File "HL-paper1.html"
Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Math AI/Topic 4/HL-paper1html
File size: 411.23 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 1</h2><div class="specification">
<p>The function <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p\left( x \right)"> <mi>p</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span> is defined by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p\left( x \right) = {x^3} + 3{x^2} + 8x - 24"><mi>p</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><msup><mi>x</mi><mn>3</mn></msup><mo>−</mo><mn>3</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>8</mn><mi>x</mi><mo>−</mo><mn>24</mn></math></span> where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x \in \mathbb{R}"> <mi>x</mi> <mo>∈<!-- ∈ --></mo> <mrow> <mi mathvariant="double-struck">R</mi> </mrow> </math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the remainder when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p\left( x \right)">
<mi>p</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span> is divided by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {x - 2} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>−</mo>
<mn>2</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the remainder when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p\left( x \right)">
<mi>p</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span> is divided by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\left( {x - 3} \right)">
<mrow>
<mo>(</mo>
<mrow>
<mi>x</mi>
<mo>−</mo>
<mn>3</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Prove that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p\left( x \right)">
<mi>p</mi>
<mrow>
<mo>(</mo>
<mi>x</mi>
<mo>)</mo>
</mrow>
</math></span> has only one real zero.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the transformation that will transform the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = p\left( x \right)"> <mi>y</mi> <mo>=</mo> <mi>p</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> </math></span> onto the graph of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="y = 8{x^3} + 12{x^2} + 16x - 24"><mi>y</mi><mo>=</mo><mn>8</mn><msup><mi>x</mi><mn>3</mn></msup><mo>−</mo><mn>12</mn><msup><mi>x</mi><mn>2</mn></msup><mo>+</mo><mn>16</mn><mi>x</mi><mo>−</mo><mn>24</mn></math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The random variable <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
<mi>X</mi>
</math></span> follows a Poisson distribution with a mean of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda ">
<mi>λ</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="6{\text{P}}\left( {X = 3} \right) = 3{\text{P}}\left( {X = 2} \right) - 2{\text{P}}\left( {X = 1} \right) + 3{\text{P}}\left( {X = 0} \right)">
<mn>6</mn>
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>X</mi>
<mo>=</mo>
<mn>3</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>3</mn>
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>X</mi>
<mo>=</mo>
<mn>2</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>−</mo>
<mn>2</mn>
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>X</mi>
<mo>=</mo>
<mn>1</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>+</mo>
<mn>3</mn>
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>X</mi>
<mo>=</mo>
<mn>0</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span>.</p>
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda ">
<mi>λ</mi>
</math></span>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The following table shows the time, in days, from December <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mtext>st</mtext></math> and the percentage of Christmas trees in stock at a shop on the beginning of that day.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The following table shows the natural logarithm of both <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> on these days to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn></math> decimal places.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the data in the second table to find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>m</mi></math> and the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math> for the regression line, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ln</mi><mo> </mo><mi>x</mi><mo>=</mo><mi>m</mi><mo>(</mo><mi>ln</mi><mo> </mo><mi>d</mi><mo>)</mo><mo>+</mo><mi>b</mi></math>.</p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Assuming that the model found in part (a) remains valid, estimate the percentage of trees in stock when <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi><mo>=</mo><mn>25</mn></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The weights of apples from Tony’s farm follow a normal distribution with mean <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>158</mn><mtext> g</mtext></math> and standard deviation <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>13</mn><mtext> g</mtext></math>. The apples are sold in bags that contain six apples.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the mean weight of a bag of apples.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the standard deviation of the weights of these bags of apples.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that a bag selected at random weighs more than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo> </mo><mtext>kg</mtext></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A manufacturer of chocolates produces them in individual packets, claiming to have an average of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>85</mn></math> chocolates per packet.</p>
<p>Talha bought <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>30</mn></math> of these packets in order to check the manufacturer’s claim.</p>
<p>Given that the number of individual chocolates is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>, Talha found that, from his <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>30</mn></math> packets, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Σ</mtext><mi>x</mi><mo>=</mo><mn>2506</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>Σ</mtext><msup><mi>x</mi><mn>2</mn></msup><mo>=</mo><mn>209</mn><mo> </mo><mn>738</mn></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an unbiased estimate for the mean number <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mi>μ</mi><mo>)</mo></math> of chocolates per packet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the formula <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>s</mi><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow><mn>2</mn></msubsup><mo>=</mo><mfrac><mrow><mtext>Σ</mtext><msup><mi>x</mi><mn>2</mn></msup><mo>-</mo><mstyle displaystyle="true"><mfrac><msup><mfenced><mrow><mtext>Σ</mtext><mi>x</mi></mrow></mfenced><mn>2</mn></msup><mi>n</mi></mfrac></mstyle></mrow><mrow><mi>n</mi><mo>-</mo><mn>1</mn></mrow></mfrac></math> to determine an unbiased estimate for the variance of the number of chocolates per packet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find a <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>95</mn><mo>%</mo></math> confidence interval for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>μ</mi></math>. You may assume that all conditions for a confidence interval have been met.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest, with justification, a valid conclusion that Talha could make.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>A factory, producing plastic gifts for a fast food restaurant’s Jolly meals, claims that just <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>%</mo></math> of the toys produced are faulty.</p>
<p>A restaurant manager wants to test this claim. A box of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>200</mn></math> toys is delivered to the restaurant. The manager checks all the toys in this box and four toys are found to be faulty.</p>
</div>
<div class="specification">
<p>The restaurant manager performs a one-tailed hypothesis test, at the <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn><mo>%</mo></math> significance level, to determine whether the factory’s claim is reasonable. It is known that faults in the toys occur independently.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the type of sampling used by the restaurant manager.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the null and alternative hypotheses.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math>-value for the test.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the conclusion of the test. Give a reason for your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Saloni wants to find a model for the temperature of a bottle of water after she removes it from the fridge. She uses a temperature probe to record the temperature of the water, every 5 minutes.</p>
<p><img src=""></p>
<p>After graphing the data, Saloni believes a suitable model will be</p>
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="T = 28 - a{b^t}">
<mi>T</mi>
<mo>=</mo>
<mn>28</mn>
<mo>−<!-- − --></mo>
<mi>a</mi>
<mrow>
<msup>
<mi>b</mi>
<mi>t</mi>
</msup>
</mrow>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a{\text{,}}\,\,b \in {\mathbb{R}^ + }">
<mi>a</mi>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>b</mi>
<mo>∈<!-- ∈ --></mo>
<mrow>
<msup>
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
<mo>+</mo>
</msup>
</mrow>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="28 - T">
<mn>28</mn>
<mo>−</mo>
<mi>T</mi>
</math></span> can be modeled by an exponential function.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of the least squares exponential regression curve for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="28 - T">
<mn>28</mn>
<mo>−</mo>
<mi>T</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the coefficient of determination, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{R^2}">
<mrow>
<msup>
<mi>R</mi>
<mn>2</mn>
</msup>
</mrow>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Interpret what the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{R^2}">
<mrow>
<msup>
<mi>R</mi>
<mn>2</mn>
</msup>
</mrow>
</math></span> tells you about the model.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence predict the temperature of the water after 3 minutes.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>A newspaper vendor in Singapore is trying to predict how many copies of <em>The Straits Times</em> they will sell. The vendor forms a model to predict the number of copies sold each weekday. According to this model, they expect the same number of copies will be sold each day.</p>
<p>To test the model, they record the number of copies sold each weekday during a particular week. This data is shown in the table.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>A goodness of fit test at the <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo>%</mo></math> significance level is used on this data to determine whether the vendor’s model is suitable. The critical value for the test is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>9</mn><mo>.</mo><mn>49</mn></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an estimate for how many copies the vendor expects to sell each day.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the null and alternative hypotheses for this test.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the degrees of freedom for this test.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the conclusion to the test. Give a reason for your answer.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>Two unbiased tetrahedral (four-sided) dice with faces labelled 1, 2, 3, 4 are thrown and the scores recorded. Let the random variable <em>T</em> be the maximum of these two scores.</p>
<p>The probability distribution of <em>T</em> is given in the following table.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <em>a</em> and the value of <em>b</em>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the expected value of <em>T</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The cars for a fairground ride hold four people. They arrive at the platform for loading and unloading every <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>30</mn></math> seconds.</p>
<p>During the hour from <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>9</mn></math> am the arrival of people at the ride in any interval of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> minutes can be modelled by a Poisson distribution with a mean of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>9</mn><mi>t</mi><mo> </mo><mfenced><mrow><mn>0</mn><mo><</mo><mi>t</mi><mo><</mo><mn>60</mn></mrow></mfenced></math>.</p>
<p>When the <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>9</mn></math> am car leaves there is no one in the queue to get on the ride.</p>
<p>Shunsuke arrives at <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>9</mn><mo>.</mo><mn>01</mn></math> am.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that more than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>7</mn></math> people arrive at the ride before Shunsuke.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability there will be space for him on the <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>9</mn><mo>.</mo><mn>01</mn></math> car.</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Chloe and Selena play a game where each have four cards showing capital letters A, B, C and D.<br>Chloe lays her cards face up on the table in order A, B, C, D as shown in the following diagram.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-02-07_om_14.39.35.png" alt="N17/5/MATHL/HP1/ENG/TZ0/10"></p>
<p>Selena shuffles her cards and lays them face down on the table. She then turns them over one by one to see if her card matches with Chloe’s card directly above.<br>Chloe wins if <strong>no</strong> matches occur; otherwise Selena wins.</p>
</div>
<div class="specification">
<p>Chloe and Selena repeat their game so that they play a total of 50 times.<br>Suppose the discrete random variable <em>X </em>represents the number of times Chloe wins.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the probability that Chloe wins the game is <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{3}{8}"> <mfrac> <mn>3</mn> <mn>8</mn> </mfrac> </math></span>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the mean of <em>X</em>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the variance of <em>X</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A company produces bags of sugar with a labelled weight of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo> </mo><mtext>kg</mtext></math>. The weights of the bags are normally distributed with a mean of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo> </mo><mtext>kg</mtext></math> and a standard deviation of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>100</mn><mo> </mo><mtext>g</mtext></math>. In an inspection, if the weight of a randomly chosen bag is less than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>950</mn><mo> </mo><mtext>g</mtext></math> then the company fails the inspection.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that the company fails the inspection.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A statistician in the company suggests it would be fairer if the company passes the inspection when the mean weight of five randomly chosen bags is greater than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>950</mn><mo> </mo><mtext>g</mtext></math>.</p>
<p>Find the probability of passing the inspection if the statistician’s suggestion is followed.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The discrete random variable <em>X</em> has the following probability distribution, where<em> p</em> is a constant.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <em>p</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <em>μ</em>, the expected value of <em>X</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find P(<em>X</em> > <em>μ</em>).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The sex of cuttlefish is difficult to determine visually, so it is often found by weighing the cuttlefish.</p>
<p>The weights of adult male cuttlefish are known to be normally distributed with mean <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn><mo> </mo><mtext>kg</mtext></math> and standard deviation <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>5</mn><mo> </mo><mtext>kg</mtext></math>.</p>
<p>The weights of adult female cuttlefish are known to be normally distributed with mean <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>12</mn><mo> </mo><mtext>kg</mtext></math> and standard deviation <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo> </mo><mtext>kg</mtext></math>.</p>
<p>A zoologist uses the null hypothesis that in the absence of information a cuttlefish is male.</p>
<p>If the weight is found to be above <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>11</mn><mo>.</mo><mn>5</mn><mo> </mo><mtext>kg</mtext></math> the cuttlefish is classified as female.</p>
</div>
<div class="specification">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mn>90</mn><mo>%</mo></math> of adult cuttlefish are male.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability of making a Type I error when weighing a male cuttlefish.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability of making a Type II error when weighing a female cuttlefish.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability of making an error using the zoologist’s method.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider two events, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A">
<mi>A</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="B">
<mi>B</mi>
</math></span>, such that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( A \right) = {\text{P}}\left( {A' \cap B} \right) = 0.4">
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mi>A</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<msup>
<mi>A</mi>
<mo>′</mo>
</msup>
<mo>∩<!-- ∩ --></mo>
<mi>B</mi>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>0.4</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {A \cap B} \right) = 0.1">
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>A</mi>
<mo>∩<!-- ∩ --></mo>
<mi>B</mi>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>0.1</mn>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By drawing a Venn diagram, or otherwise, find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {A \cup B} \right)">
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>A</mi>
<mo>∪</mo>
<mi>B</mi>
</mrow>
<mo>)</mo>
</mrow>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the events <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A">
<mi>A</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="B">
<mi>B</mi>
</math></span> are not independent.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>It is believed that the power <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math> of a signal at a point <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math> km from an antenna is inversely proportional to <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>d</mi><mi>n</mi></msup></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>∈</mo><msup><mi mathvariant="normal">ℤ</mi><mo>+</mo></msup></math>.</p>
<p>The value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math> is recorded at distances of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo> </mo><mi mathvariant="normal">m</mi></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo> </mo><mi mathvariant="normal">m</mi></math> and the values of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>log</mi><mn>10</mn></msub><mo> </mo><mi>d</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>log</mi><mn>10</mn></msub><mo> </mo><mi>P</mi></math> are plotted on the graph below.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>The values of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>log</mi><mn>10</mn></msub><mo> </mo><mi>d</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>log</mi><mn>10</mn></msub><mo> </mo><mi>P</mi></math> are shown in the table below.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why this graph indicates that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math> is inversely proportional to <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>d</mi><mi>n</mi></msup></math>.</p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of the least squares regression line of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>log</mi><mn>10</mn></msub><mo> </mo><mi>P</mi></math> against <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>log</mi><mn>10</mn></msub><mo> </mo><mi>d</mi></math>.</p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your answer to part (b) to write down the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math> to the nearest integer.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>P</mi></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The number of fish that can be caught in one hour from a particular lake can be modelled by a Poisson distribution.</p>
<p>The owner of the lake, Emily, states in her advertising that the average number of fish caught in an hour is three.</p>
<p>Tom, a keen fisherman, is not convinced and thinks it is less than three. He decides to set up the following test. Tom will fish for one hour and if he catches fewer than two fish he will reject Emily’s claim.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State a suitable null and alternative hypotheses for Tom’s test.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability of a Type I error.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The average number of fish caught in an hour is actually 2.5.</p>
<p>Find the probability of a Type II error.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p class="indent2" style="margin-top:12.0pt;">The number of cars passing a certain point in a road was recorded during 80 equal time intervals and summarized in the table below.</p>
<p class="indent2" style="margin-top:12.0pt;"><img style="display: block;margin-left:auto;margin-right:auto;" src=""></p>
<p class="indent2" style="margin-top:12.0pt;">Carry out a <span class="mjpage"><math alttext="{\chi ^2}" xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <msup> <mi>χ</mi> <mn>2</mn> </msup> </mrow> </math></span> goodness of fit test at the 5% significance level to decide if the above data can be modelled by a Poisson distribution.</p>
</div>
<br><hr><br><div class="specification">
<p>A zoologist believes that the number of eggs laid in the Spring by female birds of a certain breed follows a Poisson law. She observes 100 birds during this period and she produces the following table.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>The zoologist wishes to determine whether or not a Poisson law provides a suitable model.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="indent2" style="margin-top:12.0pt;">Calculate the mean number of eggs laid by these birds.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="indent2" style="margin-top:12.0pt;">Write down appropriate hypotheses.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="indent2" style="margin-top:12.0pt;">Carry out a test at the 1% significance level, and state your conclusion.</p>
<div class="marks">[14]</div>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="question">
<p>Product research leads a company to believe that the revenue (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="R">
<mi>R</mi>
</math></span>) made by selling its goods at a price (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="p">
<mi>p</mi>
</math></span>) can be modelled by the equation.</p>
<p style="text-align: center;"><span style="background-color: #ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="R\left( p \right) = cp{{\text{e}}^{dp}}">
<mi>R</mi>
<mrow>
<mo>(</mo>
<mi>p</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mi>c</mi>
<mi>p</mi>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mi>d</mi>
<mi>p</mi>
</mrow>
</msup>
</mrow>
</math></span></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c">
<mi>c</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d \in \mathbb{R}">
<mi>d</mi>
<mo>∈</mo>
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
</math></span></p>
<p>There are two competing models, A and B with different values for the parameters <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c">
<mi>c</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d">
<mi>d</mi>
</math></span>. </p>
<p>Model A has <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c">
<mi>c</mi>
</math></span> = 3, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d">
<mi>d</mi>
</math></span> = −0.5 and model B has <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c">
<mi>c</mi>
</math></span> = 2.5, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="d">
<mi>d</mi>
</math></span> = −0.6.</p>
<p>The company experiments by selling the goods at three different prices in three similar areas and the results are shown in the following table.</p>
<p style="text-align: center;"><img src=""></p>
<p>The company will choose the model with the smallest value for the sum of square residuals.</p>
<p>Determine which model the company chose.</p>
</div>
<br><hr><br><div class="specification">
<p>Mr Burke teaches a mathematics class with 15 students. In this class there are 6 female students and 9 male students.</p>
<p>Each day Mr Burke randomly chooses one student to answer a homework question.</p>
<p>In the first month, Mr Burke will teach his class 20 times.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability he will choose a female student 8 times.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The Head of Year, Mrs Smith, decides to select a student at random from the year group to read the notices in assembly. There are 80 students in total in the year group. Mrs Smith calculates the probability of picking a male student 8 times in the first 20 assemblies is 0.153357 correct to 6 decimal places.</p>
<p>Find the number of male students in the year group.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A company sends a group of employees on a training course. Afterwards, they survey these employees to gather data on the effectiveness of the training. In order to test the reliability of the survey, they design two sets of similar questions, which are given to the employees one week apart.</p>
</div>
<div class="specification">
<p>The questions in the survey were grouped in different sections. The mean scores of the employees on the first section of each survey are given in the table.</p>
<p><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the name of this test for reliability.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State a possible disadvantage of using this test for reliability.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate Pearson’s product moment correlation coefficient for this data.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence determine, with a reason, if the survey is reliable.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>On Paul’s farm, potatoes are packed in sacks labelled <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>50</mn><mo> </mo><mtext>kg</mtext></math>. The weights of the sacks of potatoes can be modelled by a normal distribution with mean weight <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>49</mn><mo>.</mo><mn>8</mn><mo> </mo><mtext>kg</mtext></math> and standard deviation <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>9</mn><mo> </mo><mtext>kg</mtext></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that a sack is under its labelled weight.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the lower quartile of the weights of the sacks of potatoes.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The sacks of potatoes are transported in crates. There are <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn></math> sacks in each crate and the weights of the sacks of potatoes are independent of each other.</p>
<p>Find the probability that the total weight of the sacks of potatoes in a crate exceeds <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>500</mn><mo> </mo><mtext>kg</mtext></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Observations on <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>12</mn></math> pairs of values of the random variables <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi><mo>,</mo><mo> </mo><mi>Y</mi></math> yielded the following results.</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mo>∑</mo><mi>x</mi><mo>=</mo><mn>76</mn><mo>.</mo><mn>3</mn><mo>,</mo><mo> </mo><mo>∑</mo><msup><mi>x</mi><mn>2</mn></msup><mo>=</mo><mn>563</mn><mo>.</mo><mn>7</mn><mo>,</mo><mo> </mo><mo>∑</mo><mi>y</mi><mo>=</mo><mn>72</mn><mo>.</mo><mn>2</mn><mo>,</mo><mo> </mo><mo>∑</mo><msup><mi>y</mi><mn>2</mn></msup><mo>=</mo><mn>460</mn><mo>.</mo><mn>1</mn><mo>,</mo><mo> </mo><mo>∑</mo><mi>x</mi><mi>y</mi><mo>=</mo><mn>495</mn><mo>.</mo><mn>4</mn></math></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math>, the product moment correlation coefficient of the sample.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Assuming that the distribution of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi><mo>,</mo><mo> </mo><mi>Y</mi></math> is bivariate normal with product moment correlation coefficient <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ρ</mi></math>, calculate the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math>-value of your result when testing the hypotheses <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>H</mi><mn>0</mn></msub><mo> </mo><mo>:</mo><mo> </mo><mo> </mo><mi>ρ</mi><mo>=</mo><mn>0</mn><mo> </mo><mo>;</mo><mo> </mo><msub><mi>H</mi><mn>1</mn></msub><mo> </mo><mo>:</mo><mo> </mo><mo> </mo><mi>ρ</mi><mo>></mo><mn>0</mn></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State whether your <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math>-value suggests that <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Y</mi></math> are independent.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given a further value <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>5</mn><mo>.</mo><mn>2</mn></math> from the distribution of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Y</mi></math>, predict the corresponding value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>. Give your answer to one decimal place.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The continuous random variable <em>X</em> has a probability density function given by</p>
<p style="padding-left: 120px;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f(x) = \left\{ {\begin{array}{*{20}{l}} {k\sin \left( {\frac{{\pi x}}{6}} \right),}&{0 \leqslant x \leqslant \,6} \\ {0,}&{{\text{otherwise}}} \end{array}} \right.">
<mi>f</mi>
<mo stretchy="false">(</mo>
<mi>x</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow>
<mo>{</mo>
<mrow>
<mtable columnalign="left" rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mrow>
<mi>k</mi>
<mi>sin</mi>
<mo><!-- --></mo>
<mrow>
<mo>(</mo>
<mrow>
<mfrac>
<mrow>
<mi>π<!-- π --></mi>
<mi>x</mi>
</mrow>
<mn>6</mn>
</mfrac>
</mrow>
<mo>)</mo>
</mrow>
<mo>,</mo>
</mrow>
</mtd>
<mtd>
<mrow>
<mn>0</mn>
<mo>⩽<!-- ⩽ --></mo>
<mi>x</mi>
<mo>⩽<!-- ⩽ --></mo>
<mspace width="thinmathspace"></mspace>
<mn>6</mn>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mn>0</mn>
<mo>,</mo>
</mrow>
</mtd>
<mtd>
<mrow>
<mrow>
<mtext>otherwise</mtext>
</mrow>
</mrow>
</mtd>
</mtr>
</mtable>
</mrow>
<mo fence="true" stretchy="true" symmetric="true"></mo>
</mrow>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
<mi>k</mi>
</math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By considering the graph of <em>f </em>write down the mean of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
<mi>X</mi>
</math></span>;</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By considering the graph of <em>f </em>write down the median of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
<mi>X</mi>
</math></span>;</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By considering the graph of <em>f </em>write down the mode of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
<mi>X</mi>
</math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P(0 \leqslant X \leqslant 2) = \frac{1}{4}">
<mi>P</mi>
<mo stretchy="false">(</mo>
<mn>0</mn>
<mo>⩽</mo>
<mi>X</mi>
<mo>⩽</mo>
<mn>2</mn>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>4</mn>
</mfrac>
</math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence state the interquartile range of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
<mi>X</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="P(X \leqslant 4|X \geqslant 3)">
<mi>P</mi>
<mo stretchy="false">(</mo>
<mi>X</mi>
<mo>⩽</mo>
<mn>4</mn>
<mrow>
<mo stretchy="false">|</mo>
</mrow>
<mi>X</mi>
<mo>⩾</mo>
<mn>3</mn>
<mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The number of coffees sold per hour at an independent coffee shop is modelled by a Poisson distribution with a mean of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>22</mn></math> coffees per hour.</p>
<p>Sheila, the shop’s owner wants to increase the number of coffees sold in the shop. She decides to offer a discount to customers who buy more than one coffee.</p>
<p>To test how successful this strategy is, Sheila records the number of coffees sold over a single <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn></math>-hour period. Sheila decides to use a <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo>%</mo></math> level of significance in her test.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the null and alternative hypotheses for the test.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that Sheila will make a type I error in her test conclusion.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sheila finds <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>126</mn></math> coffees were sold during the <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn></math>-hour period.</p>
<p>State Sheila’s conclusion to the test. Justify your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The heights, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x">
<mi>x</mi>
</math></span> metres, of the 241 new entrants to a men’s college were measured and the following statistics calculated.</p>
<p><span class="mjpage mjpage__block"><math xmlns="http://www.w3.org/1998/Math/MathML" display="block" alttext="\sum {x = 412.11,\,\,\sum {{x^2} = 705.5721} } ">
<mo>∑<!-- ∑ --></mo>
<mrow>
<mi>x</mi>
<mo>=</mo>
<mn>412.11</mn>
<mo>,</mo>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mo>∑<!-- ∑ --></mo>
<mrow>
<mrow>
<msup>
<mi>x</mi>
<mn>2</mn>
</msup>
</mrow>
<mo>=</mo>
<mn>705.5721</mn>
</mrow>
</mrow>
</math></span></p>
</div>
<div class="specification">
<p>The Head of Mathematics decided to use a <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\chi ^2}">
<mrow>
<msup>
<mi>χ<!-- χ --></mi>
<mn>2</mn>
</msup>
</mrow>
</math></span> test to determine whether or not these heights could be modelled by a normal distribution. He therefore divided the data into classes as follows.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="indent2">Calculate unbiased estimates of the population mean and the population variance.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="indent2">State suitable hypotheses.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="indent2">Calculate the value of the <span class="mjpage"><math alttext="{\chi ^2}" xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <msup> <mi>χ</mi> <mn>2</mn> </msup> </mrow> </math></span> statistic and state your conclusion using a 10% level of significance.</p>
<div class="marks">[11]</div>
<div class="question_part_label">b.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The graph below shows a small maze, in the form of a network of directed routes. The vertices <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>F</mtext></math> show junctions in the maze and the edges show the possible paths available from one vertex to another.</p>
<p>A mouse is placed at vertex <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> and left to wander the maze freely. The routes shown by dashed lines indicate paths sprinkled with sugar.</p>
<p>When the mouse reaches any junction, she rests for a constant time before continuing.</p>
<p>At any junction, it may also be assumed that</p>
<ul>
<li> the mouse chooses any available normal path with equal probability</li>
<li> if the junction includes a path sprinkled with sugar, the probability of choosing this path is twice that of a normal path.</li>
</ul>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the transition matrix for this graph.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>If the mouse was left to wander indefinitely, use your graphic display calculator to estimate the percentage of time that the mouse would spend at point <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>F</mtext></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Comment on your answer to part (b), referring to at least one limitation of the model.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Eggs at a farm are sold in boxes of six. Each egg is either brown or white. The owner believes that the number of brown eggs in a box can be modelled by a binomial distribution. He examines 100 boxes and obtains the following data.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the mean number of brown eggs in a box.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="indent2" style="margin-top:12.0pt;">Hence estimate <span class="mjpage"><math alttext="p" xmlns="http://www.w3.org/1998/Math/MathML"> <mi>p</mi> </math></span>, the probability that a randomly chosen egg is brown.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="indent2" style="margin-top:12.0pt;">By calculating an appropriate <span class="mjpage"><math alttext="{\chi ^2}" xmlns="http://www.w3.org/1998/Math/MathML"> <mrow> <msup> <mi>χ</mi> <mn>2</mn> </msup> </mrow> </math></span> statistic, test, at the 5% significance level, whether or not the binomial distribution gives a good fit to these data.</p>
<div class="marks">[8]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Adesh wants to model the cooling of a metal rod. He heats the rod and records its temperature as it cools.</p>
<p style="text-align: center;"><img src=""></p>
<p>He believes the temperature can be modeled by <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="T\left( t \right) = a{{\text{e}}^{bt}} + 25">
<mi>T</mi>
<mrow>
<mo>(</mo>
<mi>t</mi>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mi>a</mi>
<mrow>
<msup>
<mrow>
<mtext>e</mtext>
</mrow>
<mrow>
<mi>b</mi>
<mi>t</mi>
</mrow>
</msup>
</mrow>
<mo>+</mo>
<mn>25</mn>
</math></span>, where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a{\text{,}}\,\,b \in \mathbb{R}">
<mi>a</mi>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mi>b</mi>
<mo>∈<!-- ∈ --></mo>
<mrow>
<mi mathvariant="double-struck">R</mi>
</mrow>
</math></span>.</p>
</div>
<div class="specification">
<p>Hence</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ln}}\left( {T - 25} \right) = bt + {\text{ln}}\,a">
<mrow>
<mtext>ln</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>T</mi>
<mo>−</mo>
<mn>25</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mi>b</mi>
<mi>t</mi>
<mo>+</mo>
<mrow>
<mtext>ln</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mi>a</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of the regression line of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{ln}}\left( {T - 25} \right)">
<mrow>
<mtext>ln</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>T</mi>
<mo>−</mo>
<mn>25</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span> on <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="t">
<mi>t</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span> and of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
<mi>b</mi>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>predict the temperature of the metal rod after 3 minutes.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Katie likes to cycle to work as much as possible. If Katie cycles to work one day then she has a probability of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>2</mn></math> of not cycling to work on the next work day. If she does not cycle to work one day then she has a probability of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>4</mn></math> of not cycling to work on the next work day.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Complete the following transition diagram to represent this information.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Katie works for <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>180</mn></math> days in a year.</p>
<p>Find the probability that Katie cycles to work on her final working day of the year.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A psychologist records the number of digits (<math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math>) of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">π</mi></math> that a sample of IB Mathematics higher level candidates could recall.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>The psychologist has read that in the general population people can remember an average of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>.</mo><mn>4</mn></math> digits of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="normal">π</mi></math>. The psychologist wants to perform a statistical test to see if IB Mathematics higher level candidates can remember more digits than the general population.</p>
</div>
<div class="specification">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>H</mtext><mn>0</mn></msub><mo> </mo><mo>:</mo><mo> </mo><mi>μ</mi><mo>=</mo><mn>4</mn><mo>.</mo><mn>4</mn></math> is the null hypothesis for this test.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an unbiased estimate of the population mean of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an unbiased estimate of the population variance of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>d</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the alternative hypothesis.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that all assumptions for this test are satisfied, carry out an appropriate hypothesis test. State and justify your conclusion. Use a <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo>%</mo></math> significance level.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A manager wishes to check the mean mass of flour put into bags in his factory. He randomly samples 10 bags and finds the mean mass is 1.478 kg and the standard deviation of the sample is 0.0196 kg.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{s_{n - 1}}">
<mrow>
<msub>
<mi>s</mi>
<mrow>
<mi>n</mi>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msub>
</mrow>
</math></span> for this sample.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find a 95 % confidence interval for the population mean, giving your answer to 4 significant figures.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The bags are labelled as being 1.5 kg mass. Comment on this claim with reference to your answer in part (b).</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>As part of the selection process for an engineering course at a particular university, applicants are given an exam in mathematics. This year the university has produced a new exam and they want to test if it is a valid indicator of future performance, before giving it to applicants. They randomly select 8 students in their first year of the engineering course and give them the exam. They compare the exam scores with their results in the engineering course.</p>
</div>
<div class="specification">
<p>The results of the 8 students are shown in the table.</p>
<p><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the name of this test for validity.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate Pearson’s product moment correlation coefficient for this data.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence determine, with a reason, if the new exam is a valid indicator of future performance.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question">
<p>In a coffee shop, the time it takes to serve a customer can be modelled by a normal distribution with a mean of 1.5 minutes and a standard deviation of 0.4 minutes.</p>
<p>Two customers enter the shop together. They are served one at a time.</p>
<p>Find the probability that the total time taken to serve both customers will be less than 4 minutes.</p>
<p>Clearly state any assumptions you have made.</p>
</div>
<br><hr><br><div class="specification">
<p>A <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2 \times 2">
<mn>2</mn>
<mo>×<!-- × --></mo>
<mn>2</mn>
</math></span> transition matrix for a Markov chain will have the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\mathbf{M}} = \left( {\begin{array}{*{20}{c}} a&{1 - b} \\ {1 - a}&b \end{array}} \right){\text{,}}\,\,0 < a < 1{\text{,}}\,\,0 < b < 1">
<mrow>
<mrow>
<mi mathvariant="bold">M</mi>
</mrow>
</mrow>
<mo>=</mo>
<mrow>
<mo>(</mo>
<mrow>
<mtable rowspacing="4pt" columnspacing="1em">
<mtr>
<mtd>
<mi>a</mi>
</mtd>
<mtd>
<mrow>
<mn>1</mn>
<mo>−<!-- − --></mo>
<mi>b</mi>
</mrow>
</mtd>
</mtr>
<mtr>
<mtd>
<mrow>
<mn>1</mn>
<mo>−<!-- − --></mo>
<mi>a</mi>
</mrow>
</mtd>
<mtd>
<mi>b</mi>
</mtd>
</mtr>
</mtable>
</mrow>
<mo>)</mo>
</mrow>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>0</mn>
<mo><</mo>
<mi>a</mi>
<mo><</mo>
<mn>1</mn>
<mrow>
<mtext>,</mtext>
</mrow>
<mspace width="thinmathspace"></mspace>
<mspace width="thinmathspace"></mspace>
<mn>0</mn>
<mo><</mo>
<mi>b</mi>
<mo><</mo>
<mn>1</mn>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\lambda = 1">
<mi>λ</mi>
<mo>=</mo>
<mn>1</mn>
</math></span> is always an eigenvalue for <strong>M</strong> and find the other eigenvalue in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
<mi>b</mi>
</math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the steady state probability vector for <strong>M</strong> in terms of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a">
<mi>a</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b">
<mi>b</mi>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The random variable <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X"> <mi>X</mi> </math></span> has the Poisson distribution <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{Po}}(m)"> <mrow> <mtext>Po</mtext> </mrow> <mo stretchy="false">(</mo> <mi>m</mi> <mo stretchy="false">)</mo> </math></span>. Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(X > 0) = \frac{3}{4}"> <mrow> <mtext>P</mtext> </mrow> <mo stretchy="false">(</mo> <mi>X</mi> <mo>></mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mfrac> <mn>3</mn> <mn>4</mn> </mfrac> </math></span>, find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="m"> <mi>m</mi> </math></span> in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\ln a"> <mi>ln</mi> <mo></mo> <mi>a</mi> </math></span> where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="a"> <mi>a</mi> </math></span> is an integer.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The random variable <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="Y"> <mi>Y</mi> </math></span> has the Poisson distribution <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{Po}}(2m)"> <mrow> <mtext>Po</mtext> </mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>m</mi> <mo stretchy="false">)</mo> </math></span>. Find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(Y > 1)"> <mrow> <mtext>P</mtext> </mrow> <mo stretchy="false">(</mo> <mi>Y</mi> <mo>></mo> <mn>1</mn> <mo stretchy="false">)</mo> </math></span> in the form <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{b - \ln c}}{c}"> <mfrac> <mrow> <mi>b</mi> <mo>−</mo> <mi>ln</mi> <mo></mo> <mi>c</mi> </mrow> <mi>c</mi> </mfrac> </math></span> where <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="b"> <mi>b</mi> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="c"> <mi>c</mi> </math></span> are integers.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A robot moves around the maze shown below.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">Whenever it leaves a room it is equally likely to take any of the exits.</p>
<p style="text-align: left;">The time interval between the robot entering and leaving a room is the same for all transitions.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the transition matrix for the maze.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A scientist sets up the robot and then leaves it moving around the maze for a long period of time.</p>
<p>Find the probability that the robot is in room <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> when the scientist returns.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The number of cars arriving at a junction in a particular town in any given minute between <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>9</mn><mo>:</mo><mn>00</mn><mo> </mo><mtext>am</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn><mo>:</mo><mn>00</mn><mo> </mo><mtext>am</mtext></math> is historically known to follow a Poisson distribution with a mean of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>5</mn><mo>.</mo><mn>4</mn></math> cars per minute.</p>
<p>A new road is built near the town. It is claimed that the new road has decreased the number of cars arriving at the junction.</p>
<p>To test the claim, the number of cars, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi></math>, arriving at the junction between <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>9</mn><mo>:</mo><mn>00</mn><mo> </mo><mtext>am</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>10</mn><mo>:</mo><mn>00</mn><mo> </mo><mtext>am</mtext></math> on a particular day will be recorded. The test will have the following hypotheses:</p>
<p style="padding-left: 90px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>H</mtext><mn>0</mn></msub><mo> </mo><mo>:</mo></math> the mean number of cars arriving at the junction has not changed,<br><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mtext>H</mtext><mn>1</mn></msub><mo> </mo><mo>:</mo></math> the mean number of cars arriving at the junction has decreased.</p>
<p>The alternative hypothesis will be accepted if <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi><mo>≤</mo><mn>300</mn></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Assuming the null hypothesis to be true, state the distribution of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>X</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability of a Type I error.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability of a Type II error, if the number of cars now follows a Poisson distribution with a mean of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo>.</mo><mn>5</mn></math> cars per minute.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider two events <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A">
<mi>A</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A">
<mi>A</mi>
</math></span> defined in the same sample space.</p>
</div>
<div class="specification">
<p>Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(A \cup B) = \frac{4}{9},{\text{ P}}(B|A) = \frac{1}{3}">
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>A</mi>
<mo>∪<!-- ∪ --></mo>
<mi>B</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mfrac>
<mn>4</mn>
<mn>9</mn>
</mfrac>
<mo>,</mo>
<mrow>
<mtext> P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>B</mi>
<mrow>
<mo stretchy="false">|</mo>
</mrow>
<mi>A</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(B|A') = \frac{1}{6}">
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>B</mi>
<mrow>
<mo stretchy="false">|</mo>
</mrow>
<msup>
<mi>A</mi>
<mo>′</mo>
</msup>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>6</mn>
</mfrac>
</math></span>,</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(A \cup B) = {\text{P}}(A) + {\text{P}}(A' \cap B)">
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>A</mi>
<mo>∪</mo>
<mi>B</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>A</mi>
<mo stretchy="false">)</mo>
<mo>+</mo>
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<msup>
<mi>A</mi>
<mo>′</mo>
</msup>
<mo>∩</mo>
<mi>B</mi>
<mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) show that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(A) = \frac{1}{3}">
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>A</mi>
<mo stretchy="false">)</mo>
<mo>=</mo>
<mfrac>
<mn>1</mn>
<mn>3</mn>
</mfrac>
</math></span>;</p>
<p>(ii) hence find <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}(B)">
<mrow>
<mtext>P</mtext>
</mrow>
<mo stretchy="false">(</mo>
<mi>B</mi>
<mo stretchy="false">)</mo>
</math></span>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Sue sometimes goes out for lunch. If she goes out for lunch on a particular day then the probability that she will go out for lunch on the following day is 0.4. If she does not go out for lunch on a particular day then the probability she will go out for lunch on the following day is 0.3.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the transition matrix for this Markov chain.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>We know that she went out for lunch on a particular Sunday, find the probability that she went out for lunch on the following Tuesday.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the steady state probability vector for this Markov chain.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The number of telephone calls received by a helpline over 80 one-minute periods are summarized in the table below.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="indent2">Find the exact value of the mean of this distribution.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="indent2">Test, at the 5% level of significance, whether or not the data can be modelled by a Poisson distribution.</p>
<div class="marks">[12]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The diagram below shows part of the screen from a weather forecasting website showing the data for town <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>. The percentages on the bottom row represent the likelihood of some rain during the hour leading up to the time given. For example there is a <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>69</mn><mo>%</mo></math> chance (a probability of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>69</mn></math>) of rain falling on any point in town <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> between <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0900</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1000</mn></math>.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">Paula works at a building site in the area covered by this page of the website from <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0900</mn></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1700</mn></math>. She has lunch from <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1300</mn></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1400</mn></math>.</p>
</div>
<div class="specification">
<p>In the following parts you may assume all probabilities are independent.</p>
<p>Paula needs to work outside between <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1000</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1300</mn></math> and will also spend her lunchtime outside.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the probability it rains during Paula’s lunch break.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability it will not rain while Paula is outside.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability it will rain at least once while Paula is outside.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given it rains at least once while Paula is outside find the probability that it rains during her lunch hour.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
<mi>X</mi>
</math></span> be a random variable which follows a normal distribution with mean <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\mu ">
<mi>μ<!-- μ --></mi>
</math></span>. Given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {X < \mu - 5} \right) = 0.2">
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>X</mi>
<mo><</mo>
<mi>μ<!-- μ --></mi>
<mo>−<!-- − --></mo>
<mn>5</mn>
</mrow>
<mo>)</mo>
</mrow>
<mo>=</mo>
<mn>0.2</mn>
</math></span> , find</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {X > \mu + 5} \right)">
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>X</mi>
<mo>></mo>
<mi>μ</mi>
<mo>+</mo>
<mn>5</mn>
</mrow>
<mo>)</mo>
</mrow>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\text{P}}\left( {X < \mu + 5\,\left| {\,X > \mu - 5} \right.} \right)">
<mrow>
<mtext>P</mtext>
</mrow>
<mrow>
<mo>(</mo>
<mrow>
<mi>X</mi>
<mo><</mo>
<mi>μ</mi>
<mo>+</mo>
<mn>5</mn>
<mspace width="thinmathspace"></mspace>
<mrow>
<mo>|</mo>
<mrow>
<mspace width="thinmathspace"></mspace>
<mi>X</mi>
<mo>></mo>
<mi>μ</mi>
<mo>−</mo>
<mn>5</mn>
</mrow>
<mo fence="true" stretchy="true" symmetric="true"></mo>
</mrow>
</mrow>
<mo>)</mo>
</mrow>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question">
<p>George goes fishing. From experience he knows that the mean number of fish he catches per hour is <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>1</mn></math>. It is assumed that the number of fish he catches can be modelled by a Poisson distribution.</p>
<p>On a day in which George spends <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn></math> hours fishing, find the probability that he will catch more than <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>9</mn></math> fish.</p>
</div>
<br><hr><br><div class="specification">
<p>The matrix <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">M</mi><mo>=</mo><mfenced><mtable><mtr><mtd><mn>0</mn><mo>.</mo><mn>2</mn><mo> </mo><mo> </mo></mtd><mtd><mn>0</mn><mo>.</mo><mn>7</mn></mtd></mtr><mtr><mtd><mn>0</mn><mo>.</mo><mn>8</mn><mo> </mo><mo> </mo></mtd><mtd><mn>0</mn><mo>.</mo><mn>3</mn></mtd></mtr></mtable></mfenced></math> has eigenvalues <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>-</mo><mn>5</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math>.</p>
</div>
<div class="specification">
<p>A switch has two states, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math>. Each second it either remains in the same state or moves according to the following rule: If it is in state <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> it will move to state <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> with a probability of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>8</mn></math> and if it is in state <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math> it will move to state <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> with a probability of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>7</mn></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an eigenvector corresponding to the eigenvalue of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math>. Give your answer in the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><mi>a</mi></mtd></mtr><mtr><mtd><mi>b</mi></mtd></mtr></mtable></mfenced></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>,</mo><mo> </mo><mi>b</mi><mo>∈</mo><mi mathvariant="normal">ℤ</mi></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using your answer to (a), or otherwise, find the long-term probability of the switch being in state <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>. Give your answer in the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mi>c</mi><mi>d</mi></mfrac></math>, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>,</mo><mo> </mo><mi>d</mi><mo>∈</mo><msup><mi mathvariant="normal">ℤ</mi><mo>+</mo></msup></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The faces of a fair six-sided die are numbered 1, 2, 2, 4, 4, 6. Let <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
<mi>X</mi>
</math></span> be the discrete random variable that models the score obtained when this die is rolled.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Complete the probability distribution table for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
<mi>X</mi>
</math></span>.</p>
<p><img src="images/Schermafbeelding_2017-02-28_om_11.16.45.png" alt="N16/5/MATHL/HP1/ENG/TZ0/02.a"></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the expected value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="X">
<mi>X</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The strength of earthquakes is measured on the Richter magnitude scale, with values typically between <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn></math> where <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>8</mn></math> is the most severe.</p>
<p>The Gutenberg–Richter equation gives the average number of earthquakes per year, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi></math>, which have a magnitude of at least <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>M</mi></math>. For a particular region the equation is</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>log</mi><mn>10</mn></msub><mo> </mo><mi>N</mi><mo>=</mo><mi>a</mi><mo>-</mo><mi>M</mi></math>, for some <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi><mo>∈</mo><mi mathvariant="normal">ℝ</mi></math>.</p>
<p>This region has an average of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>100</mn></math> earthquakes per year with a magnitude of at least <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>3</mn></math>.</p>
</div>
<div class="specification">
<p>The equation for this region can also be written as <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi><mo>=</mo><mfrac><mi>b</mi><msup><mn>10</mn><mi>M</mi></msup></mfrac></math>.</p>
</div>
<div class="specification">
<p>Within this region the most severe earthquake recorded had a magnitude of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>7</mn><mo>.</mo><mn>2</mn></math>.</p>
</div>
<div class="specification">
<p>The number of earthquakes in a given year with a magnitude of at least <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>7</mn><mo>.</mo><mn>2</mn></math> can be modelled by a Poisson distribution, with mean <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>N</mi></math>. The number of earthquakes in one year is independent of the number of earthquakes in any other year.</p>
<p>Let <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Y</mi></math> be the number of years between the earthquake of magnitude <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>7</mn><mo>.</mo><mn>2</mn></math> and the next earthquake of at least this magnitude.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>a</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>b</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the average number of earthquakes in a year with a magnitude of at least <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>7</mn><mo>.</mo><mn>2</mn></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>P</mtext><mo>(</mo><mi>Y</mi><mo>></mo><mn>100</mn><mo>)</mo></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question">
<p>Find the coordinates of the point of intersection of the planes defined by the equations <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x + y + z = 3,{\text{ }}x - y + z = 5">
<mi>x</mi>
<mo>+</mo>
<mi>y</mi>
<mo>+</mo>
<mi>z</mi>
<mo>=</mo>
<mn>3</mn>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mi>x</mi>
<mo>−</mo>
<mi>y</mi>
<mo>+</mo>
<mi>z</mi>
<mo>=</mo>
<mn>5</mn>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="x + y + 2z = 6">
<mi>x</mi>
<mo>+</mo>
<mi>y</mi>
<mo>+</mo>
<mn>2</mn>
<mi>z</mi>
<mo>=</mo>
<mn>6</mn>
</math></span>.</p>
</div>
<br><hr><br>