File "HL-paper3.html"
Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Math AI/Topic 3/HL-paper3html
File size: 314.08 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>HL Paper 3</h2><div class="specification">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>G</mi></math> is a simple, connected, planar graph with <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>9</mn></math> vertices and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi></math> edges.</p>
</div>
<div class="specification">
<p>The complement of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>G</mi></math> has <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mo>'</mo></math> edges.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the maximum possible value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mo>'</mo></math> in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that the complement of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>G</mi></math> is also planar and connected, find the possible values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>H</mi></math> is a simple graph with <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi></math> vertices and <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi></math> edges.</p>
<p>Given that both <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>H</mi></math> and its complement are planar and connected, find the maximum possible value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>v</mi></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Christine and her friends live in Winnipeg, Canada. The weighted graph shows the location of their houses and the time, in minutes, to travel between each house.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>Christine’s house is located at vertex <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use Dijkstra’s algorithm to find the shortest time to travel from <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>F</mtext></math>, clearly showing how the algorithm has been applied.</p>
<div class="marks">[6]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence write down the shortest path from <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>C</mtext></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>F</mtext></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A new road is constructed that allows Christine to travel from <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>H</mtext></math> to <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> in <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math> minutes. If Christine starts from home and uses this new road her minimum travel time to <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> is reduced, but her minimum travel time to <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>F</mtext></math> remains the same.</p>
<p>Find the possible values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi></math>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><strong>This question explores how graph algorithms can be applied to a graph with an unknown edge weight.</strong></p>
<p><br>Graph <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi></math> is shown in the following diagram. The vertices of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi></math> represent tourist attractions in a city. The weight of each edge represents the travel time, to the nearest minute, between two attractions. The route between <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>F</mtext></math> is currently being resurfaced and this has led to a variable travel time. For this reason, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AF</mtext></math> has an unknown travel time <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> minutes, where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>∈</mo><msup><mi mathvariant="normal">ℤ</mi><mo>+</mo></msup></math>.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>Daniel plans to visit all the attractions, starting and finishing at <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>. He wants to minimize his travel time.</p>
<p>To find a lower bound for Daniel’s travel time, vertex <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> and its adjacent edges are first deleted.</p>
</div>
<div class="specification">
<p>Daniel makes a table to show the minimum travel time between each pair of attractions.</p>
<p><img src=""></p>
</div>
<div class="specification">
<p>Write down the value of</p>
</div>
<div class="specification">
<p>To find an upper bound for Daniel’s travel time, the nearest neighbour algorithm is used, starting at vertex <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math>.</p>
</div>
<div class="specification">
<p>Consider the case where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mn>3</mn></math>.</p>
</div>
<div class="specification">
<p>Consider the case where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>></mo><mn>3</mn></math>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down a Hamiltonian cycle in <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use Prim’s algorithm, starting at vertex <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>B</mtext></math>, to find the weight of the minimum spanning tree of the remaining graph. You should indicate clearly the order in which the algorithm selects each edge.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence, for the case where <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo><</mo><mn>9</mn></math>, find a lower bound for Daniel’s travel time, in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>p</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>q</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><math xmlns="http://www.w3.org/1998/Math/MathML"><mi>r</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the nearest neighbour algorithm to find two possible cycles.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the best upper bound for Daniel’s travel time.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the least value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> for which the edge <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AF</mtext></math> will definitely not be used by Daniel.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence state the value of the upper bound for Daniel’s travel time for the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> found in part (e)(i).</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The tourist office in the city has received complaints about the lack of cleanliness of some routes between the attractions. Corinne, the office manager, decides to inspect all the routes between all the attractions, starting and finishing at <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>H</mtext></math>. The sum of the weights of all the edges in graph <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>W</mi></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>92</mn><mo>+</mo><mi>x</mi><mo>)</mo></math>.</p>
<p>Corinne inspects all the routes as quickly as possible and takes <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn></math> hours.</p>
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math> during Corinne’s inspection.</p>
<div class="marks">[5]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>A graphic designer, Ben, wants to create an animation in which a sequence of squares is created by a composition of successive enlargements and translations and then rotated about the origin and reduced in size.</p>
<p>Ben outlines his plan with the following storyboards.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The first four frames of the animation are shown below in greater detail.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>The sides of each successive square are one half the size of the adjacent larger square. Let the sequence of squares be <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>U</mi><mn>0</mn></msub><mo>,</mo><mo> </mo><msub><mi>U</mi><mn>1</mn></msub><mo>,</mo><mo> </mo><msub><mi>U</mi><mn>2</mn></msub><mo>,</mo><mo> </mo><mo>…</mo></math></p>
<p>The first square, <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>U</mi><mn>0</mn></msub></math>, has sides of length <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>4</mn><mo> </mo><mtext>cm</mtext></math>.</p>
</div>
<div class="specification">
<p>Ben decides the animation will continue as long as the width of the square is greater than the width of one pixel.</p>
</div>
<div class="specification">
<p>Ben decides to generate the squares using the transformation</p>
<p style="padding-left: 60px;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mtable><mtr><mtd><msub><mi>x</mi><mi>n</mi></msub></mtd></mtr><mtr><mtd><msub><mi>y</mi><mi>n</mi></msub></mtd></mtr></mtable></mfenced><mo>=</mo><msub><mi mathvariant="bold-italic">A</mi><mi>n</mi></msub><mfenced><mtable><mtr><mtd><msub><mi>x</mi><mn>0</mn></msub></mtd></mtr><mtr><mtd><msub><mi>y</mi><mn>0</mn></msub></mtd></mtr></mtable></mfenced><mo>+</mo><msub><mi mathvariant="bold-italic">b</mi><mi>n</mi></msub></math></p>
<p>where <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi mathvariant="bold-italic">A</mi><mi>n</mi></msub></math> is a <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>×</mo><mn>2</mn></math> matrix that represents an enlargement, <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi mathvariant="bold-italic">b</mi><mi>n</mi></msub></math> is a <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>×</mo><mn>1</mn></math> column vector that represents a translation, <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><msub><mi>x</mi><mn>0</mn></msub><mo>,</mo><mo> </mo><msub><mi>y</mi><mn>0</mn></msub></mrow></mfenced></math> is a point in <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi mathvariant="bold-italic">U</mi><mn>0</mn></msub></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><msub><mi>x</mi><mi>n</mi></msub><mo>,</mo><mo> </mo><msub><mi>y</mi><mi>n</mi></msub></mrow></mfenced></math> is its image in <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi mathvariant="bold-italic">U</mi><mi>n</mi></msub></math>.</p>
</div>
<div class="specification">
<p>By considering the case where <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><msub><mi>x</mi><mn>0</mn></msub><mo>,</mo><mo> </mo><msub><mi>y</mi><mn>0</mn></msub></mrow></mfenced></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><mn>0</mn><mo>,</mo><mo> </mo><mn>0</mn></mrow></mfenced></math>,</p>
</div>
<div class="specification">
<p>Once the image of squares has been produced, Ben wants to continue the animation by rotating the image counter clockwise about the origin and having it reduce in size during the rotation.</p>
<p>Let <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>E</mi><mi>θ</mi></msub></math> be the enlargement matrix used when the original sequence of squares has been rotated through <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi></math> degrees.</p>
<p>Ben decides the enlargement scale factor, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi></math>, should be a linear function of the angle, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi></math>, and after a rotation of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>360</mn><mo>°</mo></math> the sequence of squares should be half of its original length.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an expression for the width of <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>U</mi><mi>n</mi></msub></math> in centimetres.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given the width of a pixel is approximately <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>0</mn><mo>.</mo><mn>025</mn><mo> </mo><mtext>cm</mtext></math>, find the number of squares in the final image.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi mathvariant="bold-italic">A</mi><mn>1</mn></msub></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi mathvariant="bold-italic">A</mi><mi>n</mi></msub></math>, in terms of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>state the coordinates, <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced><mrow><msub><mi>x</mi><mn>1</mn></msub><mo>,</mo><mo> </mo><msub><mi>y</mi><mn>1</mn></msub></mrow></mfenced></math>, of its image in <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>U</mi><mn>1</mn></msub></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>hence find <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi mathvariant="bold-italic">b</mi><mn>1</mn></msub></math>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>show that <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi mathvariant="bold-italic">b</mi><mi>n</mi></msub><mo>=</mo><mfenced><mtable><mtr><mtd><mn>8</mn><mfenced><mrow><mn>1</mn><mo>-</mo><msup><mn>2</mn><mrow><mo>-</mo><mi>n</mi></mrow></msup></mrow></mfenced></mtd></mtr><mtr><mtd><mn>8</mn><mfenced><mrow><mn>1</mn><mo>-</mo><msup><mn>2</mn><mrow><mo>-</mo><mi>n</mi></mrow></msup></mrow></mfenced></mtd></mtr></mtable></mfenced></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence or otherwise, find the coordinates of the top left-hand corner in <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>U</mi><mn>7</mn></msub></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi></math>, in the form <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>s</mi><mfenced><mi>θ</mi></mfenced><mo>=</mo><mi>m</mi><mi>θ</mi><mo>+</mo><mi>c</mi></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>E</mi><mi>θ</mi></msub></math>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the image of <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>1</mn><mo>,</mo><mo> </mo><mn>1</mn><mo>)</mo></math> after it is rotated <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>135</mn><mo>°</mo></math> and enlarged.</p>
<div class="marks">[4]</div>
<div class="question_part_label">f.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi></math> at which the enlargement scale factor equals zero.</p>
<div class="marks">[1]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>After the enlargement scale factor equals zero, Ben continues to rotate the image for another two revolutions.</p>
<p>Describe the animation for these two revolutions, stating the final position of the sequence of squares.</p>
<div class="marks">[3]</div>
<div class="question_part_label">h.</div>
</div>
<br><hr><br><div class="specification">
<p><strong>This question is about a metropolitan area council planning a new town and the location of a new toxic waste dump.</strong></p>
<p><br>A metropolitan area in a country is modelled as a square. The area has four towns, located at the corners of the square. All units are in kilometres with the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi></math>-coordinate representing the distance east and the <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi></math>-coordinate representing the distance north from the origin at <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>0</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>)</mo></math>.</p>
<ul>
<li>Edison is modelled as being positioned at <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>E</mtext><mo>(</mo><mn>0</mn><mo>,</mo><mo> </mo><mn>40</mn><mo>)</mo></math>.</li>
<li>Fermitown is modelled as being positioned at <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>F</mtext><mo>(</mo><mn>40</mn><mo>,</mo><mo> </mo><mn>40</mn><mo>)</mo></math>.</li>
<li>Gaussville is modelled as being positioned at <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>G</mtext><mo>(</mo><mn>40</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>)</mo></math>.</li>
<li>Hamilton is modelled as being positioned at <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>H</mtext><mo>(</mo><mn>0</mn><mo>,</mo><mo> </mo><mn>0</mn><mo>)</mo></math>.</li>
</ul>
</div>
<div class="specification">
<p>The metropolitan area council decides to build a new town called Isaacopolis located at <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>I</mtext><mo>(</mo><mn>30</mn><mo>,</mo><mo> </mo><mn>20</mn><mo>)</mo></math>.</p>
<p>A new Voronoi diagram is to be created to include Isaacopolis. The equation of the perpendicular bisector of <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="[" close="]"><mtext>IE</mtext></mfenced></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>y</mi><mo>=</mo><mfrac><mn>3</mn><mn>2</mn></mfrac><mi>x</mi><mo>+</mo><mfrac><mn>15</mn><mn>2</mn></mfrac></math>.</p>
</div>
<div class="specification">
<p>The metropolitan area is divided into districts based on the Voronoi regions found in part (c).</p>
</div>
<div class="specification">
<p>A toxic waste dump needs to be located within the metropolitan area. The council wants to locate it as far as possible from the nearest town.</p>
</div>
<div class="specification">
<p>The toxic waste dump, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>T</mtext></math>, is connected to the towns via a system of sewers.</p>
<p>The connections are represented in the following matrix, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">M</mi></math>, where the order of rows and columns is (<math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>E, F, G, H, I, T</mtext></math>).</p>
<p style="text-align: center;"><math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">M</mi><mo>=</mo><mfenced><mtable><mtr><mtd><mn>1</mn><mo> </mo><mo> </mo></mtd><mtd><mn>0</mn><mo> </mo><mo> </mo></mtd><mtd><mn>1</mn><mo> </mo><mo> </mo></mtd><mtd><mn>1</mn><mo> </mo><mo> </mo></mtd><mtd><mn>0</mn><mo> </mo><mo> </mo></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn><mo> </mo><mo> </mo></mtd><mtd><mn>1</mn><mo> </mo><mo> </mo></mtd><mtd><mn>0</mn><mo> </mo><mo> </mo></mtd><mtd><mn>0</mn><mo> </mo><mo> </mo></mtd><mtd><mn>0</mn><mo> </mo><mo> </mo></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>1</mn><mo> </mo><mo> </mo></mtd><mtd><mn>0</mn><mo> </mo><mo> </mo></mtd><mtd><mn>1</mn><mo> </mo><mo> </mo></mtd><mtd><mn>0</mn><mo> </mo><mo> </mo></mtd><mtd><mn>1</mn><mo> </mo><mo> </mo></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>1</mn><mo> </mo><mo> </mo></mtd><mtd><mn>0</mn><mo> </mo><mo> </mo></mtd><mtd><mn>0</mn><mo> </mo><mo> </mo></mtd><mtd><mn>1</mn><mo> </mo><mo> </mo></mtd><mtd><mn>0</mn><mo> </mo><mo> </mo></mtd><mtd><mn>1</mn></mtd></mtr><mtr><mtd><mn>0</mn><mo> </mo><mo> </mo></mtd><mtd><mn>0</mn><mo> </mo><mo> </mo></mtd><mtd><mn>1</mn><mo> </mo><mo> </mo></mtd><mtd><mn>0</mn><mo> </mo><mo> </mo></mtd><mtd><mn>1</mn><mo> </mo><mo> </mo></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn><mo> </mo><mo> </mo></mtd><mtd><mn>1</mn><mo> </mo><mo> </mo></mtd><mtd><mn>0</mn><mo> </mo><mo> </mo></mtd><mtd><mn>1</mn><mo> </mo><mo> </mo></mtd><mtd><mn>0</mn><mo> </mo><mo> </mo></mtd><mtd><mn>1</mn></mtd></mtr></mtable></mfenced></math></p>
<p>A leak occurs from the toxic waste dump and travels through the sewers. The pollution takes one day to travel between locations that are directly connected.</p>
<p>The digit <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math> in <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">M</mi></math> represents a direct connection. The values of <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn></math> in the leading diagonal of <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="bold-italic">M</mi></math> mean that once a location is polluted it will stay polluted.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The model assumes that each town is positioned at a single point. Describe possible circumstances in which this modelling assumption is reasonable.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch a Voronoi diagram showing the regions within the metropolitan area that are closest to each town.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the equation of the perpendicular bisector of <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="[" close="]"><mtext>IF</mtext></mfenced></math>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that the coordinates of one vertex of the new Voronoi diagram are <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>(</mo><mn>20</mn><mo>,</mo><mo> </mo><mn>37</mn><mo>.</mo><mn>5</mn><mo>)</mo></math>, find the coordinates of the other two vertices within the metropolitan area.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch this new Voronoi diagram showing the regions within the metropolitan area which are closest to each town.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A car departs from a point due north of Hamilton. It travels due east at constant speed to a destination point due North of Gaussville. It passes through the Edison, Isaacopolis and Fermitown districts. The car spends <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>30</mn><mo>%</mo></math> of the travel time in the Isaacopolis district.</p>
<p>Find the distance between Gaussville and the car’s destination point.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the location of the toxic waste dump, given that this location is not on the edge of the metropolitan area.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Make one possible criticism of the council’s choice of location.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find which town is last to be polluted. Justify your answer.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the number of days it takes for the pollution to reach the last town.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A sewer inspector needs to plan the shortest possible route through each of the connections between different locations. Determine an appropriate start point and an appropriate end point of the inspection route.</p>
<p><strong>Note</strong> that the fact that each location is connected to itself does not correspond to a sewer that needs to be inspected.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.iii.</div>
</div>
<br><hr><br><div class="specification">
<p><strong>This question compares possible designs for a new computer network between multiple school buildings, and whether they meet specific requirements.</strong></p>
<p><br>A school’s administration team decides to install new fibre-optic internet cables underground. The school has eight buildings that need to be connected by these cables. A map of the school is shown below, with the internet access point of each building labelled <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A–H</mtext></math>.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>Jonas is planning where to install the underground cables. He begins by determining the distances, in metres, between the underground access points in each of the buildings.</p>
<p>He finds <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AD</mtext><mo>=</mo><mn>89</mn><mo>.</mo><mn>2</mn><mo> </mo><mtext>m</mtext></math>, <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>DF</mtext><mo>=</mo><mn>104</mn><mo>.</mo><mn>9</mn><mo> </mo><mtext>m</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext><mover><mtext>D</mtext><mo>^</mo></mover><mtext>F</mtext><mo>=</mo><mn>83</mn><mo>°</mo></math>.</p>
</div>
<div class="specification">
<p>The cost for installing the cable directly between <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>F</mtext></math> is <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>$</mo><mn>21</mn><mo> </mo><mn>310</mn></math>.</p>
</div>
<div class="specification">
<p>Jonas estimates that it will cost <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>$</mo><mn>110</mn></math> per metre to install the cables between all the other buildings.</p>
</div>
<div class="specification">
<p>Jonas creates the following graph, <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>S</mi></math>, using the cost of installing the cables between two buildings as the weight of each edge.</p>
<p style="text-align: center;"><img src=""></p>
<p>The computer network could be designed such that each building is directly connected to at least one other building and hence all buildings are indirectly connected.</p>
</div>
<div class="specification">
<p>The computer network fails if any part of it becomes unreachable from any other part. To help protect the network from failing, every building could be connected to at least two other buildings. In this way if one connection breaks, the building is still part of the computer network. Jonas can achieve this by finding a Hamiltonian cycle within the graph.</p>
</div>
<div class="specification">
<p>After more research, Jonas decides to install the cables as shown in the diagram below.</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>Each individual cable is installed such that each end of the cable is connected to a building’s access point. The connection between each end of a cable and an access point has a <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>1</mn><mo>.</mo><mn>4</mn><mo>%</mo></math> probability of failing after a power surge.</p>
<p>For the network to be successful, each building in the network must be able to communicate with every other building in the network. In other words, there must be a path that connects any two buildings in the network. Jonas would like the network to have less than a <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>%</mo></math> probability of failing to operate after a power surge.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>AF</mtext></math>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the cost per metre of installing this cable.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State why the cost for installing the cable between <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>A</mtext></math> and <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>F</mtext></math> would be higher than between the other buildings.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By using Kruskal’s algorithm, find the minimum spanning tree for <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>S</mi></math>, showing clearly the order in which edges are added.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hence find the minimum installation cost for the cables that would allow all the buildings to be part of the computer network.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State why a path that forms a Hamiltonian cycle does not always form an Eulerian circuit.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Starting at <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>D</mtext></math>, use the nearest neighbour algorithm to find the upper bound for the installation cost of a computer network in the form of a Hamiltonian cycle.</p>
<p><strong>Note:</strong> Although the graph is not complete, in this instance it is not necessary to form a table of least distances.</p>
<div class="marks">[5]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By deleting <math xmlns="http://www.w3.org/1998/Math/MathML"><mtext>D</mtext></math>, use the deleted vertex algorithm to find the lower bound for the installation cost of the cycle.</p>
<div class="marks">[6]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that Jonas’s network satisfies the requirement of there being less than a <math xmlns="http://www.w3.org/1998/Math/MathML"><mn>2</mn><mo>%</mo></math> probability of the network failing after a power surge.</p>
<div class="marks">[5]</div>
<div class="question_part_label">h.</div>
</div>
<br><hr><br><div class="specification">
<p>The weights of the edges in the complete graph <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="G">
<mi>G</mi>
</math></span> are given in the following table.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-10_om_09.18.27.png" alt="M17/5/MATHL/HP3/ENG/TZ0/DM/02"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Starting at A , use the nearest neighbour algorithm to find an upper bound for the travelling salesman problem for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="G">
<mi>G</mi>
</math></span>.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By first deleting vertex A , use the deleted vertex algorithm together with Kruskal’s algorithm to find a lower bound for the travelling salesman problem for <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="G">
<mi>G</mi>
</math></span>.</p>
<div class="marks">[7]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the graph <em>G</em> represented in the following diagram.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="specification">
<p>The graph <em>G</em> is a plan of a holiday resort where each vertex represents a villa and the edges represent the roads between villas. The weights of the edges are the times, in minutes, Mr José, the security guard, takes to walk along each of the roads. Mr José is based at villa A.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State, with a reason, whether or not <em>G</em> has an Eulerian circuit.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use Kruskal’s algorithm to find a minimum spanning tree for <em>G</em>, stating its total weight. Indicate clearly the order in which the edges are added.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use a suitable algorithm to show that the minimum time in which Mr José can get from A to E is 13 minutes.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the minimum time it takes Mr José to patrol the resort if he has to walk along every road at least once, starting and ending at A. State clearly which roads need to be repeated.</p>
<div class="marks">[7]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In the context of graph theory, explain briefly what is meant by a circuit;</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In the context of graph theory, explain briefly what is meant by an Eulerian circuit.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The graph <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="G">
<mi>G</mi>
</math></span> has six vertices and an Eulerian circuit. Determine whether or not its complement <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="G'">
<msup>
<mi>G</mi>
<mo>′</mo>
</msup>
</math></span> can have an Eulerian circuit.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find an example of a graph <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="H">
<mi>H</mi>
</math></span>, with five vertices, such that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="H">
<mi>H</mi>
</math></span> and its complement <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="H'">
<msup>
<mi>H</mi>
<mo>′</mo>
</msup>
</math></span> both have an Eulerian trail but neither has an Eulerian circuit. Draw <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="H">
<mi>H</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="H'">
<msup>
<mi>H</mi>
<mo>′</mo>
</msup>
</math></span> as your solution.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the following weighted graph <em>G</em>.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State what feature of <em>G</em> ensures that <em>G</em> has an Eulerian trail.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State what feature of <em>G</em> ensures that <em>G</em> does not have an Eulerian circuit.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down an Eulerian trail in <em>G</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Starting and finishing at B, find a solution to the Chinese postman problem for<em> G</em>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the total weight of the solution.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>Mathilde delivers books to five libraries, A, B, C, D and E. She starts her deliveries at library D and travels to each of the other libraries once, before returning to library D. Mathilde wishes to keep her travelling distance to a minimum.</p>
<p>The weighted graph <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="H">
<mi>H</mi>
</math></span>, representing the distances, measured in kilometres, between the five libraries, has the following table.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-02-09_om_05.58.38.png" alt="N17/5/MATHL/HP3/ENG/TZ0/DM/01"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the weighted graph <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="H">
<mi>H</mi>
</math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Starting at library D use the nearest-neighbour algorithm, to find an upper bound for Mathilde’s minimum travelling distance. Indicate clearly the order in which the edges are selected.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By first removing library C, use the deleted vertex algorithm, to find a lower bound for Mathilde’s minimum travelling distance.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The simple, complete graph <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\kappa _n}(n > 2)">
<mrow>
<msub>
<mi>κ<!-- κ --></mi>
<mi>n</mi>
</msub>
</mrow>
<mo stretchy="false">(</mo>
<mi>n</mi>
<mo>></mo>
<mn>2</mn>
<mo stretchy="false">)</mo>
</math></span> has vertices <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{A}}_1},{\text{ }}{{\text{A}}_2},{\text{ }}{{\text{A}}_3},{\text{ }} \ldots ,{\text{ }}{{\text{A}}_n}">
<mrow>
<msub>
<mrow>
<mtext>A</mtext>
</mrow>
<mn>1</mn>
</msub>
</mrow>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>A</mtext>
</mrow>
<mn>2</mn>
</msub>
</mrow>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>A</mtext>
</mrow>
<mn>3</mn>
</msub>
</mrow>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mo>…<!-- … --></mo>
<mo>,</mo>
<mrow>
<mtext> </mtext>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>A</mtext>
</mrow>
<mi>n</mi>
</msub>
</mrow>
</math></span>. The weight of the edge from <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{A}}_i}">
<mrow>
<msub>
<mrow>
<mtext>A</mtext>
</mrow>
<mi>i</mi>
</msub>
</mrow>
</math></span> to <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{A}}_j}">
<mrow>
<msub>
<mrow>
<mtext>A</mtext>
</mrow>
<mi>j</mi>
</msub>
</mrow>
</math></span> is given by the number <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="i + j">
<mi>i</mi>
<mo>+</mo>
<mi>j</mi>
</math></span>.</p>
</div>
<div class="specification">
<p>Consider the general graph <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\kappa _n}">
<mrow>
<msub>
<mi>κ<!-- κ --></mi>
<mi>n</mi>
</msub>
</mrow>
</math></span>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Draw the graph <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\kappa _4}">
<mrow>
<msub>
<mi>κ</mi>
<mn>4</mn>
</msub>
</mrow>
</math></span> including the weights of all the edges.</p>
<p>(ii) Use the nearest-neighbour algorithm, starting at vertex <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{A}}_1}">
<mrow>
<msub>
<mrow>
<mtext>A</mtext>
</mrow>
<mn>1</mn>
</msub>
</mrow>
</math></span>, to find a Hamiltonian cycle.</p>
<p>(iii) Hence, find an upper bound to the travelling salesman problem for this weighted graph.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Consider the graph <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\kappa _5}">
<mrow>
<msub>
<mi>κ</mi>
<mn>5</mn>
</msub>
</mrow>
</math></span>. Use the deleted vertex algorithm, with <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{A}}_5}">
<mrow>
<msub>
<mrow>
<mtext>A</mtext>
</mrow>
<mn>5</mn>
</msub>
</mrow>
</math></span> as the deleted vertex, to find a lower bound to the travelling salesman problem for this weighted graph.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Use the nearest-neighbour algorithm, starting at vertex <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{A}}_1}">
<mrow>
<msub>
<mrow>
<mtext>A</mtext>
</mrow>
<mn>1</mn>
</msub>
</mrow>
</math></span>, to find a Hamiltonian cycle.</p>
<p>(ii) Hence find and simplify an expression in <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="n">
<mi>n</mi>
</math></span>, for an upper bound to the travelling salesman problem for this weighted graph.</p>
<div class="marks">[7]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By splitting the weight of the edge <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{{\text{A}}_i}{{\text{A}}_j}">
<mrow>
<msub>
<mrow>
<mtext>A</mtext>
</mrow>
<mi>i</mi>
</msub>
</mrow>
<mrow>
<msub>
<mrow>
<mtext>A</mtext>
</mrow>
<mi>j</mi>
</msub>
</mrow>
</math></span> into two parts or otherwise, show that all Hamiltonian cycles of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\kappa _n}">
<mrow>
<msub>
<mi>κ</mi>
<mi>n</mi>
</msub>
</mrow>
</math></span> have the same total weight, equal to the answer found in (c)(ii).</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="G">
<mi>G</mi>
</math></span> is a simple, connected graph with eight vertices.</p>
</div>
<div class="specification">
<p><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="H">
<mi>H</mi>
</math></span> is a connected, planar graph, with <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v">
<mi>v</mi>
</math></span> vertices, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="e">
<mi>e</mi>
</math></span> edges and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f">
<mi>f</mi>
</math></span> faces. Every face in <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="H">
<mi>H</mi>
</math></span> is bounded by exactly <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k">
<mi>k</mi>
</math></span> edges.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the minimum number of edges in <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="G"> <mi>G</mi> </math></span>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the maximum number of edges in <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="G"> <mi>G</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the maximum number of edges in <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="G"> <mi>G</mi> </math></span>, given that <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="G"> <mi>G</mi> </math></span> contains an Eulerian circuit.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="2e = kf"> <mn>2</mn> <mi>e</mi> <mo>=</mo> <mi>k</mi> <mi>f</mi> </math></span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span> when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v = 9"> <mi>v</mi> <mo>=</mo> <mn>9</mn> </math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="k = 3"> <mi>k</mi> <mo>=</mo> <mn>3</mn> </math></span>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the possible values of <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="f"> <mi>f</mi> </math></span> when <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="v = 13"> <mi>v</mi> <mo>=</mo> <mn>13</mn> </math></span>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>A driver needs to make deliveries to five shops <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="A">
<mi>A</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="B">
<mi>B</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="C">
<mi>C</mi>
</math></span>, <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="D">
<mi>D</mi>
</math></span> and <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="E">
<mi>E</mi>
</math></span>. The driver starts and finishes his journey at the warehouse <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="W">
<mi>W</mi>
</math></span>. The driver wants to find the shortest route to visit all the shops and return to the warehouse. The distances, in kilometres, between the locations are given in the following table.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By deleting <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="W"> <mi>W</mi> </math></span>, use the deleted vertex algorithm to find a lower bound for the length of a route that visits every shop, starting and finishing at <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="W"> <mi>W</mi> </math></span>.</p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Starting from <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="W"> <mi>W</mi> </math></span>, use the nearest-neighbour algorithm to find a route which gives an upper bound for this problem and calculate its length.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br>