi></mfenced><mo>=</mo><mi>β</mi><mi>N</mi><mi>Q</mi><mfenced><mi>t</mi></mfenced></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using the data in the table write down the equation for an appropriate non-linear regression model.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>R</mi><mn>2</mn></msup></math> for this model.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence comment on the suitability of the model from (b)(ii) in comparison with the linear model found in part (a).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By considering large values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> write down one criticism of the model found in (b)(ii).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.v.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your answer from part (b)(ii) to estimate the time taken for the number of infected computers to double.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find in which city, X or Y, the computer virus is spreading more easily. Justify your answer using your results from part (b).</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math> and of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>. Give your answers correct to one decimal place.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use linear regression to estimate the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math> and of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The solution to the differential equation is given by</p>
<p style="text-align:center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Q</mi><mfenced><mi>t</mi></mfenced><mo>=</mo><mfrac><mi>L</mi><mrow><mn>1</mn><mo>+</mo><mi>C</mi><msup><mtext>e</mtext><mrow><mo>-</mo><mi>k</mi><mi>t</mi></mrow></msup></mrow></mfrac></math></p>
<p>where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi></math> is a constant.</p>
<p>Using your answer to part (f)(i), estimate the percentage of computers in city X that are expected to have been infected by the virus over a long period of time.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>In a large population of hens, the weight of a hen is normally distributed with mean <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mu ">
<mi>μ<!-- μ --></mi>
</math></span> kg and standard deviation <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sigma ">
<mi>σ<!-- σ --></mi>
</math></span> kg. A random sample of 100 hens is taken from the population.</p>
<p>The mean weight for the sample is denoted by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\bar X">
<mrow>
<mover>
<mi>X</mi>
<mo stretchy="false">¯<!-- ¯ --></mo>
</mover>
</mrow>
</math></span>.</p>
</div>
<div class="specification">
<p>The sample values are summarized by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sum {x = 199.8} ">
<mo>∑<!-- ∑ --></mo>
<mrow>
<mi>x</mi>
<mo>=</mo>
<mn>199.8</mn>
</mrow>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sum {{x^2} = 407.8} ">
<mo>∑<!-- ∑ --></mo>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mn>407.8</mn>
</mrow>
</math></span> where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> kg is the weight of a hen.</p>
</div>
<div class="specification">
<p>It is found that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\sigma ">
<mi>σ<!-- σ --></mi>
</math></span> = 0.27 . It is decided to test, at the 1 % level of significance, the null hypothesis <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mu ">
<mi>μ<!-- μ --></mi>
</math></span> = 1.95 against the alternative hypothesis <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mu ">
<mi>μ<!-- μ --></mi>
</math></span> > 1.95.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the distribution of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\bar X">
<mrow>
<mover>
<mi>X</mi>
<mo stretchy="false">¯</mo>
</mover>
</mrow>
</math></span> giving its mean and variance.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an unbiased estimate for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mu ">
<mi>μ</mi>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an unbiased estimate for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\sigma ^2}">
<mrow>
<msup>
<mi>σ</mi>
<mn>2</mn>
</msup>
</mrow>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find a 90 % confidence interval for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mu ">
<mi>μ</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
<mi>p</mi>
</math></span>-value for the test.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the conclusion reached.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>John rings a church bell 120 times. The time interval, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{T_i}">
<mrow>
<msub>
<mi>T</mi>
<mi>i</mi>
</msub>
</mrow>
</math></span>, between two successive rings is a random variable with mean of 2 seconds and variance of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{9}{\text{ second}}{{\text{s}}^2}">
<mfrac>
<mn>1</mn>
<mn>9</mn>
</mfrac>
<mrow>
<mtext> second</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>s</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</math></span>.</p>
<p>Each time interval, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{T_i}">
<mrow>
<msub>
<mi>T</mi>
<mi>i</mi>
</msub>
</mrow>
</math></span>, is independent of the other time intervals. Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X = \sum\limits_{i = 1}^{119} {{T_i}} ">
<mi>X</mi>
<mo>=</mo>
<munderover>
<mo movablelimits="false">∑<!-- ∑ --></mo>
<mrow>
<mi>i</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mrow>
<mn>119</mn>
</mrow>
</munderover>
<mrow>
<mrow>
<msub>
<mi>T</mi>
<mi>i</mi>
</msub>
</mrow>
</mrow>
</math></span> be the total time between the first ring and the last ring.</p>
</div>
<div class="specification">
<p>The church vicar subsequently becomes suspicious that John has stopped coming to ring the bell and that he is letting his friend Ray do it. When Ray rings the bell the time interval, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{T_i}">
<mrow>
<msub>
<mi>T</mi>
<mi>i</mi>
</msub>
</mrow>
</math></span> has a mean of 2 seconds and variance of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{{25}}{\text{ second}}{{\text{s}}^2}">
<mfrac>
<mn>1</mn>
<mrow>
<mn>25</mn>
</mrow>
</mfrac>
<mrow>
<mtext> second</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>s</mtext>
</mrow>
<mn>2</mn>
</msup>
</mrow>
</math></span>.</p>
<p>The church vicar makes the following hypotheses:</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{H_0}">
<mrow>
<msub>
<mi>H</mi>
<mn>0</mn>
</msub>
</mrow>
</math></span>: Ray is ringing the bell; <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{H_1}">
<mrow>
<msub>
<mi>H</mi>
<mn>1</mn>
</msub>
</mrow>
</math></span>: John is ringing the bell.</p>
<p>He records four values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
<mi>X</mi>
</math></span>. He decides on the following decision rule:</p>
<p>If <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="236 \leqslant X \leqslant 240">
<mn>236</mn>
<mo>⩽<!-- ⩽ --></mo>
<mi>X</mi>
<mo>⩽<!-- ⩽ --></mo>
<mn>240</mn>
</math></span> for all four values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
<mi>X</mi>
</math></span> he accepts <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{H_0}">
<mrow>
<msub>
<mi>H</mi>
<mn>0</mn>
</msub>
</mrow>
</math></span>, otherwise he accepts <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{H_1}">
<mrow>
<msub>
<mi>H</mi>
<mn>1</mn>
</msub>
</mrow>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find</p>
<p>(i) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{E}}(X)">
<mrow>
<mtext>E</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</math></span>;</p>
<p>(ii) <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{Var}}(X)">
<mrow>
<mtext>Var</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why a normal distribution can be used to give an approximate model for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
<mi>X</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use this model to find the values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A">
<mi>A</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="B">
<mi>B</mi>
</math></span> such that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(A < X < B) = 0.9">
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>A</mi>
<mo><</mo>
<mi>X</mi>
<mo><</mo>
<mi>B</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mn>0.9</mn>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A">
<mi>A</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="B">
<mi>B</mi>
</math></span> are symmetrical about the mean of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
<mi>X</mi>
</math></span>.</p>
<div class="marks">[7]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the probability that he makes a Type II error.</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>An estate manager is responsible for stocking a small lake with fish. He begins by introducing <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1000</mn></math> fish into the lake and monitors their population growth to determine the likely carrying capacity of the lake.</p>
<p>After one year an accurate assessment of the number of fish in the lake is taken and it is found to be <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1200</mn></math>.</p>
<p>Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi></math> be the number of fish <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> years after the fish have been introduced to the lake.</p>
<p>Initially it is assumed that the rate of increase of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi></math> will be constant.</p>
</div>
<div class="specification">
<p>When <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>8</mn></math> the estate manager again decides to estimate the number of fish in the lake. To do this he first catches <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>300</mn></math> fish and marks them, so they can be recognized if caught again. These fish are then released back into the lake. A few days later he catches another <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>300</mn></math> fish, releasing each fish after it has been checked, and finds <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>45</mn></math> of them are marked.</p>
</div>
<div class="specification">
<p>Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi></math> be the number of marked fish caught in the second sample, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi></math> is considered to be distributed as <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext><mfenced><mrow><mi>n</mi><mo>,</mo><mo> </mo><mi>p</mi></mrow></mfenced></math>. Assume the number of fish in the lake is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2000</mn></math>.</p>
</div>
<div class="specification">
<p>The estate manager decides that he needs bounds for the total number of fish in the lake.</p>
</div>
<div class="specification">
<p>The estate manager feels confident that the proportion of marked fish in the lake will be within <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>5</mn></math> standard deviations of the proportion of marked fish in the sample and decides these will form the upper and lower bounds of his estimate.</p>
</div>
<div class="specification">
<p>The estate manager now believes the population of fish will follow the logistic model <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mfenced><mi>t</mi></mfenced><mo>=</mo><mfrac><mi>L</mi><mrow><mn>1</mn><mo>+</mo><mi>C</mi><msup><mi>e</mi><mrow><mo>-</mo><mi>k</mi><mi>t</mi></mrow></msup></mrow></mfrac></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>L</mi></math> is the carrying capacity and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi><mo>,</mo><mo> </mo><mi>k</mi><mo>></mo><mn>0</mn></math>.</p>
<p>The estate manager would like to know if the population of fish in the lake will eventually reach <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5000</mn></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use this model to predict the number of fish in the lake when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>8</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Assuming the proportion of marked fish in the second sample is equal to the proportion of marked fish in the lake, show that the estate manager will estimate there are now <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2000</mn></math> fish in the lake.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math> and the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State an assumption that is being made for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi></math> to be considered as following a binomial distribution.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that an estimate for <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Var</mtext><mo>(</mo><mi>X</mi><mo>)</mo></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>38</mn><mo>.</mo><mn>25</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence show that the variance of the proportion of marked fish in the sample, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Var</mtext><mfenced><mfrac><mi>X</mi><mn>300</mn></mfrac></mfenced></math>, is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>000425</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Taking the value for the variance given in (d) (ii) as a good approximation for the true variance, find the upper and lower bounds for the proportion of marked fish in the lake.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find upper and lower bounds for the number of fish in the lake when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>=</mo><mn>8</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given this result, comment on the validity of the linear model used in part (a).</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Assuming a carrying capacity of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5000</mn></math> use the given values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mfenced><mn>0</mn></mfenced></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mfenced><mn>1</mn></mfenced></math> to calculate the parameters <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>k</mi></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">g.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use these parameters to calculate the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mfenced><mn>8</mn></mfenced></math> predicted by this model.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Comment on the likelihood of the fish population reaching <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5000</mn></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">h.</div>
</div>
<br><hr><br><div class="specification">
<p>Peter, the Principal of a college, believes that there is an association between the score in a Mathematics test, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
<mi>X</mi>
</math></span>, and the time taken to run 500 m, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="Y">
<mi>Y</mi>
</math></span> seconds, of his students. The following paired data are collected.</p>
<p><img src=""></p>
<p>It can be assumed that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {X{\text{, }}Y} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mi>X</mi>
<mrow>
<mtext>, </mtext>
</mrow>
<mi>Y</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span> follow a bivariate normal distribution with product moment correlation coefficient <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\rho ">
<mi>ρ<!-- ρ --></mi>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State suitable hypotheses <span class="mjpage"><math alttext="{H_0}" xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <msub> <mi>H</mi> <mn>0</mn> </msub> </mrow> </math></span> and <span class="mjpage"><math alttext="{H_1}" xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <msub> <mi>H</mi> <mn>1</mn> </msub> </mrow> </math></span> to test Peter’s claim, using a two-tailed test.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Carry out a suitable test at the 5 % significance level. With reference to the <span class="mjpage"><math alttext="p" xmlns="http://www.w3.org/1998/Math/MathML"> <mi>p</mi> </math></span>-value, state your conclusion in the context of Peter’s claim.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Peter uses the regression line of <span class="mjpage"><math alttext="y" xmlns="http://www.w3.org/1998/Math/MathML"> <mi>y</mi> </math></span> on <span class="mjpage"><math alttext="x" xmlns="http://www.w3.org/1998/Math/MathML"> <mi>x</mi> </math></span> as <span class="mjpage"><math alttext="y = 0.248x + 83.0" xmlns="http://www.w3.org/1998/Math/MathML"> <mi>y</mi> <mo>=</mo> <mn>0.248</mn> <mi>x</mi> <mo>+</mo> <mn>83.0</mn> </math></span> and calculates that a student with a Mathematics test score of 73 will have a running time of 101 seconds. Comment on the validity of his calculation.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Employees answer the telephone in a customer relations department. The time taken for an employee to deal with a customer is a random variable which can be modelled by a normal distribution with mean 150 seconds and standard deviation 45 seconds.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that the time taken for a randomly chosen customer to be dealt with by an employee is greater than 180 seconds.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that the time taken by an employee to deal with a queue of three customers is less than nine minutes.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>At the start of the day, one employee, Amanda, has a queue of four customers. A second employee, Brian, has a queue of three customers. You may assume they work independently.</p>
<p>Find the probability that Amanda’s queue will be dealt with before Brian’s queue.</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><strong>This question compares possible designs for a new computer network between multiple school buildings, and whether they meet specific requirements.</strong></p>
<p><br>A school’s administration team decides to install new fibre-optic internet cables underground. The school has eight buildings that need to be connected by these cables. A map of the school is shown below, with the internet access point of each building labelled <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A–H</mtext></math>.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>Jonas is planning where to install the underground cables. He begins by determining the distances, in metres, between the underground access points in each of the buildings.</p>
<p>He finds <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AD</mtext><mo>=</mo><mn>89</mn><mo>.</mo><mn>2</mn><mo> </mo><mtext>m</mtext></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>DF</mtext><mo>=</mo><mn>104</mn><mo>.</mo><mn>9</mn><mo> </mo><mtext>m</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mover><mtext>D</mtext><mo>^</mo></mover><mtext>F</mtext><mo>=</mo><mn>83</mn><mo>°</mo></math>.</p>
</div>
<div class="specification">
<p>The cost for installing the cable directly between <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>F</mtext></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>$</mo><mn>21</mn><mo> </mo><mn>310</mn></math>.</p>
</div>
<div class="specification">
<p>Jonas estimates that it will cost <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>$</mo><mn>110</mn></math> per metre to install the cables between all the other buildings.</p>
</div>
<div class="specification">
<p>Jonas creates the following graph, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>S</mi></math>, using the cost of installing the cables between two buildings as the weight of each edge.</p>
<p style="text-align: center;"><img src=""></p>
<p>The computer network could be designed such that each building is directly connected to at least one other building and hence all buildings are indirectly connected.</p>
</div>
<div class="specification">
<p>The computer network fails if any part of it becomes unreachable from any other part. To help protect the network from failing, every building could be connected to at least two other buildings. In this way if one connection breaks, the building is still part of the computer network. Jonas can achieve this by finding a Hamiltonian cycle within the graph.</p>
</div>
<div class="specification">
<p>After more research, Jonas decides to install the cables as shown in the diagram below.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>Each individual cable is installed such that each end of the cable is connected to a building’s access point. The connection between each end of a cable and an access point has a <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>4</mn><mo>%</mo></math> probability of failing after a power surge.</p>
<p>For the network to be successful, each building in the network must be able to communicate with every other building in the network. In other words, there must be a path that connects any two buildings in the network. Jonas would like the network to have less than a <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>%</mo></math> probability of failing to operate after a power surge.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AF</mtext></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the cost per metre of installing this cable.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State why the cost for installing the cable between <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>F</mtext></math> would be higher than between the other buildings.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By using Kruskal’s algorithm, find the minimum spanning tree for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>S</mi></math>, showing clearly the order in which edges are added.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the minimum installation cost for the cables that would allow all the buildings to be part of the computer network.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State why a path that forms a Hamiltonian cycle does not always form an Eulerian circuit.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Starting at <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>D</mtext></math>, use the nearest neighbour algorithm to find the upper bound for the installation cost of a computer network in the form of a Hamiltonian cycle.</p>
<p><strong>Note:</strong> Although the graph is not complete, in this instance it is not necessary to form a table of least distances.</p>
<div class="marks">[5]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By deleting <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>D</mtext></math>, use the deleted vertex algorithm to find the lower bound for the installation cost of the cycle.</p>
<div class="marks">[6]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that Jonas’s network satisfies the requirement of there being less than a <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>%</mo></math> probability of the network failing after a power surge.</p>
<div class="marks">[5]</div>
<div class="question_part_label">h.</div>
</div>
<br><hr><br>