File "markSceme-SL-paper3.html"
Path: /IB QUESTIONBANKS/5 Fifth Edition - PAPER/HTML/Chemistry/Nature of Science/markSceme-SL-paper3html
File size: 745.11 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-02ef852527079acf252dc4c9b2922c93db8fde2b6bff7c3c7f657634ae024ff1.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-9717ccaf4d6f9e8b66ebc0e8784b3061d3f70414d8c920e3eeab2c58fdb8b7c9.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../../../../../../index.html">Home</a>
</li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li class="dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Help
<b class="caret"></b>
</a>
<ul class="dropdown-menu">
<li><a href="https://questionbank.ibo.org/video_tour?locale=en">Video tour</a></li>
<li><a href="https://questionbank.ibo.org/instructions?locale=en">Detailed instructions</a></li>
<li><a target="_blank" href="https://ibanswers.ibo.org/">IB Answers</a></li>
</ul>
</li>
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
<div class="pull-right screen_only"><a class="btn btn-small btn-info" href="https://questionbank.ibo.org/updates?locale=en">Updates to Questionbank</a></div>
<p class="muted language_chooser">
User interface language:
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=en">English</a>
|
<a href="https://questionbank.ibo.org/en/users/set_user_locale?new_locale=es">Español</a>
</p>
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="https://mirror.ibdocs.top/qb.png" alt="Ib qb 46 logo">
</div>
</div>
</div>
<h2>SL Paper 3</h2><div class="specification">
<p><span style="background-color: #ffffff;">Nanotechnology has allowed the manipulation of materials on the atomic level.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Describe the structure and bonding of a carbon nanotube.</span></p>
<p> </p>
<p><span style="background-color: #ffffff;">Structure:</span></p>
<p><span style="background-color: #ffffff;">Bonding:</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Suggest <strong>one</strong> application for carbon nanotubes.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Structure:</em><br>giant covalent/network covalent <strong>[✔]</strong></span></p>
<p><em><span style="background-color: #ffffff;"><strong> Note:</strong> Accept “cylindrical/tube shaped”.<br></span></em></p>
<p><span style="background-color: #ffffff;"><em>Bonding</em>:<br>each carbon covalently bonded to 3 other carbons<br><em><strong>OR</strong></em><br>each bond has order of 1.5</span></p>
<p><em><strong><span style="background-color: #ffffff;">Note:</span></strong><span style="background-color: #ffffff;"> <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: italic;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">Accept “has delocalized electrons” <strong>OR</strong> “has sp<sup>2</sup> hybridization”.</span></span></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Any one of</em>:<br>3D electrodes <strong>[✔]</strong><br>catalysts <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</span><br>biosensors <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</span><br>molecular stents <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</span><br>body armour <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</span><br>synthetic muscles <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</span><br>micro transistors/circuitry/capacitors/electrodes <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</span><br>reinforcing phase in a matrix/composite material «such as concrete» <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</span><br>micro antenna <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</span><br>stealth technology <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</span><br>water/air filtration <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</span><br>solar cells <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</span><br>tennis racquets <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</span><br>microelectronic circuits <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</span></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong> Note</strong>: Do <strong>not</strong> accept just general answerssuch as “medicine” or “defence”.</span></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Most students were aware that nanotubes have a tubular structure, but answers to the bonding were rarely detailed enough to gain the second mark.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Only a few students gained this mark and they usually gave the use of nanotubes for a reinforcing.</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Proteins have structural or enzyme functions.</span></p>
</div>
<div class="specification">
<p><span style="background-color: #ffffff;">Oil spills are a major environmental problem.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Some proteins form an α-helix. State the name of another secondary protein structure.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i) .</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Compare and contrast the bonding responsible for the two secondary structures.</span></p>
<p> </p>
<p><span style="background-color: #ffffff;">One similarity:</span></p>
<p><span style="background-color: #ffffff;">One difference:</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain why an increase in temperature reduces the rate of an enzyme-catalyzed reaction.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Suggest <strong>two</strong> reasons why oil decomposes faster at the surface of the ocean than at greater depth.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Oil spills can be treated with an enzyme mixture to speed up decomposition.</span></p>
<p><span style="background-color: #ffffff;">Outline <strong>one</strong> factor to be considered when assessing the greenness of an enzyme mixture.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(ii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>β<span style="background-color: #ffffff;">/beta pleated/sheet <strong>[✔]</strong></span></p>
<div class="question_part_label">a(i) .</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>One similarity</em>: <br>hydrogen bonding <br><strong>OR</strong> <br>attractions between C=O and N–H <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;"><em>One difference</em>:<br>α-helix has hydrogen bonds between amino acid residues that are closer than β-pleated sheet<br><em><strong>OR</strong></em><br>H-bonds in α-helix parallel to helix axis <em><strong>AND</strong> </em>perpendicular to sheet in β-pleated sheet<br><em><strong>OR</strong></em><br><span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">α</span>-helix has one strand <em><strong>AND</strong> <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">β</span></em>-pleated sheet has two «or more» strands<br><em><strong>OR</strong></em><br><span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">α</span>-helix is more elastic «since H-bonds can be broken easily» <em><strong>AND</strong> </em><span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">β</span>-pleated sheet is less elastic «since H-bonds are difficult to break» <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong> Note:</strong> Accept a diagram which shows hydrogen bonding between O of C=O and H of NH groups for M1. </span></em></p>
<p><em><span style="background-color: #ffffff;">Accept “between carbonyl/amido/amide/carboxamide” but not “between amino/amine” for M1.</span></em></p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">enzyme denatured/loss of 3-D structure/conformational change<br><em><strong>OR</strong></em><br>«interactions responsible for» tertiary/quaternary structures altered <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">shape of active site changes<br><em><strong>OR</strong></em><br>fewer substrate molecules fit into active sites <strong>[✔]</strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Any two of:</em><br>surface water is warmer «so faster reaction rate»/more light/energy from the sun <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">more oxygen «for aerobic bacteria/oxidation of oil» <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">greater surface area <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Any one of:</em><br>non-hazardous/toxic to the environment/living organisms <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">energy requirements «during production» <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">quantity/type of waste produced «during production»<br><em><strong>OR</strong></em><br>atom economy <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">safety of process <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong> Note:</strong> Accept “use of solvents/toxic materials «during production»”.</span></em></p>
<p><em><span style="background-color: #ffffff;">Do <strong>not</strong> accept “more steps involved”.</span></em></p>
<div class="question_part_label">c(ii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>This question was quite well answered with many scoring the mark although there were quite a few incorrect responses that answered “beta-helix” rather than “beta-pleated sheet”.</p>
<div class="question_part_label">a(i) .</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The similarity in bonding between the 2 types of secondary structures was answered well but the difference was not. Most students were not descriptive enough to receive the second mark or simply repeated the idea of proteins containing an alpha-helix and beta-pleated sheets rather than describing something different about them.</p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was another question where most candidates received one mark for identifying that the enzyme will denature with an increase in temperature. However, many candidates did not continue with the explanation of the active site shape changing or substrate molecules not longer fitting into the active site.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>While many candidates did receive two marks for this question some candidates only suggested one reason or repeated the same reason (for example - heat and energy from the sun) even though the question clearly asked for two reasons.</p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Students tend to struggle with these questions and end up giving journalistic or vague answers that cannot be awarded marks. It is important for teachers to instruct students to give more specific answers directly related to the topics presented.</p>
<div class="question_part_label">c(ii).</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Disposal of chemical waste is a growing problem in industry.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Outline the impact of antibiotic waste on the environment.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Suggest a concern about the disposal of solvents from drug manufacturing.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«leads to bacterial» resistance «to antibiotics»<br><em><strong>OR</strong></em><br>destroys useful/beneficial bacteria<br><em><strong>OR</strong></em><br>useful/beneficial/less harmful bacteria replaced with «more» harmful bacteria ✔</span></p>
<p><em>NOTE: <span style="background-color: #ffffff;">Accept "affects/disturbs micro-ecosystems".</span></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Any one of:</em><br>«most are» toxic «to living organisms»<br><em><strong>OR</strong></em><br>incomplete combustion/incineration can produce toxic products/dioxins/phosgene<br><em><strong>OR</strong></em><br>carcinogenic/can cause cancer ✔<br></span></p>
<p><span style="background-color: #ffffff;">accumulate in groundwater<br><em><strong>OR</strong></em><br>have limited biodegradability ✔<br></span></p>
<p><span style="background-color: #ffffff;">cost of disposal ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Do <strong>not</strong> accept “harmful to the environment”.<br>Do <strong>not</strong> accept just “pollutes water”.<br>Do <strong>not</strong> accept “hazard of disposal”.<br>Accept “ozone depletion” only if there is some reference to chlorinated solvents.</span></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Consider the following data for butane and pentane at STP.</span></p>
<p><span style="background-color: #ffffff;"><img style="display: block; margin-left: auto; margin-right: auto;" src="" width="534" height="113"></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Discuss the data.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In a natural gas power station, 1.00 tonne of natural gas produces 2.41 × 10<sup>4</sup> MJ of electricity.</p>
<p>Calculate the percentage efficiency of the power station.</p>
<p>1 tonne = 1000 kg<br>Specific energy of natural gas used = 55.4 MJ kg<sup>−1</sup></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«similar specific energy and» pentane has «much» larger energy density ✔</span></p>
<p><span style="background-color: #ffffff;"><em>Any two for <strong>[2 max]</strong>:</em> <br>similar number of bonds/«C and H» atoms in 1 kg «leading to similar specific energy» <br><em><strong>OR<br></strong></em> only one carbon difference in structure «leading to similar specific energy» ✔<br><span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: italic;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">NOTE: </span><span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: italic;font-variant: normal;font-weight: 400;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">Accept “both are alkanes” for M2.</span><br></span></p>
<p><span style="background-color: #ffffff;">pentane is a liquid <em><strong>AND</strong> </em>butane is a gas «at STP» ✔<br><em>NOTE: Accept “pentane would be easier to transport”.</em><br></span></p>
<p><span style="background-color: #ffffff;">1 m<sup>3</sup> of pentane contains greater amount/mass than 1 m<sup>3</sup> of butane ✔<br><em>NOTE: Accept “same volume” for “1 m<sup>3</sup>” and “more moles” for “greater amount” for M4.</em><br></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«energy input =» 5.54 ×10<sup>4</sup> «MJ» ✔<br>«efficiency = <math xmlns="http://www.w3.org/1998/Math/MathML"><mfrac><mrow><mn>2</mn><mo>.</mo><mn>41</mn><mo>×</mo><msup><mn>10</mn><mn>4</mn></msup><mo> </mo><mi>MJ</mi></mrow><mrow><mn>5</mn><mo>.</mo><mn>54</mn><mo>×</mo><msup><mn>10</mn><mn>4</mn></msup><mo> </mo><mi>MJ</mi></mrow></mfrac><mo>×</mo><mn>100</mn><mo>=</mo></math>» 43.5 «%» ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Award <strong>[2]</strong> for correct final answer.</span></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Enzymes are biological catalysts.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The graph shows the relationship between the temperature and the rate of an enzyme-catalysed reaction.</span></p>
<p><span style="background-color: #ffffff;"><img style="display: block;margin-left:auto;margin-right:auto;" src="" width="560" height="373"></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">State <strong>one</strong> reason for the decrease in rate above the optimum temperature.</span></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain why a change in pH affects the tertiary structure of an enzyme in solution.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State <strong>one</strong> use of enzymes in reducing environmental problems.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">enzyme denatures<br><em><strong>OR</strong></em><br>change of conformation/shape of active site<br><em><strong>OR</strong></em><br>substrate cannot bind to active site/binds less efficiently ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Accept “change in structure” or “substrate doesn't fit/fits poorly into active site”</span></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Any two of:</em><br>acidic/basic/ionizable/COOH/carboxyl/NH<sub>2</sub>/amino groups in the R groups/side chains «react» ✔<br>exchange/lose/gain protons/H<sup>+</sup> ✔<br>change in H-bonds/ionic interactions/intermolecular forces/London dispersion forces ✔</span></p>
<p><span style="background-color: #ffffff;"><br><em>NOTE: Do <strong>not</strong> accept “enzyme denatures” <strong>OR</strong> “change of conformation/tertiary structure” <strong>OR</strong> “substrate cannot bind to active site/binds less efficiently” as this was the answer to 8(a).</em></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">breakdown of oil spills/industrial/sewage waste/plastics<br><em><strong>OR</strong></em><br>production of alternate sources of energy «such as bio diesel»<br><em><strong>OR</strong></em><br>involve less toxic chemical pathway «in industry» ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Accept “«enzymes in» biological detergents can improve energy efficiency”.</span></em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">This question is about antiviral drugs.</span></p>
</div>
<div class="specification">
<p><span style="background-color: #ffffff;">Oseltamivir, used for the treatment of severe flu, is inactive until converted in the liver to its active carboxylate form.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Draw a circle around the functional group that can be converted to the carboxylate by hydrolysis.</span></p>
<p><span style="background-color: #ffffff;"><img style="margin-right:auto;margin-left:auto;display: block;" src="" width="329" height="226"></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Suggest a reason for using a phosphate salt of oseltamivir in oral tablets.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Anti-HIV drugs, such as zidovudine, often become less effective over time.</span></p>
<p><span style="background-color: #ffffff;">Explain the development of resistant virus strains in the presence of antiviral drugs.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="292" height="206"> <strong>[<span style="background-color: #ffffff;">✔</span>]</strong></p>
<p> </p>
<p><em><strong>Note:</strong> <span style="background-color: #ffffff;">Accept circles that include the alkyl side chain.</span></em></p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">more soluble «in water» <strong>[✔]</strong></span></p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">viruses undergo «rapid» mutation <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;"> mutation causes a change in viral protein<br><em><strong>OR<br></strong></em> drug to no longer binds to virus <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note:</strong> Accept “rapid reproduction «allows resistant viruses to multiply»”.</span></em></p>
<div class="question_part_label">b.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Many students erroneously identified the amide as the required group, failing to realise that its hydrolysis would give the carboxylate ion of the side chain lost to the drug.</p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>About a third of the candidates realised that producing a salt would increase the drug’s aqueous solubility, though many just stated “<em>increased bioavailability</em>” without explaining how this came about.</p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Another question where well argued responses were rare, though many students gained credit for mentioning the ease of mutation and the speed of reproduction of viruses.</p>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">This question is about nuclear reactions.</span></p>
</div>
<div class="specification">
<p><span style="background-color: #ffffff;">Fission of a nucleus can be initiated by bombarding it with a neutron.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Determine the other product of the fission reaction of plutonium-239.</span></p>
<p><span style="background-color: #ffffff;"><img src="" width="349" height="31"></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Outline the concept of critical mass with respect to fission reactions.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Outline <strong>one</strong> advantage of allowing all countries access to the technology to generate electricity by nuclear fission.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State <strong>one</strong> advantage of using fusion reactions rather than fission to generate electrical power.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;"><sup>90</sup>Sr, a common product of fission, has a half-life of 28.8 years.</span></p>
<p><span style="background-color: #ffffff;">Determine the number of years for the activity of a sample of <sup>90</sup>Sr to fall to one eighth (<span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{1}{8}">
<mfrac>
<mn>1</mn>
<mn>8</mn>
</mfrac>
</math></span>) of its initial value.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{}_{40}^{103}{\text{Zr}}">
<msubsup>
<mrow>
</mrow>
<mrow>
<mn>40</mn>
</mrow>
<mrow>
<mn>103</mn>
</mrow>
</msubsup>
<mrow>
<mtext>Zr</mtext>
</mrow>
</math></span></span><span style="background-color: #ffffff;"> <strong>[✔]</strong></span></p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">minimum mass to «self-»sustain chain reaction<br><em><strong>OR</strong></em><br>if mass of fissile material is too small, too many neutrons produced pass out of the nuclear fuel<br><em><strong>OR</strong></em><br>at least one neutron produced causes further reaction <strong>[✔]</strong></span></p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Any one of</em>:<br>reduction in emission of greenhouse gases «from burning fossil fuels» <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">economic independence/self-sufficiency «from crude oil/producing states» <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</span></span></p>
<p><span style="background-color: #ffffff;">uranium is more abundant on Earth «in terms of total energy that can be produced from this fuel» than fossil fuels <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</span></span></p>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Any one of:</em><br>fuel is inexpensive/readily available <strong>[✔]</strong><br>no/less radioactive waste is formed <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong><br>lower risk of accidents/large-scale disasters <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong><br>impossible/harder to use for making materials for nuclear weapons <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong><br>larger amounts of energy released per unit mass <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong><br>does not require a critical mass <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong><br>can be used continuously <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p> </p>
<p><span style="font-size: 14px;"><em><span style="background-color: #ffffff;"><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">Note</strong></span><span style="background-color: #ffffff;"><span style="font-size: 14px;"><strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">: </strong></span></span><span style="background-color: #ffffff;">Accept “higher specific energy for fusion”.</span></em></span></p>
<p><span style="font-size: 14px;"><em><span style="background-color: #ffffff;">Do <strong>not</strong> accept “no/less waste produced for fusion”.</span></em></span></p>
<p><span style="font-size: 14px;"><em><span style="background-color: #ffffff;">Accept specific example for disasters.</span></em></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">86.4 «years» <strong>[✔]</strong></span></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>This question was well answered.</p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This question was also fairly well answered although some students missed the concept of maintaining a chain reaction.</p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This question was reasonable answered by many students, but some gave very vague or general answers.</p>
<div class="question_part_label">a(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was a well answered question with most student referring to fusion having less or no nuclear waste. There were many different possible correct answers.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was a well answered question with most students solving for the number of years correctly.</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Natural gas is an energy source composed mainly of methane.</span></p>
</div>
<div class="specification">
<p><span style="background-color: #ffffff;">Natural gas is burned to produce steam which turns turbines in an electricity generating power plant.</span></p>
<p><span style="background-color: #ffffff;">The efficiency of several sources for power plants is given below.</span></p>
<p><span style="background-color: #ffffff;"><img src="" width="353" height="229"></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Calculate the specific energy of methane, in MJ kg<sup>−1</sup>, using sections 1, 6 and 13 of the data booklet.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Calculate the maximum electric energy output, in MJ, which can be obtained from burning 1.00 kg of methane by using your answer from (a).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Hydroelectric power plants produced 16 % of the world’s energy in 2015, down from 21 % in 1971.</span></p>
<p><span style="background-color: #ffffff;">Suggest why hydroelectric power production has a higher efficiency than the other sources given in (b) and why its relative use has decreased despite the high efficiency.</span></p>
<p> </p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Reason for higher efficiency:</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Reason for decreased use:</span></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Methane can also be obtained by fractional distillation of crude oil.</span></p>
<p><span style="background-color: #ffffff;"><img src="" width="563" height="433"></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Draw a circle on the diagram to show where the methane fraction is withdrawn.</span></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">List the following products, which are also obtained by fractional distillation, according to <strong>decreasing</strong> volatility: asphalt, diesel, gasoline, lubricating motor oil.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain how methane absorbs infrared (IR) radiation by referring to its molecular geometry and dipole moment.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Compare methane’s atmospheric abundance and greenhouse effect to that of carbon dioxide.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d(ii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">« <span class="mjpage"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="\frac{{891{\text{kJmo}}{{\text{l}}^{ - 1}}}}{{{\text{16}}{\text{.05gmo}}{{\text{l}}^{ - 1}}}}">
<mfrac>
<mrow>
<mn>891</mn>
<mrow>
<mtext>kJmo</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>l</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
</mrow>
<mrow>
<mrow>
<mtext>16</mtext>
</mrow>
<mrow>
<mtext>.05gmo</mtext>
</mrow>
<mrow>
<msup>
<mrow>
<mtext>l</mtext>
</mrow>
<mrow>
<mo>−</mo>
<mn>1</mn>
</mrow>
</msup>
</mrow>
</mrow>
</mfrac>
</math></span> = 55.5 kJ g<sup>–1</sup> =» 55.5 «MJ kg<sup>–1</sup>» <strong>[✔]</strong></span></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«55.5 MJ × 58 % =» 32.2 «MJ» <strong>[✔]</strong></span></p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Reason for higher efficiency:</em><br>no heat/energy loss in producing steam<br><em><strong>OR</strong></em><br>no need to convert chemical energy of the fuel into heat and then heat into mechanical energy<br><em><strong>OR</strong></em><br>direct conversion of «gravitational» potential energy to mechanical energy <strong>[✔]</strong></span></p>
<p><em><span style="background-color: #ffffff;"><strong>Note:</strong> Accept “less energy lost as heat” but do <strong>not</strong> accept "no energy lost”.</span></em></p>
<p> </p>
<p><span style="background-color: #ffffff;"><em>Reason for decreased use</em>:<br>limited supply of available hydroelectric sites<br><em><strong>OR</strong></em><br>rapid growth of electrical supply in countries with little hydroelectric potential<br><em><strong>OR</strong></em><br>not building «new hydroelectric» dams because of environmental concerns <strong>[✔]</strong></span></p>
<p><em><span style="background-color: #ffffff;"><strong>Note:</strong> Accept “new/alternative/solar/wind power sources «have taken over some of the demand»”.<br>Accept “lower output from existing stations due to limited water supplies”.</span></em></p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="436" height="472"> <strong>[<span style="background-color: #ffffff;">✔</span>]</strong></p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">gasoline > diesel > lubricating motor oil > asphalt <strong>[✔]</strong> </span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note: </strong>Accept products written in this order whether separated by >, comma, or nothing.</span></em></p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">methane is tetrahedral<br><em><strong>OR</strong></em><br>methane has zero dipole moment/is non-polar/bond polarities cancel <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;"><em>Any two of</em>: <br>IR absorption can result in increased vibrations/bending/stretching <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">only modes that cause change in dipole absorb IR <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">for methane this is asymmetric bending/stretching <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">methane is less abundant <em><strong>AND</strong> </em>has a greater effect «per mol» <strong>[✔]</strong></span></p>
<div class="question_part_label">d(ii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>About half the candidates were able to locate the appropriate data and use it to calculate the specific energy of methane.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many students were aware that methane is the major component of natural gas and could use the efficiency data to calculate the electrical energy available from methane.</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This seemed to cause quite a lot of difficulties, especially as some students appeared totally unaware of what hydroelectric power was, with a number discussing it as if it were some kind of fuel. The most usual mark gained was from discussing environmental concerns as a reason for its decreased use.</p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Having been given it is a gas, it is difficult to know why probably only about a third of the candidates could identify where methane would appear on a fractionating column.</p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Again surprisingly poorly done. Firstly there appeared to be some confusion about the term “<em>volatility</em>” with listing in the reverse order being quite common. Secondly many seemed unaware of the nature of “<em>asphalt</em>” as it was the one most frequently misplaced.</p>
<div class="question_part_label">c(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Comprehensive answers were rare. Many students gained a mark for correct statements about methane’s molecular geometry or polarity, though quite a few totally disregarded the instruction to refer to these. Some seemed aware of the link to vibrational motion and the better ones also identified the need for a change in dipole moment.</p>
<div class="question_part_label">d(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Quite a few candidates were aware of the relative atmospheric abundances of carbon dioxide and methane as well as their relative potency for enhancing the greenhouse effect.</p>
<div class="question_part_label">d(ii).</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Polymers have a wide variety of uses but their disposal can be problematic.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Draw a section of isotactic polychloroethene (polyvinylchloride, PVC) showing all the atoms and all the bonds of <strong>four</strong> monomer units.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The infrared (IR) spectrum of polyethene is given.</span></p>
<p><span style="background-color: #ffffff;"><img style="margin-right:auto;margin-left:auto;display: block;" src="" width="657" height="520"></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Suggest how the IR spectrum of polychloroethene would differ, using section 26 of the data booklet.</span></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Identify a hazardous product of the incineration of polychloroethene.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain how plasticizers affect the properties of plastics.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Suggest why the addition of plasticizers is controversial.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><img src=""></p>
<p><span style="background-color: #ffffff;">correct bonding <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">Cl atoms all on same side and alternate <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong> Note:</strong> Continuation bonds must be shown.</span></em></p>
<p><em><span style="background-color: #ffffff;">Award <strong>[1 max]</strong> if less than or more than four units shown.</span></em></p>
<p><em><span style="background-color: #ffffff;">Accept a stereo formula with all atoms and bonds shown.</span></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">«strong additional» absorption at 600–800 «cm<sup>–1</sup>» <strong>[✔]</strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Any one of:</em><br>HCl <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">Cl<sub>2</sub> <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">dioxins <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">C <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">CO <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Any two of:</em><br>embedded/fit between chains of polymers <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">prevent chains from forming crystalline regions <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">keep polymer strands/chains/molecules separated/apart <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span><span style="background-color: #ffffff;"><br></span></p>
<p><span style="background-color: #ffffff;">increase space/volume between chains <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">weaken intermolecular/dipole-dipole/London/dispersion/instantaneous dipoleinduced dipole/van der Waals/vdW forces «between chains» <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">increase flexibility/durability/softness <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">make polymers less brittle <strong style="color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</strong></span></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">leach into foodstuffs/environment<br><em><strong>OR</strong></em><br>«unknown» health/environmental consequences <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong> Note:</strong> Accept “plasticizers cannot be recycled”.</span></em></p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Quite a few candidates scored at least one mark although most either scored both or none for this polymer structure.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Almost all students who attempted this question received the mark for identifying the correct absorption band.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was a well answered question, with most candidates identifying at least one method plasticizers affect the properties of plastic.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many students received a mark for this question although some did not because their answers were too vague.</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Metals are extracted from their ores by various means.</span></p>
</div>
<div class="specification">
<p><span style="background-color: #ffffff;">Aluminium is produced by the electrolysis of alumina (aluminium oxide) dissolved in cryolite.</span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Discuss why different methods of reduction are needed to extract metals.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Determine the percentage of ionic bonding in alumina using sections 8 and 29 of the data booklet.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Write half-equations for the electrolysis of molten alumina using graphite electrodes, deducing the state symbols of the products.</span></p>
<p><span style="background-color: #ffffff;"><img style="margin-right:auto;margin-left:auto;display: block;" src="" width="300" height="191"></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Anode (positive electrode):<br></span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Cathode (negative electrode):</span></span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b(ii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">ions of more reactive metals are harder to reduce<br><em><strong>OR</strong></em><br>more reactive metals have more negative electrode potentials ✔</span></p>
<p><span style="background-color: #ffffff;">electrolysis is needed/used for most reactive metals<br><em><strong>OR</strong></em><br>carbon is used to reduce metal oxides of intermediate reactivity/less reactive than carbon<br><em><strong>OR</strong></em><br>heating ore is sufficient for less reactive metals ✔</span></p>
<p><em><span style="background-color: #ffffff;"> NOTE: Award<strong> [1 max]</strong> for “«ease of reduction/extraction» depends on reactivity”.</span></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">electronegativity difference = 1.8 «and average electronegativity = 2.5» ✔<br>57 «%» ✔</span></p>
<p><em>NOTE: <span style="background-color: #ffffff;">Accept any value in the range 52−65 %.<br>Award <strong>[2]</strong> for correct final answer.</span></em></p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Anode (positive electrode):</em><br>2O<sup>2−</sup> → 4e<sup>−</sup> + O<sub>2</sub>(g)<br><em><strong>OR</strong></em><br>2O<sup>2−</sup> + C → 4e<sup>−</sup> + CO<sub>2</sub> (g) ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Award <strong>[1 max]</strong> for M1 and M2 if correct half-equations are given at the wrong electrodes <strong>OR</strong> if incorrect reversed half-equations are given at the correct electrodes.</span></em></p>
<p> </p>
<p><span style="background-color: #ffffff;"><em>Cathode (negative electrode):</em><br>Al<sup>3+</sup> + 3e<sup>−</sup> → Al (l) ✔<br>O<sub>2</sub> gas <em><strong>AND</strong> </em>Al liquid ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Only state symbols of <strong>products</strong> required, which might be written as (g) and (l) in half-equations. Ignore any incorrect or missing state symbols for reactants.</span></em></p>
<div class="question_part_label">b(ii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(ii).</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">The main fatty acid composition of cocoa butter and coconut oil is detailed below.</span></p>
<p> </p>
<p><img src="" width="798" height="290"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The melting points of cocoa butter and coconut oil are 34 °C and 25 °C respectively.</span></p>
<p><span style="background-color: #ffffff;">Explain this in terms of their saturated fatty acid composition.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Fats contain triglycerides that are esters of glycerol and fatty acids. Deduce an equation for the acid hydrolysis of the following triglyceride.</span></p>
<p><span style="background-color: #ffffff;"><img src="" width="237" height="185"></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The addition of partially hydrogenated cocoa butter to chocolate increases its melting point and the content of <em>trans</em>-fatty acids (<em>trans</em>-fats).</span></p>
<p><span style="background-color: #ffffff;">Outline <strong>two</strong> effects of <em>trans</em>-fatty acids on health.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">coconut oil has higher content of lauric/short-chain «saturated» fatty acids <br><em><strong>OR</strong></em><br> cocoa butter has higher content of stearic/palmitic/longer chain «saturated» fatty acids <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;"> longer chain fatty acids have greater surface area/larger electron cloud <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;"> stronger London/dispersion/instantaneous dipole-induced dipole forces «between triglycerides of longer chain saturated fatty acids» <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong> Note:</strong> Do <strong>not</strong> accept arguments that relate to the melting points of saturated and unsaturated fats.</span></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="465" height="239"></p>
<p> </p>
<p><span style="background-color: #ffffff;">correct products <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">correctly balanced <strong>[✔]</strong></span></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Any two of</em>:<br>«increased risk of» coronary/heart disease <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;"> «increased risk of» stroke <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</span></span></p>
<p><span style="background-color: #ffffff;">«increased risk of» atherosclerosis <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</span></span></p>
<p><span style="background-color: #ffffff;"> «increased risk of type-2» diabetes <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</span></span></p>
<p><span style="background-color: #ffffff;">increase in LDL cholesterol <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</span></span></p>
<p><span style="background-color: #ffffff;"> decrease in HDL cholesterol <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</span></span></p>
<p><span style="background-color: #ffffff;">«increased risk of» obesity <span style="display: inline !important;float: none;background-color: #ffffff;color: #000000;font-family: Verdana,Arial,Helvetica,sans-serif;font-size: 14px;font-style: normal;font-variant: normal;font-weight: bold;letter-spacing: normal;text-align: left;text-decoration: none;text-indent: 0px;white-space: normal;">[✔]</span></span></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>A classic instance of candidates answering the question they thought (or hoped?) they had been asked rather than the one that was asked. Almost all answers referred to the differing amounts of saturated and unsaturated fatty acids present, totally ignoring the fact that the question clearly stated “<em>their saturated fatty acid composition</em>”, where the relative lengths of the chains was the key point. Nevertheless some who went on to discuss the nature of the intermolecular forces between the chains gained some credit.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>A disappointingly small number of candidates gained any marks for deducing the equation for the hydrolysis of the given lipid.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Almost all students were aware of negative health effects of <em>trans</em>-fats, though quite a few lost marks by just stating “<em>cholesterol</em>” without specifying HDL or LDL.</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">Powdered zinc was reacted with 25.00 cm<sup>3</sup> of 1.000 mol dm<sup>−3</sup> copper(II) sulfate solution in an </span><span style="background-color: #ffffff;">insulated beaker. Temperature was plotted against time.</span></p>
<p><span style="background-color: #ffffff;"><img style="margin-right: auto; margin-left: auto; display: block;" src="" width="458" height="384"></span></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Estimate the time at which the powdered zinc was placed in the beaker.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">State what point <strong>Y</strong> on the graph represents.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The maximum temperature used to calculate the enthalpy of reaction was chosen at a point on the extrapolated (dotted) line.</span></p>
<p><span style="background-color: #ffffff;">State the maximum temperature which should be used and outline <strong>one</strong> assumption made in choosing this temperature on the extrapolated line. </span></p>
<p> </p>
<p><span style="background-color: #ffffff;">Maximum temperature:</span></p>
<p><span style="background-color: #ffffff;">Assumption:</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">To determine the enthalpy of reaction the experiment was carried out five times. The same volume and concentration of copper(II) sulfate was used but the mass of zinc was different each time. Suggest, with a reason, if zinc or copper(II) sulfate should be in excess for each trial.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">The formula <em>q = mcΔT</em> was used to calculate the energy released. The values used in the calculation were <em>m</em> = 25.00 g, <em>c</em> = 4.18 J g<sup>−1</sup> K<sup>−1</sup>.</span></p>
<p><span style="background-color: #ffffff;">State an assumption made when using these values for <em>m</em> and <em>c</em>.</span></p>
<p><span style="background-color: #ffffff;"><img src="" width="666" height="246"></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Predict, giving a reason, how the final enthalpy of reaction calculated from this experiment would compare with the theoretical value.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(iv).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">100 «s» <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note:</strong> Accept 90 to 100 s.</span></em></p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">highest recorded temperature<br><em><strong>OR</strong></em><br>when rate of heat production equals rate of heat loss <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note:</strong> Accept “maximum temperature”.</span></em></p>
<p><em><span style="background-color: #ffffff;">Accept “completion/end point of reaction”.</span></em></p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Maximum temperature:</em><br>73 «°C» <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;"><em>Assumption</em>:<br>«temperature reached if» reaction instantaneous<br><em><strong>OR</strong></em><br>«temperature reached if reaction occurred» without heat loss <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong>Note:</strong> Accept “rate of heat loss is constant” <strong>OR</strong> “rate of temperature decrease is constant”.</span></em></p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;"><em>Any one of:</em><br>copper(II) sulfate <em><strong>AND</strong> </em>mass/amount of zinc is independent variable/being changed.<br><em><strong>OR</strong></em><br>copper(II) sulfate <em><strong>AND</strong> </em>with zinc in excess there is no independent variable «as amount of copper(II) sulfate is fixed» <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">copper(II) sulfate <em><strong>AND</strong> </em>having excess zinc will not yield different results in each trial <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">zinc <em><strong>AND</strong> </em>results can be used to see if amount of zinc affects temperature rise «so this can be allowed for» <strong>[✔]</strong></span></p>
<p><span style="background-color: #ffffff;">zinc <em><strong>AND</strong> </em>reduces variables/keeps the amount reacting constant <strong>[✔]</strong></span></p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="" width="510" height="283"></p>
<p> </p>
<p><strong><em>Note: </em></strong><em><span style="background-color: #ffffff;">Accept “copper(II) sulfate/zinc sulfate” for “solution”.</span></em></p>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">lower/less exothermic/less negative <em><strong>AND</strong> </em>heat loss/some heat not accounted for<br><em><strong>OR</strong></em><br>lower/less exothermic/less negative <em><strong>AND</strong> </em>mass of reaction mixture greater than 25.00 g<br><em><strong>OR</strong> <br></em>greater/more exothermic /more negative <em><strong>AND</strong> </em>specific heat of solution less than water <strong>[✔]</strong></span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;"><strong> Note:</strong> Accept “temperature is lower” instead of “heat loss”. </span></em></p>
<p><em><span style="background-color: #ffffff;">Accept “similar to theoretical value </span><span style="background-color: #ffffff;"><strong>AND</strong></span> <span style="background-color: #ffffff;">heat losses have been compensated for”. </span></em></p>
<p><em><span style="background-color: #ffffff;">Accept “greater/more exothermic/more negative <strong>AND</strong> linear extrapolation overestimates heat loss”.</span></em></p>
<div class="question_part_label">b(iv).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Almost all candidates identified 100 s as the time at which the reaction was initiated.</p>
<div class="question_part_label">a(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Many students gained this mark through stating this was the highest temperature recorded, though even more took advantage of the acceptance of the completion of the reaction, expressed in many different ways. Very few answered that it was when heat loss equalled heat production.</p>
<div class="question_part_label">a(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Even though almost all students recognised 100 seconds as the start time of the reaction less than 50% chose the extrapolated temperature at this time. Predictably the most common answer was the maximum of the graph, followed closely by the intercept with the y-axis. With regard to reasons, again relatively few gained the mark, though most who did wrote “no loss of heat”, even though it was rare to find this preceded by “the temperature that would have been attained if …”.</p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The correct answer depended on whether students considered the object of the additional trials was to investigate the effect of a new independent variable (excess copper(II) sulphate) or to obtain additional values of the same enthalpy change so they could be averaged (excess zinc). Answers that gave adequate reasons were rare.</p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Again relatively few gained these marks for stating that it was assumed the density and specific heat of the solution were the same as water.</p>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Only about a third of the students correctly deduced that loss of heat to the environment means that the experimental value is lower than the theoretical one, though other answers, such as “higher because linear extrapolation over-compensates for the heat losses” were also accepted.</p>
<div class="question_part_label">b(iv).</div>
</div>
<br><hr><br><div class="specification">
<p><span style="background-color: #ffffff;">A student investigated how the type of acid in acid deposition affects limestone, a building material mainly composed of calcium carbonate.</span></p>
<p><span style="background-color: #ffffff;"><img style="margin-right: auto; margin-left: auto; display: block;" src="" width="389" height="173"></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">The student monitored the mass of six similarly sized pieces of limestone. Three were placed in beakers containing 200.0 cm<sup>3</sup> of 0.100 mol dm<sup>−3</sup> nitric acid, HNO<sub>3</sub> (aq), and the other three in 200.0 cm<sup>3</sup> of 0.100 mol dm<sup>−3</sup> sulfuric acid, H<sub>2</sub>SO<sub>4</sub> (aq).</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><img style="margin-right: auto; margin-left: auto; display: block;" src="" width="556" height="361"></span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">The limestone was removed from the acid, washed, dried with a paper towel and weighed every day at the same time and then replaced in the beakers.</span></span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">The student plotted the mass of one of the pieces of limestone placed in nitric acid against time.</span></span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><img style="margin-right: auto; margin-left: auto; display: block;" src="" width="547" height="507"></span></span></span></p>
<p style="text-align: center;"><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">[Source: © International Baccalaureate Organization 2019]</span></span></span></p>
</div>
<div class="specification">
<p>The student hypothesized that sulfuric acid would cause a larger mass loss than nitric acid.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Draw a best-fit line on the graph.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Determine the initial rate of reaction of limestone with nitric acid from the graph.</span></p>
<p><span style="background-color: #ffffff;">Show your working on the graph and include the units of the initial rate.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Explain why the rate of reaction of limestone with nitric acid decreases and reaches zero over the period of five days.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;">Suggest a source of error in the procedure, assuming no human errors occurred and the balance was accurate.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Justify this hypothesis.</span></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">The student obtained the following total mass losses.</span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><img src="" width="546" height="98"></span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">She concluded that nitric acid caused more mass loss than sulfuric acid, which did not support her hypothesis.</span></span></span></p>
<p><span style="background-color: #ffffff;"><span style="background-color: #ffffff;"><span style="background-color: #ffffff;">Suggest an explanation for the data, assuming that no errors were made by the student.</span></span></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c(ii).</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">best-fit smooth curve ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Do <strong>not</strong> accept a series of connected lines that pass through all points <strong>OR</strong> any straight line representation. </span></em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">tangent drawn at time zero ✔<br>g day<sup>−1</sup> ✔<br>0.16 ✔</span></p>
<p> </p>
<p><em><span style="background-color: #ffffff;">NOTE: Accept other reasonable units for initial rate eg, mol dm<sup>−3</sup> s<sup>−1</sup>, mol dm<sup>−3</sup> min<sup>−1</sup>, g s<sup>−1</sup> <strong>OR</strong> g min<sup>−1</sup>.</span></em></p>
<p><em><span style="background-color: #ffffff;">M3 can only be awarded if the value corresponds to the correct unit given in M2.<br>Accept values for the initial rate for M3 in the range: 0.13 − 0.20 g day<sup>−1</sup> <strong>OR</strong> 1.5 × 10<sup>−6</sup> g s<sup>−1</sup> − 2.3 × 10<sup>−6</sup> g s<sup>−1</sup> <strong>OR</strong> 7.5 × 10<sup>−8</sup> − 1.2 × 10<sup>−7</sup> mol dm<sup>−3</sup> s<sup>−1</sup> <strong>OR </strong>4.5 × 10<sup>−6</sup> − 6.9 × 10<sup>−6</sup> mol dm<sup>−3</sup> min<sup>−1</sup> <strong>OR</strong> 9.0 × 10<sup>−5</sup> − 1.4 × 10<sup>−4</sup> g min<sup>−1</sup> <strong>OR </strong>a range based on any other reasonable unit for rate.</span></em></p>
<p><em><span style="background-color: #ffffff;">Ignore any negative rate value.<br>Award<strong> [2 max]</strong> for answers such as 0.12/0.11 g day<sup>−1</sup>, incorrectly obtained by using the first two points on the graph (the average rate between t = 0 and 1 day).<br>Award<strong> [1 max]</strong> for correctly calculating any other average rate.</span></em></p>
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">acid used up<br><strong>OR</strong><br>acid is the limiting reactant ✔</span></p>
<p><span style="background-color: #ffffff;">concentration of acid decreases<br><strong>OR</strong><br>less frequent collisions ✔</span></p>
<p><em><span style="background-color: #ffffff;">NOTE: Award<strong> [1 max]</strong> for "surface area decreases" if the idea that CaCO<sub>3</sub> is used up/acts as the limiting reactant” is conveyed for M1. </span></em></p>
<p><em><span style="background-color: #ffffff;">Do <strong>not</strong> accept “reaction reaches equilibrium” for M2.</span></em></p>
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">surface area not uniform<br></span><span style="background-color: #ffffff;"><em>NOTE: Accept “acids impure.</em><br></span></p>
<p><span style="background-color: #ffffff;"><em><strong>OR</strong></em><br>limestone pieces do not have same composition/source<br><em>NOTE: Accept “«limestone» contains impurities”.</em></span><span style="background-color: #ffffff;"><br></span></p>
<p><span style="background-color: #ffffff;"><em><strong>OR</strong></em><br>limestone absorbed water «which increased mass»</span></p>
<p><span style="background-color: #ffffff;"><em><strong>OR</strong></em><br>acid removed from solution when limestone removed<br><em>NOTE: Accept “loss of limestone when dried" <strong>OR</strong> "loss of limestone due to crumbling when removed from beaker”.</em><br></span></p>
<p><span style="background-color: #ffffff;"><em><strong>OR</strong></em><br>«some» calcium sulfate deposited on limestone lost</span></p>
<p><span style="background-color: #ffffff;"><em><strong>OR</strong></em><br>pieces of paper towel may have stuck to limestone</span></p>
<p><span style="background-color: #ffffff;"><em><strong>OR</strong></em><br>beakers not covered/evaporation</span></p>
<p><span style="background-color: #ffffff;"><em><strong>OR</strong></em><br>temperature was not controlled ✔</span></p>
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">sulfuric acid is diprotic/contains two H<sup>+</sup> «while nitric acid contains one H<sup>+</sup>»/releases more H<sup>+</sup> «so reacts with more limestone» <br><em><strong>OR</strong> <br></em>higher concentration of protons/H<sup>+</sup> ✔</span></p>
<p><em><span style="background-color: #ffffff;"> NOTE: Ignore any reference to the relative strengths of sulfuric acid and nitric acid. <br>Accept “sulfuric acid has two hydrogens «whereas nitric has one»”. <br>Accept "dibasic" for "diprotic".</span></em></p>
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><span style="background-color: #ffffff;">calcium sulfate remained/deposited on limestone «in sulfuric acid»<br><em><strong>OR</strong></em><br>reaction prevented/stopped by slightly soluble/deposited/layer of calcium sulfate ✔</span></p>
<p><em><span style="background-color: #ffffff;"> NOTE: Answer must refer to calcium sulfate.</span></em></p>
<div class="question_part_label">c(ii).</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(ii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b(iii).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(i).</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c(ii).</div>
</div>
<br><hr><br>