File "HL-paper2.html"

Path: /IB QUESTIONBANKS/4 Fourth Edition - PAPER/HTML/Chemistry/Topic 9/HL-paper2html
File size: 335.71 KB
MIME-type: text/x-tex
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-746ec5d03ead8d9e8b3bb7d32173f2b4e2e22a05f0c5278e086ab55b3c9c238e.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-3c91afd8a2942c18d21ed2700e1bdec14ada97f1d3788ae229315e1276d81453.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../index.html">Home</a>
</li>
<li class="active dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Questionbanks
<b class="caret"></b>
</a><ul class="dropdown-menu">
<li>
<a href="../../geography.html" target="_blank">DP Geography</a>
</li>
<li>
<a href="../../physics.html" target="_blank">DP Physics</a>
</li>
<li>
<a href="../../chemistry.html" target="_blank">DP Chemistry</a>
</li>
<li>
<a href="../../biology.html" target="_blank">DP Biology</a>
</li>
<li>
<a href="../../furtherMath.html" target="_blank">DP Further Mathematics HL</a>
</li>
<li>
<a href="../../mathHL.html" target="_blank">DP Mathematics HL</a>
</li>
<li>
<a href="../../mathSL.html" target="_blank">DP Mathematics SL</a>
</li>
<li>
<a href="../../mathStudies.html" target="_blank">DP Mathematical Studies</a>
</li>
</ul></li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">

<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">



</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="images/logo.jpg" alt="Ib qb 46 logo">
</div>
</div>
</div><h2>HL Paper 2</h2><div class="specification">
<p class="p1">Consider the following half-cell reactions and their standard electrode potentials.</p>
<p class="p1">\[\begin{array}{*{20}{l}} {{\text{N}}{{\text{i}}^{2 + }}{\text{(aq)}} + {\text{2}}{{\text{e}}^ - } \rightleftharpoons {\text{Ni(s)}}}&amp;{{E^\Theta } = - {\text{0.26 V}}} \\ {{\text{A}}{{\text{l}}^{3 + }}{\text{(aq)}} + {\text{3}}{{\text{e}}^ - } \rightleftharpoons {\text{Al(s)}}}&amp;{{E^\Theta } = - {\text{1.66 V}}} \end{array}\]</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Outline <strong>two </strong>differences between an electrolytic cell and a voltaic cell.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce a balanced equation for the overall reaction which will occur spontaneously when these two half-cells are connected.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine the cell potential when the two half-cells are connected.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">On the cell diagram below, label the negative electrode (anode), the positive electrode (cathode) and the directions of the movement of electrons and ion flow.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-10-03_om_05.40.13.png" alt="N09/4/CHEMI/HP2/ENG/TZ0/04.b.iii"></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.iii.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Consider the following equilibrium.</p>
<p class="p1">\[\begin{array}{*{20}{l}} {{\text{2S}}{{\text{O}}_2}{\text{(g)}} + {{\text{O}}_2}{\text{(g)}} \rightleftharpoons {\text{2S}}{{\text{O}}_3}{\text{(g)}}}&amp;{\Delta {H^\Theta } = - 198{\text{ kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}} \end{array}\]</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State and explain the effect of increasing the pressure on the yield of sulfur trioxide.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the effects of a catalyst on the forward and reverse reactions, on the position of equilibrium and on the value of \({K_{\text{c}}}\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">When a mixture of 0.100 mol NO, 0.051 mol \({{\text{H}}_{\text{2}}}\) and 0.100 mol \({{\text{H}}_{\text{2}}}{\text{O}}\) were placed in a \({\text{1.0 d}}{{\text{m}}^{\text{3}}}\) flask at 300 K, the following equilibrium was established.</p>
<p class="p1">\(2{\text{NO(g)}} + 2{{\text{H}}_2}{\text{(g)}} \rightleftharpoons {{\text{N}}_2}{\text{(g)}} + 2{{\text{H}}_2}{\text{O(g)}}\)</p>
<p class="p1">At equilibrium, the concentration of NO was found to be \({\text{0.062 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\). Determine the equilibrium constant, \({K_{\text{c}}}\), of the reaction at this temperature.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Outline <strong>two </strong>differences between an electrolytic cell and a voltaic cell.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Electroplating is an important application of electrolysis. State the composition of the electrodes and the electrolyte used in the silver electroplating process.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.v.</div>
</div>
<br><hr><br><div class="specification">
<p>The emission spectrum of an element can be used to identify it.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hydrogen spectral data give the frequency of 3.28 × 10<sup>15</sup> s<sup>−1</sup> for its convergence limit.</p>
<p>Calculate the ionization energy, in J, for a single atom of hydrogen using sections 1 and 2 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the wavelength, in m, for the electron transition corresponding to the frequency in (a)(iii) using section 1 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce any change in the colour of the electrolyte during electrolysis.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the gas formed at the anode (positive electrode) when graphite is used in place of copper.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.v.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why transition metals exhibit variable oxidation states in contrast to alkali metals.</p>
<p><img src=""></p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The conditions used in an electrolytic cell can determine the products formed.</p>
</div>

<div class="specification">
<p class="p1">A voltaic cell is constructed from two half-cells as illustrated below.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-10-21_om_12.23.14.png" alt="M11/4/CHEMI/HP2/ENG/TZ1/09.b"></p>
</div>

<div class="specification">
<p class="p1">Nitrogen monoxide may be removed from industrial emissions via a reaction with ammonia as shown by the equation below.</p>
<p class="p1">\[{\text{4N}}{{\text{H}}_3}{\text{(g)}} + {\text{6NO(g)}} \to {\text{5}}{{\text{N}}_2}{\text{(g)}} + {\text{6}}{{\text{H}}_{\text{2}}}{\text{O(l)}}\]</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Draw an electrolytic cell illustrating the electrolysis of molten nickel(II) bromide, \({\text{NiB}}{{\text{r}}_{\text{2}}}\). Include in the diagram the direction of the electron flow, the polarity of electrodes and state the half-equations for the product formed at each electrode.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce the equations for the formation of the major product at the positive electrode (anode) when the following aqueous solutions are electrolysed.</p>
<p class="p1">&bull; dilute sodium chloride</p>
<p class="p1">&bull; concentrated sodium chloride</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Use Table 14 of the Data Booklet to deduce the equation for the spontaneous reaction occurring in this cell.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the standard potential for this cell.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the conditions necessary for the potential of the cell to equal that calculated in part (b) (ii) using the data from Table 14.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Using the data below and data from Table 14 of the Data Booklet, predict and explain which metal, cadmium or chromium, may be obtained by electrolysis of separate aqueous solutions of \({\text{C}}{{\text{d}}^{2 + }}{\text{(aq)}}\) ions and \({\text{C}}{{\text{r}}^{2 + }}{\text{(aq)}}\) ions.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Electrolysis is used in the electroplating of metals. The same amount of current is passed through separate aqueous solutions of \({\text{NiS}}{{\text{O}}_{\text{4}}}\), \({\text{Sn(S}}{{\text{O}}_{\text{4}}}{{\text{)}}_{\text{2}}}\) and \({\text{C}}{{\text{r}}_{\text{2}}}{{\text{(S}}{{\text{O}}_{\text{4}}}{\text{)}}_{\text{3}}}\) in separate electrolytic cells for the same amount of time. State and explain which cell would deposit the greatest amount (in mol) of metal. Identify the electrode at which the metal is deposited.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">For the \({\text{Sn(S}}{{\text{O}}_{\text{4}}}{{\text{)}}_{\text{2}}}\) cell, suggest <strong>two </strong>factors, other than time and current, that would affect the amount of metal deposited during electroplating.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce the oxidation number of the nitrogen in the reactants and product.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce the oxidation and reduction half-equations and identify the oxidizing agent for the reaction.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">\({\text{30.0 d}}{{\text{m}}^{\text{3}}}\) of ammonia reacts with \({\text{30.0 d}}{{\text{m}}^{\text{3}}}\) of nitrogen monoxide at 100 &deg;C. Identify which gas is in excess and by how much and calculate the volume of nitrogen produced.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.iii.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The percentage of iron(II) ions, \({\text{F}}{{\text{e}}^{2 + }}\), in a vitamin tablet can be estimated by dissolving the tablet in dilute sulfuric acid and titrating with standard potassium manganate(VII) solution, \({\text{KMn}}{{\text{O}}_{\text{4}}}{\text{(aq)}}\). During the process iron(II) is oxidized to iron(III) and the manganate(VII) ion is reduced to the manganese(II) ion, \({\text{M}}{{\text{n}}^{2 + }}{\text{(aq)}}\). It was found that one tablet with a mass of 1.43 g required \({\text{11.6 c}}{{\text{m}}^{\text{3}}}\) of \(2.00 \times {10^{ - 2}}{\text{ mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) \({\text{KMn}}{{\text{O}}_{\text{4}}}{\text{(aq)}}\) to reach the end-point.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the half-equation for the oxidation of the iron(II) ions.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the half-equation for the reduction of the \({\text{MnO}}_4^ - \) ions in acidic solution.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce the overall redox equation for the reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the amount, in moles, of \({\text{MnO}}_4^ - \) ions present in \({\text{11.6 c}}{{\text{m}}^{\text{3}}}\) of \(2.00 \times {10^{ - 2}}{\text{ mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) \({\text{KMn}}{{\text{O}}_{\text{4}}}{\text{(aq)}}\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the amount, in moles, of \({\text{F}}{{\text{e}}^{2 + }}\) ions present in the vitamin tablet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine the percentage by mass of \({\text{F}}{{\text{e}}^{2 + }}\) ions present in the vitamin tablet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Chromium is a typical transition metal with many uses.</p>
</div>

<div class="specification">
<p class="p1">A voltaic cell is constructed as follows. One half-cell contains a platinum electrode in a solution containing \({{\text{K}}_{\text{2}}}{\text{C}}{{\text{r}}_{\text{2}}}{{\text{O}}_{\text{7}}}\) and \({{\text{H}}_{\text{2}}}{\text{S}}{{\text{O}}_{\text{4}}}\). The other half-cell contains an iron electrode in a solution containing \({\text{F}}{{\text{e}}^{2 + }}\) ions. The two electrodes are connected to a voltmeter and the two solutions by a salt bridge.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Distinguish between the terms <em>oxidation </em>and <em>reduction </em>in terms of oxidation numbers.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the names of \({\text{C}}{{\text{r}}_{\text{2}}}{{\text{O}}_{\text{3}}}\) and \({\text{Cr}}{{\text{O}}_{\text{3}}}\).</p>
<p class="p1">\({\text{C}}{{\text{r}}_{\text{2}}}{{\text{O}}_{\text{3}}}\):</p>
<p class="p1">\({\text{Cr}}{{\text{O}}_{\text{3}}}\):</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Define the term <em>oxidizing agent</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">\({\text{C}}{{\text{r}}_{\text{2}}}{\text{O}}_7^{2 - }{\text{(aq)}}\) and \({{\text{I}}^ - }{\text{(aq)}}\) ions react together in the <strong>presence of acid </strong>to form \({\text{C}}{{\text{r}}^{3 + }}{\text{(aq)}}\) and \({\text{IO}}_3^ - {\text{(aq)}}\) ions. Deduce the balanced chemical equation for this redox reaction and identify the species that acts as the oxidizing agent.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Draw a diagram of the voltaic cell, labelling the positive and negative electrodes (cathode and anode) and showing the direction of movement of the electrons and ions. Deduce an equation for the reaction occurring in each of the half-cells, and the equation for the overall cell reaction.</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Define the term <em>standard electrode potential</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the cell potential, in V, under standard conditions, using information from Table 14 of the Data Booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State <strong>two </strong>characteristic properties of transition elements.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the type of bond formed by a ligand and identify the feature that enables it to form this bond.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain why the complex \({{\text{[Cr(}}{{\text{H}}_{\text{2}}}{\text{O}}{{\text{)}}_{\text{6}}}{\text{]}}^{{\text{3 + }}}}\) is coloured.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Draw an orbital box diagram (arrow-in-box notation) showing the electrons in the 4s and 3d sub-levels in chromium metal.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Chromium is often used in electroplating. State what is used as the positive electrode (anode), the negative electrode (cathode) and the electrolyte in the chromium electroplating process.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The standard electrode potential for a half-cell made from iron metal in a solution of iron(II) ions, \({\text{F}}{{\text{e}}^{2 + }}{\text{(aq)}}\), has the value \( - 0.45{\text{ V}}\).</p>
</div>

<div class="specification">
<p class="p1">Consider the following table of standard electrode potentials.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-10-27_om_06.52.51.png" alt="M11/4/CHEMI/HP2/ENG/TZ2/07.b"></p>
<p class="p1">From the list above:</p>
</div>

<div class="specification">
<p class="p1">An acidified solution of potassium dichromate is often used as an oxidizing agent in organic chemistry. During the oxidation reaction of ethanol to ethanal the dichromate ion is reduced to chromium(III) ions according to the following <strong>unbalanced </strong>half-equation.</p>
<p class="p1">\[{\text{C}}{{\text{r}}_2}{\text{O}}_7^{2 - }{\text{(aq)}} + {{\text{H}}^ + }{\text{(aq)}} + {{\text{e}}^ - } \to {\text{C}}{{\text{r}}^{3 + }}{\text{(aq)}} + {{\text{H}}_2}{\text{O(l)}}\]</p>
</div>

<div class="specification">
<p class="p1">Sodium metal can be obtained by the electrolysis of molten sodium chloride.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Define <em>standard electrode potential</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain the significance of the minus sign in \( - {\text{0.45 V}}\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the species which is the strongest oxidizing agent.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce which species can reduce \({\text{S}}{{\text{n}}^{4 + }}{\text{(aq)}}\) to \({\text{S}}{{\text{n}}^{2 + }}{\text{(aq)}}\) but will not reduce \({\text{S}}{{\text{n}}^{2 + }}{\text{(aq)}}\) to Sn(s) under standard conditions.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce which species can reduce \({\text{S}}{{\text{n}}^{2 + }}{\text{(aq)}}\) to Sn(s) under standard conditions.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Draw a labelled diagram of a voltaic cell made from an Fe (s) / \({\text{F}}{{\text{e}}^{2 + }}{\text{(aq)}}\) half-cell connected to an Ag(s) / \({\text{A}}{{\text{g}}^ + }{\text{(aq)}}\) half-cell operating under standard conditions. In your diagram identify the positive electrode (cathode), the negative electrode (anode) and the direction of electron flow in the external circuit.</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce the equation for the chemical reaction occurring when the cell in part (c) (i) is operating under standard conditions and calculate the voltage produced by the cell.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Describe the colour change that will be observed in the reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce the oxidation number of chromium in \({\text{C}}{{\text{r}}_{\text{2}}}{\text{O}}_7^{2 - }\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the balanced half-equation for the reduction of dichromate ions to chromium(III) ions.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce the half-equation for the oxidation of ethanol to ethanal and hence the overall redox equation for the oxidation of ethanol to ethanal by acidified dichromate ions.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain why it is necessary to carry out the reaction under acidic conditions.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.v.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Identify the organic product formed if excess potassium dichromate is used and the reaction is carried out under reflux.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.vi.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain why it is very difficult to obtain sodium from sodium chloride by any other method.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain why an aqueous solution of sodium chloride cannot be used to obtain sodium metal by electrolysis.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.ii.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">A voltaic cell was set up, using the standard hydrogen electrode as a reference electrode and a standard \({\text{C}}{{\text{u}}^{2 + }}{\text{(aq)/Cu(s)}}\) electrode.</p>
</div>

<div class="specification">
<p class="p1">Another voltaic cell was set up, using a \({\text{S}}{{\text{n}}^{2 + }}{\text{(aq)/Sn(s)}}\) half-cell and a \({\text{C}}{{\text{u}}^{2 + }}{\text{(aq)/Cu(s)}}\) half-cell under standard conditions.</p>
</div>

<div class="specification">
<p class="p1">Water in a beaker at a pressure of \(1.01 \times {10^5}{\text{ Pa}}\) and a temperature of 298 K will not spontaneously decompose. However, decomposition of water can be induced by means of electrolysis.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Define <em>oxidation </em>in terms of oxidation number.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce the balanced chemical equation for the redox reaction of copper, Cu(s), with nitrate ions, \({\text{N}}{{\text{O}}^{3 - }}{\text{(aq)}}\), <strong>in acid</strong>, to produce copper(II) ions, \({\text{C}}{{\text{u}}^{2 + }}{\text{(aq)}}\), and nitrogen(IV) oxide, \({\text{N}}{{\text{O}}_{\text{2}}}{\text{(g)}}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce the oxidizing and reducing agents in this reaction.</p>
<p class="p2">&nbsp;</p>
<p class="p1">Oxidizing agent:</p>
<p class="p2">&nbsp;</p>
<p class="p1">Reducing agent:</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Describe the standard hydrogen electrode including a fully labelled diagram.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Define the term <em>standard electrode potential</em>, \({E^\Theta }\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce a balanced chemical equation, including state symbols, for the overall reaction which will occur spontaneously when the two half-cells are connected.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Draw a fully labelled diagram of the voltaic cell, showing the positive electrode (cathode), the negative electrode (anode) and the direction of electron movement through the external circuit.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Using Table 14 of the Data Booklet, calculate the cell potential, \(E_{{\text{cell}}}^\Theta \), in V, when the two half-cells are connected.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce the sign of the standard free energy change, \(\Delta {G^\Theta }\), for any non-spontaneous reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State why dilute sulfuric acid needs to be added in order for the current to flow in the electrolytic cell.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State why copper electrodes cannot be used in the electrolysis of water. Suggest instead suitable <strong>metallic </strong>electrodes for this electrolysis process.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce the half-equations for the reactions occurring at the positive electrode (anode) and the negative electrode (cathode).</p>
<p class="p2">&nbsp;</p>
<p class="p1">Positive electrode (anode):</p>
<p class="p2">&nbsp;</p>
<p class="p2">&nbsp;</p>
<p class="p1">Negative electrode (cathode):</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce the overall cell reaction, including state symbols.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.v.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Draw a fully labelled diagram of the electrolytic cell, showing the positive electrode (anode) and the negative electrode (cathode).</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.vi.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Comment on what is observed at both electrodes.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.vii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Two electrolytic cells are connected in series (the same current passes through each cell). One cell for the electrolysis of water produces 100 cm<span class="s1">\(^3\) </span>of oxygen, measured at 273 K and \(1.01 \times {10^5}{\text{ Pa}}\). The second cell contains molten lead(II) bromide, \({\text{PbB}}{{\text{r}}_{\text{2}}}\). Determine the mass, in g, of lead produced.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In acidic solution, bromate ions, BrO<sub>3</sub><sup>−</sup>(aq), oxidize iodide ions, I<sup>−</sup>(aq).</p>
<p>BrO<sub>3</sub><sup>−</sup>(aq) + 6H<sup>+</sup>(aq) + 6e<sup>−</sup> \( \rightleftharpoons \) Br<sup>−</sup>(aq) + 3H<sub>2</sub>O(l)</p>
<p>2I<sup>−</sup>(aq) \( \rightleftharpoons \) I<sub>2</sub>(s) + 2e<sup>−</sup></p>
<p>Formulate the equation for the redox reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The change in the free energy for the reaction under standard conditions, Δ<em>G</em><sup>Θ</sup>, is −514 kJ at 298 K.</p>
<p>Determine the value of <em>E</em><sup>Θ</sup>, in V, for the reaction using sections 1 and 2 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the standard electrode potential, in V, for the BrO<sub>3</sub><sup>−</sup>/Br<sup>−</sup> reduction half‑equation using section 24 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">An electrochemical cell is made from an iron half-cell connected to a cobalt half-cell:</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-10-14_om_07.11.23.png" alt="M09/4/CHEMI/HP2/ENG/TZ1/07.a"></p>
<p class="p1">The standard electrode potential for \({\text{F}}{{\text{e}}^{2 + }}{\text{(aq)}} + {\text{2}}{{\text{e}}^ - } \rightleftharpoons {\text{Fe(s)}}\) is &ndash;0.45 V. The total cell potential obtained when the cell is operating under standard conditions is 0.17 V. Cobalt is produced during the spontaneous reaction.</p>
</div>

<div class="specification">
<p class="p1">An electrolytic cell is made using a very dilute solution of sodium chloride.</p>
</div>

<div class="specification">
<p class="p1">Predict the products by giving the relevant half-equation for the reaction occurring at each electrode if the electrolyte of the cell described in part (c) was changed to:</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Define the term <em>standard electrode potential </em>and state the meaning of the minus sign in the value of &ndash;0.45 V.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the value for the standard electrode potential for the cobalt half-cell.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce which species acts as the oxidizing agent when the cell is operating.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce the equation for the spontaneous reaction taking place when the iron half-cell is connected instead to an aluminium half-cell.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain the function of the salt bridge in an electrochemical cell.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.v.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>\({{\text{[Co(}}{{\text{H}}_{\text{2}}}{\text{O}}{{\text{)}}_{\text{6}}}{\text{]}}^{2 + }}\)</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>\({\text{C}}{{\text{o}}_{\text{2}}}{{\text{(S}}{{\text{O}}_{\text{4}}}{\text{)}}_{\text{3}}}\)</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>\({{\text{[CoC}}{{\text{l}}_{\text{4}}}{\text{]}}^{2 - }}\)</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Draw a labelled diagram of the cell. Use an arrow to show the direction of the electron flow and identify the positive and negative electrodes.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Give the formulas of all the ions present in the solution.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Predict the products obtained at each electrode and state the half-equation for the formation of each product.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce the molar ratios of the products obtained at the two electrodes.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">concentrated sodium chloride</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">molten sodium bromide</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Ethanedioic acid (oxalic acid), \({{\text{(COOH)}}_{\text{2}}}\), reacts with acidified potassium permanganate solution, \({\text{KMn}}{{\text{O}}_{\text{4}}}\), according to the following equation.</p>
<p class="p1">\[{\text{5(COOH}}{{\text{)}}_2}{\text{(aq)}} + {\text{2MnO}}_4^ - {\text{(aq)}} + {\text{6}}{{\text{H}}^ + }{\text{(aq)}} \to {\text{10C}}{{\text{O}}_2}{\text{(g)}} + {\text{2M}}{{\text{n}}^{2 + }}{\text{(aq)}} + {\text{8}}{{\text{H}}_2}{\text{O(l)}}\]</p>
<p class="p1">The reaction is a redox reaction.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce the half-equation involving ethanedioic acid.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The standard electrode potential for the half-equation involving ethanedioic acid is&nbsp;\({E^\Theta } =&nbsp; - 0.49V\). Using Table 14 of the <span class="s1">Data Booklet, calculate the standard electrode </span>potential for the equation on page 10.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain the sign of the calculated standard electrode potential.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Predict the sign of \(\Delta {G^\Theta }\) for this reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Bromine is a member of group 7, the halogens.</p>
</div>

<div class="specification">
<p class="p1">Iron is a transition metal.</p>
</div>

<div class="specification">
<p class="p1">Freshly prepared iron(II) bromide can be electrolysed both in the liquid state and in aqueous solution.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain the trend in reactivity of the halogens.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce, using equations where appropriate, if bromine reacts with sodium chloride solution and with sodium iodide solution.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Describe the bonding in metals and explain their malleability.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">List <strong>three </strong>characteristic properties of transition elements.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Identify the type of bonding between iron and cyanide in \({{\text{[Fe(CN}}{{\text{)}}_{\text{6}}}{\text{]}}^{3 - }}\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce the oxidation number of iron in \({{\text{[Fe(CN}}{{\text{)}}_{\text{6}}}{\text{]}}^{3 - }}\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Draw the abbreviated orbital diagram for an <strong>iron atom </strong>using the arrow-in-box notation to represent electrons.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.v.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Draw the abbreviated orbital diagram for the <strong>iron ion in [Fe(CN)<sub>6</sub>]<sup>3&ndash;</sup></strong> using the arrow-in-box notation to represent electrons.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.vi.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Describe, using a diagram, the essential components of an electrolytic cell.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Describe the <strong>two </strong>ways in which current is conducted in an electrolytic cell.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Predict and explain the products of electrolysis of a <strong>dilute </strong>iron(II) bromide solution.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Identify another product that is formed if the solution of iron(II) bromide is <strong>concentrated</strong>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain why this other product is formed.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.v.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Bromomethane was used as a pesticide until it was found to be ozone-depleting.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the equation for the reaction between methane and bromine to form bromomethane.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain, using equations, the complete free-radical mechanism for the reaction of methane with bromine, including necessary reaction conditions.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Bromomethane reacts with aqueous sodium hydroxide. State the organic product of this reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain why the rate of the reaction between iodomethane, \({\text{C}}{{\text{H}}_{\text{3}}}{\text{I}}\), and NaOH(aq) is faster than the rate of the reaction between \({\text{C}}{{\text{H}}_{\text{3}}}{\text{Br}}\) and NaOH(aq).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Bromine can be produced by the electrolysis of <strong>molten </strong>sodium bromide.</p>
<p class="p1">Deduce the half-equation for the reaction at each electrode.</p>
<p class="p1">&nbsp;</p>
<p class="p1">Positive electrode (anode):</p>
<p class="p1">&nbsp;</p>
<p class="p1">Negative electrode (cathode):</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Predict the products formed at the electrodes during the electrolysis of concentrated <strong>aqueous </strong>sodium bromide.</p>
<p class="p1">&nbsp;</p>
<p class="p1">Positive electrode (anode):</p>
<p class="p1">&nbsp;</p>
<p class="p1">Negative electrode (cathode):</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Bromine reacts with aqueous sodium iodide.</p>
<p class="p1">\[{\text{B}}{{\text{r}}_{\text{2}}}{\text{(aq)}} + {\text{2NaI(aq)}} \to {{\text{I}}_{\text{2}}}{\text{(aq)}} + {\text{2NaBr(aq)}}\]</p>
<p class="p1">Identify the oxidizing agent in this reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Define the term <em>standard electrode potential, </em>\({E^\Theta }\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Draw a labelled diagram for the voltaic cell in which the following reaction occurs.</p>
<p class="p1">\[{\text{Mg(s)}} + {\text{C}}{{\text{u}}^{2 + }}{\text{(aq)}} \to {\text{M}}{{\text{g}}^{2 + }}{\text{(aq)}} + {\text{Cu(s)}}\]</p>
<p class="p2">Include in your answer the direction of electron flow and the polarity of the electrodes.</p>
<div class="marks">[4]</div>
<div class="question_part_label">f.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">A student measures a voltage of 2.65 V in the voltaic cell formed between magnesium and copper half-cells using a digital voltmeter.</p>
<p class="p1">State the random uncertainty of this value, in V, and the number of significant figures in the answer.</p>
<p class="p2">&nbsp;</p>
<p class="p1">Random uncertainty:</p>
<p class="p2">&nbsp;</p>
<p class="p1">Significant figures:</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Outline how the student can reduce the random error in her results.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine the standard enthalpy change of formation, \(\Delta H_{\text{f}}^\Theta \)<span class="s1">, of NaCl(s), in \({\text{kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\)</span>, using a Born-Haber cycle and tables 7, 10 and 13 of the data booklet. The standard enthalpy change of atomization (standard enthalpy change of sublimation), \(\Delta H_{{\text{at}}}^\Theta \), of Na(s) is \( + {\text{108 kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\)<span class="s1">.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Ethanol is a primary alcohol that can be oxidized by acidified potassium dichromate(VI). Distinguish between the reaction conditions needed to produce ethanal and ethanoic acid.</p>
<p class="p1">&nbsp;</p>
<p class="p1">Ethanal:</p>
<p class="p1">&nbsp;</p>
<p class="p1">&nbsp;</p>
<p class="p1">Ethanoic acid:</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine the oxidation number of carbon in ethanol and ethanal.</p>
<p class="p1">&nbsp;</p>
<p class="p1">Ethanol:</p>
<p class="p1">&nbsp;</p>
<p class="p1">Ethanal:</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce the half-equation for the oxidation of ethanol to ethanal.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce the overall redox equation for the reaction of ethanol to ethanal with acidified potassium dichromate(VI).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Ethanol can be made by reacting aqueous sodium hydroxide with bromoethane.</p>
<p class="p1">Explain the mechanism for this reaction, using curly arrows to represent the movement of electron pairs.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine the orders of reaction of the reactants and the overall rate expression for the reaction between 2-bromobutane and aqueous sodium hydroxide using the data in the table.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-08-03_om_07.27.54.png" alt="M15/4/CHEMI/HP2/ENG/TZ1/07.ci"></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine the rate constant, \(k\), with its units, using the data from experiment 3.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Identify the molecularity of the rate-determining step in this reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">2-bromobutane exists as optical isomers.</p>
<p class="p2">State the essential feature of optical isomers.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">2-bromobutane exists as optical isomers.</p>
<p class="p1">Outline how a polarimeter can distinguish between these isomers.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Describe the formation of \(\sigma \) and \(\pi \) <span class="s1">bonds in an alkene.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The two most abundant isotopes of bromine have the mass numbers 79 and 81.</p>
<p class="p1">Calculate the relative abundance of \(^{{\text{79}}}{\text{Br}}\) using table 5 of the data booklet, assuming the abundance of the other isotopes is negligible.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p>Oxidation and reduction can be defined in terms of electron transfer or oxidation numbers.</p>
</div>

<div class="specification">
<p>A reactivity series can be experimentally determined by adding the metals W, X, Y and Z to solutions of these metal ions. The following reactions were observed:</p>
<p>&nbsp;&nbsp; &nbsp; \({{\text{W}}^{2 + }}{\text{(aq)}} + {\text{X(s)}} \to {\text{W(s)}} + {{\text{X}}^{2 + }}{\text{(aq)}}\)</p>
<p>&nbsp;&nbsp; &nbsp; \({\text{Y(s)}} + {{\text{W}}^{2 + }}{\text{(aq)}} \to {{\text{Y}}^{2 + }}{\text{(aq)}} + {\text{W(s)}}\)</p>
<p>&nbsp;&nbsp; &nbsp; \({{\text{Z}}^{2 + }}{\text{(aq)}} + {\text{W(s)}} \to {\text{Z(s)}} + {{\text{W}}^{2 + }}{\text{(aq)}}\)</p>
<p>&nbsp;&nbsp; &nbsp; \({\text{Y(s)}} + {{\text{X}}^{2 + }}{\text{(aq)}} \to {{\text{Y}}^{2 + }}{\text{(aq)}} + {\text{X(s)}}\)</p>
</div>

<div class="specification">
<p>A student carries out the electrolysis of aqueous potassium iodide, KI, using inert electrodes.</p>
</div>

<div class="specification">
<p>Three electrolytic cells were set up in series (one cell after the other), as shown below.</p>
<p>All of the solutions had a concentration of \({\text{1.00 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\).</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-12_om_08.22.13.png" alt="M14/4/CHEMI/HP2/ENG/TZ1/06.d"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Alcohols with the molecular formula \({{\text{C}}_{\text{4}}}{{\text{H}}_{\text{9}}}{\text{OH}}\) occur as four structural isomers. Three of the isomers can be oxidized with acidified potassium dichromate solution to form compounds with the molecular formula \({{\text{C}}_{\text{4}}}{{\text{H}}_{\text{8}}}{\text{O}}\).</p>
<p>(i) &nbsp; &nbsp; Deduce the half-equation for the oxidation of the alcohol \({{\text{C}}_{\text{4}}}{{\text{H}}_{\text{9}}}{\text{OH}}\).</p>
<p>&nbsp;</p>
<p>(ii) &nbsp; &nbsp; Deduce the overall equation for the redox reaction.</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>(iii) &nbsp; &nbsp; Two of the isomers with the molecular formula \({{\text{C}}_{\text{4}}}{{\text{H}}_{\text{9}}}{\text{OH}}\) can be oxidized further to form compounds with the molecular formula \({{\text{C}}_{\text{4}}}{{\text{H}}_{\text{8}}}{{\text{O}}_{\text{2}}}\). Deduce the structural formulas of these two isomers.</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>(iv) &nbsp; &nbsp; One isomer cannot be oxidized by acidified potassium dichromate solution.</p>
<p>Deduce its structural formula, state its name and identify it as a primary, secondary or tertiary alcohol.</p>
<p>&nbsp;</p>
<p>Name:</p>
<p>&nbsp;</p>
<p>Alcohol:</p>
<p>&nbsp;</p>
<p>(v) &nbsp; &nbsp; All isomers of the alcohol \({{\text{C}}_{\text{4}}}{{\text{H}}_{\text{9}}}{\text{OH}}\) undergo complete combustion. State an equation for the complete combustion of \({{\text{C}}_{\text{4}}}{{\text{H}}_{\text{9}}}{\text{OH}}\).</p>
<div class="marks">[9]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) &nbsp; &nbsp; Deduce the order of reactivity of these four metals, from the least to the most reactive.</p>
<p>&nbsp;</p>
<p>(ii) &nbsp; &nbsp; A voltaic cell is made by connecting a half-cell of X in \({\text{XC}}{{\text{l}}_{\text{2}}}{\text{(aq)}}\) to a half-cell of Z in \({\text{ZC}}{{\text{l}}_{\text{2}}}{\text{(aq)}}\). Deduce the overall equation for the reaction taking place when the cell is operating.</p>
<p>&nbsp;</p>
<p>(iii) &nbsp; &nbsp; The standard electrode potential for \({{\text{Z}}^{2 + }}{\text{(aq)}} + {\text{2}}{{\text{e}}^ - } \rightleftharpoons {\text{Z(s)}}\) is \( + {\text{0.20 V}}\). State which species is oxidized when this half-cell is connected to a standard hydrogen electrode.</p>
<p>&nbsp;</p>
<p>(iv) &nbsp; &nbsp; Describe the standard hydrogen electrode including a fully labelled diagram.</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) &nbsp; &nbsp; State the half-equation for the reaction that occurs at each electrode.</p>
<p>&nbsp;</p>
<p>Positive electrode (anode):</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>Negative electrode (cathode):</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>(ii) &nbsp; &nbsp; Suggest, giving a reason, what would happen if the electrodes were changed to aluminium.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) &nbsp; &nbsp; Determine the mass of copper produced at one of the electrodes in cell 2 if the tin electrode in cell 1 decreased in mass by 0.034 g.</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>(ii) &nbsp; &nbsp; Compare the colour and the pH of the solutions in cells 2 and 3 after the current has been flowing for one hour.</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>(iii) &nbsp; &nbsp; Explain your answer given for part (d) (ii).</p>
<p>&nbsp;</p>
<p>Colour:</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>pH:</p>
<div class="marks">[6]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Magnesium is the eighth most abundant element in the earth&rsquo;s crust. The successive ionization energies of the element are shown below.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-25_om_14.06.48.png" alt="N10/4/CHEMI/HP2/ENG/TZ0/04"></p>
</div>

<div class="specification">
<p class="p1">Magnesium can be produced from the electrolysis of molten magnesium chloride, MgCl<sub><span class="s1">2</span></sub>.</p>
</div>

<div class="specification">
<p class="p1">The lattice enthalpy of magnesium chloride can be calculated from the Born-Haber cycle shown below.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-25_om_14.10.58.png" alt="N10/4/CHEMI/HP2/ENG/TZ0/04.c"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">&nbsp; &nbsp; </span>Define the term <em>first ionization energy </em>and state the equation for the first ionization of magnesium.</p>
<p class="p1">(ii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>Explain the general increase in successive ionization energies of the element.</p>
<p class="p1">(iii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>Explain the large increase between the tenth and eleventh ionization energies.</p>
<div class="marks">[8]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">&nbsp; &nbsp; </span>Explain how molten magnesium chloride conducts an electric current.</p>
<p class="p1">(ii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>Identify the electrode where oxidation occurs during electrolysis of molten magnesium chloride and state an equation for the half-reaction.</p>
<p class="p1">(iii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>Explain why magnesium is not formed during the electrolysis of aqueous magnesium chloride solution.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">&nbsp; &nbsp; </span>Identify the enthalpy changes labelled by <strong>I </strong>and <strong>V </strong>in the cycle.</p>
<p class="p1">(ii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>Use the ionization energies given in the cycle above and further data from the Data Booklet to calculate a value for the lattice enthalpy of magnesium chloride.</p>
<p class="p1">(iii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>The theoretically calculated value for the lattice enthalpy of magnesium chloride is +2326 kJ. Explain the difference between the theoretically calculated value and the experimental value.</p>
<p class="p1">(iv) <span class="Apple-converted-space">&nbsp; &nbsp; </span>The experimental lattice enthalpy of magnesium oxide is given in Table 13 of the Data Booklet. Explain why magnesium oxide has a higher lattice enthalpy than magnesium chloride.</p>
<div class="marks">[10]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">&nbsp; &nbsp; </span>State whether aqueous solutions of magnesium oxide and magnesium chloride are acidic, alkaline or neutral.</p>
<p class="p1">(ii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>State an equation for the reaction between magnesium oxide and water.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>In acidic solution, ions containing titanium can react according to the half-equation below.</p>
<p style="text-align: center;">\({\text{Ti}}{{\text{O}}^{2 + }}{\text{(aq)}} + {\text{2}}{{\text{H}}^ + }{\text{(aq)}} + {{\text{e}}^ - } \rightleftharpoons {\text{T}}{{\text{i}}^{3 + }}{\text{(aq)}} + {{\text{H}}_2}{\text{O(l)}}\) &nbsp; &nbsp; \({E^\Theta } =&nbsp; - 0.06{\text{ V}}\)</p>
</div>

<div class="specification">
<p>In the diagram below, <strong>A</strong> and <strong>B</strong> are inert electrodes and, in the aqueous solutions, all ions have a concentration of \({\text{1 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\).</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-25_om_08.07.03.png" alt="N13/4/CHEMI/HP2/ENG/TZ0/06.d"></p>
</div>

<div class="specification">
<p>Sodium, silicon and sulfur are elements in period 3 of the periodic table that all form oxides.</p>
</div>

<div class="specification">
<p>Although carbon and silicon both belong to group 4 of the periodic table, carbon dioxide and silicon dioxide are different in many ways.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Define the term <em>standard electrode potential</em>, \({E^\Theta }\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the initial and final oxidation numbers of titanium and hence deduce whether it is oxidized or reduced in this change.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-25_om_07.45.44.png" alt="N13/4/CHEMI/HP2/ENG/TZ0/06.b.i"></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Considering the above equilibrium, predict, giving a reason, how adding more acid would affect the strength of the \({\text{Ti}}{{\text{O}}^{2 + }}\) ion as an oxidizing agent.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In the two experiments below, predict whether a reaction would occur and deduce an equation for any reaction that takes place. Refer to Table 14 of the Data Booklet if necessary.</p>
<p>&nbsp;</p>
<p>KI(aq) is added to a solution containing \({\text{T}}{{\text{i}}^{3 + }}{\text{(aq)}}\) ions:</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>Zn (s) is added to a solution containing \({\text{Ti}}{{\text{O}}^{2 + }}{\text{(aq)}}\) and \({{\text{H}}^ + }{\text{(aq)}}\) ions:</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using Table 14 of the Data Booklet, state the balanced half-equation for the reaction that occurs at electrode <strong>A</strong> and whether it involves oxidation or reduction.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the cell potential in V.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>On the diagram above label with an arrow</p>
<p>&bull; the direction of electron flow in the wire</p>
<p>&bull; the direction in which the positive ions flow in the salt bridge.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Compare the properties of the three oxides by completing the table below.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-25_om_08.18.33.png" alt="N13/4/CHEMI/HP2/ENG/TZ0/06.e.i"></p>
<div class="marks">[3]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sulfur dioxide is a significant contributor to acid deposition. Identify a major, man-made source of this pollutant.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>As well as the oxide above, sodium forms a peroxide that contains the peroxide ion, \({\text{O}}_2^{2 - }\). Draw the Lewis (electron dot) structure of the peroxide ion.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the differences in the hybridization of these group 4 elements and the precise nature of the bonds that they form with the oxygen atoms.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Xenon, although a noble gas, forms an oxide, \({\text{Xe}}{{\text{O}}_{\text{2}}}\), that has a structure related to that of \({\text{Si}}{{\text{O}}_{\text{2}}}\). Compare the geometry around the silicon atoms in \({\text{Si}}{{\text{O}}_{\text{2}}}\) with the geometry around the xenon atoms in \({\text{Xe}}{{\text{O}}_{\text{2}}}\), using the valence shell electron pair repulsion (VSEPR) theory.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Millerite, a nickel sulfide mineral, is an important source of nickel. The first step in extracting&nbsp;nickel is to roast the ore in air.</p>
</div>

<div class="specification">
<p>The reaction for the formation of liquid tetracarbonylnickel is shown below:</p>
<p style="text-align: left;">\[{\text{Ni(s)}} + 4{\text{CO(g)}} \to {\text{Ni(CO}}{{\text{)}}_4}{\text{(l)}}\]</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Formulate an equation for the oxidation of nickel(II) sulfide to nickel(II) oxide.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The nickel obtained from another ore, nickeliferous limonite, is contaminated with iron.&nbsp;Both nickel and iron react with carbon monoxide gas to form gaseous complexes,&nbsp;tetracarbonylnickel, \({\text{Ni(CO}}{{\text{)}}_{\text{4}}}{\text{(g)}}\), and pentacarbonyliron, \({\text{Fe(CO}}{{\text{)}}_{\text{5}}}{\text{(g)}}\). Suggest why the&nbsp;nickel can be separated from the iron successfully using carbon monoxide.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the standard entropy change, \(\Delta {S^\theta }\), of the reaction, in \({\text{J}}\,{{\text{K}}^{ - 1}}\), using the&nbsp;values given.</p>
<p style="text-align: center;"><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate a value for \(\Delta {H^\theta }\)&nbsp;in kJ.</p>
<p style="text-align: center;"><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your answers to (c)(i) and (c)(ii), to determine the temperature, in &deg;C, at which&nbsp;the decomposition of liquid tetracarbonylnickel to nickel and carbon monoxide&nbsp;becomes favourable.</p>
<p><br>(If you did not get answers to (c)(i) and (c)(ii), use \( - 500{\text{ J}}\,{{\text{K}}^{ - 1}}\)&nbsp;and \( - 200{\text{ kJ}}\) respectively but these are not the correct answers.)</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why experiments involving tetracarbonylnickel are very hazardous.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the following half-cell reactions and their standard electrode potentials.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce a balanced equation for the overall reaction when the standard nickel and&nbsp;iodine half-cells are connected.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Predict, giving a reason, the direction of movement of electrons when the standard&nbsp;nickel and manganese half-cells are connected.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the cell potential, in V, when the standard iodine and manganese half-cells&nbsp;are connected.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the best reducing agent in the table above.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State and explain the products of electrolysis of a concentrated aqueous solution of&nbsp;sodium chloride using inert electrodes. Your answer should include half-equations for&nbsp;the reaction at each electrode.</p>
<p><img src=""></p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Magnesium, a reactive metal found in many common minerals, is also an essential nutrient for both plants and animals.</p>
</div>

<div class="specification">
<p>Successive ionization energies of magnesium are given in the table below.</p>
<p><img src="images/Schermafbeelding_2016-08-14_om_07.56.03.png" alt="M14/4/CHEMI/HP2/ENG/TZ2/08.b"></p>
</div>

<div class="specification">
<p>Magnesium metal is mainly used as a component in lightweight alloys, particularly in combination with aluminium and titanium.</p>
</div>

<div class="specification">
<p>Magnesium is usually produced by the electrolysis of molten magnesium chloride.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Define the term <em>first ionization energy</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) &nbsp; &nbsp; Explain why the second ionization energy is greater than the first ionization energy.</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>(ii) &nbsp; &nbsp; Explain why the third ionization energy is much greater than the second ionization energy.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Although magnesium is usually found as \({\text{M}}{{\text{g}}^{2 + }}\) in its compounds, it is possible to use the Born-Haber cycle to investigate the possibility of \({\text{M}}{{\text{g}}^ + }\) being able to form stable compounds.</p>
<p>Use the ionization energy data from part (b), along with the other data provided below, to determine the enthalpy change of formation of MgCl(s). Assume that, because \({\text{M}}{{\text{g}}^ + }\) would be similar in size to \({\text{N}}{{\text{a}}^ + }\), MgCl would have a similar lattice enthalpy to NaCl.</p>
<p>&nbsp;&nbsp; &nbsp; Enthalpy of atomization of Mg &nbsp; &nbsp; \( + 146{\text{ kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\)</p>
<p>&nbsp;&nbsp; &nbsp; Bond enthalpy in \({\text{C}}{{\text{l}}_{\text{2}}}\) &nbsp; &nbsp; \( + 243{\text{ kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\)</p>
<p>&nbsp;&nbsp; &nbsp; Electron affinity of Cl &nbsp; &nbsp; \( + 349{\text{ kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\)</p>
<p>&nbsp;&nbsp; &nbsp; Lattice enthalpy of NaCl &nbsp; &nbsp; \( + 790{\text{ kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\)</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Consider the lattice enthalpies of \({\text{Mg}}{{\text{F}}_{\text{2}}}\), \({\text{MgC}}{{\text{l}}_2}\) and \({\text{CaC}}{{\text{l}}_{\text{2}}}\). List these from the most endothermic to the least endothermic and explain your order.</p>
<p>&nbsp;</p>
<p>\({\text{Most endothermic}} \to {\text{Least endothermic}}\)</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Magnesium hydroxide, \({\text{Mg(OH}}{{\text{)}}_{\text{2}}}\), is only sparingly soluble in water and the equilibrium below exists when excess solid is in contact with a saturated solution.</p>
<p>\[{\text{Mg(OH}}{{\text{)}}_2}{\text{(s)}} \rightleftharpoons {\text{M}}{{\text{g}}^{2 + }}{\text{(aq)}} + {\text{2O}}{{\text{H}}^ - }{\text{(aq)}}\]</p>
<p>Outline how the solubility of magnesium hydroxide will vary with pH.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) &nbsp; &nbsp; Describe the bonding present in magnesium metal.</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>(ii) &nbsp; &nbsp; Suggest why magnesium is harder than sodium.</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>(iii) &nbsp; &nbsp; Outline why alloys are generally less malleable than their component metals.</p>
<div class="marks">[4]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) &nbsp; &nbsp; Draw a labelled diagram of a suitable apparatus for the electrolysis.</p>
<p>&nbsp;</p>
<p>(ii) &nbsp; &nbsp; State equations for the reactions that take place at the electrodes.</p>
<p>&nbsp;</p>
<p>Negative electrode (cathode) reaction:</p>
<p>&nbsp;</p>
<p>Positive electrode (anode) reaction:</p>
<p>&nbsp;</p>
<p>(iii) &nbsp; &nbsp; When dilute aqueous magnesium chloride is used as the electrolyte, the reactions at both electrodes are different. State equations for the reactions that occur in aqueous solution.</p>
<p>&nbsp;</p>
<p>Negative electrode (cathode) reaction:</p>
<p>&nbsp;</p>
<p>Positive electrode (anode) reaction:</p>
<p>&nbsp;</p>
<p>(iv) &nbsp; &nbsp; Outline why magnesium metal is not produced in the electrolysis of aqueous magnesium chloride.</p>
<div class="marks">[7]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p>Bleaches in which chlorine is the active ingredient are the most common, although some environmental groups have concerns about their use.</p>
</div>

<div class="specification">
<p>In aqueous chlorine the equilibrium below produces chloric(I) acid (hypochlorous acid), HOCl, the active bleach.</p>
<p>\[{\text{C}}{{\text{l}}_2}{\text{(aq)}} + {{\text{H}}_2}{\text{O(l)}} \rightleftharpoons {\text{HOCl(aq)}} + {{\text{H}}^ + }{\text{(aq)}} + {\text{C}}{{\text{l}}^ - }{\text{(aq)}}\]</p>
</div>

<div class="specification">
<p>Aqueous sodium chlorate(I), NaOCl, the most common active ingredient in chlorine based bleaches, oxidizes coloured materials to colourless products while being reduced to the chloride ion. It will also oxidize sulfur dioxide to the sulfate ion.</p>
</div>

<div class="specification">
<p>The standard electrode potential for the reduction of the chlorate(V) ion to the chloride ion is \( + 1.49{\text{ V}}\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i)&nbsp; &nbsp; &nbsp;Describe the colour change that occurs when aqueous chlorine is added to aqueous sodium bromide.</p>
<p>(ii)&nbsp; &nbsp; &nbsp;Outline, with the help of a chemical equation, why this reaction occurs.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Chloric(I) acid is a weak acid, but hydrochloric acid is a strong acid. Outline how this is indicated in the equation above.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State a balanced equation for the reaction of chloric(I) acid with water.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline, in terms of the equilibrium in aqueous chlorine, why it is dangerous to use an acidic toilet cleaner in combination with this kind of bleach.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why a covalent molecule, such as chloric(I) acid, is readily soluble in water.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Partial neutralization of chloric(I) acid creates a buffer solution. Given that the \({\text{p}}{K_{\text{a}}}\) of chloric(I) acid is 7.53, determine the pH of a solution that has \({\text{[HOCl]}} = 0.100{\text{ mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) and \({\text{[Cl}}{{\text{O}}^ - }{\text{]}} = 0.0500{\text{ mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.v.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe, using HIn to represent the indicator in its acid form, why an indicator changes colour when excess alkali is added.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.vi.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i)&nbsp; &nbsp; &nbsp;Deduce a balanced equation for the reaction between the chlorate(I) ion and sulfur dioxide from the appropriate half-equations.</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>(ii)&nbsp; &nbsp; &nbsp;State the initial and final oxidation numbers of both chlorine and sulfur in the final equation.</p>
<p><img src="images/Schermafbeelding_2016-08-12_om_18.13.59.png" alt="M14/4/CHEMI/HP2/ENG/TZ2/05.c.ii"></p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) &nbsp; &nbsp; Define the term <em>standard electrode potential</em>.</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>(ii) &nbsp; &nbsp; Referring to Table 14 of the Data Booklet, deduce, giving a reason, whether the oxidation of the chromium(III) ion to the dichromate(VI) ion by the chlorate(V) ion is energetically feasible.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Iron rusts in the presence of oxygen and water. Rusting is a redox process involving several steps that produces hydrated iron(III) oxide, \({\text{F}}{{\text{e}}_{\text{2}}}{{\text{O}}_{\text{3}}} \bullet {\text{n}}{{\text{H}}_{\text{2}}}{\text{O}}\), as the final product.</p>
<p>The half-equations involved for the first step of rusting are given below.</p>
<p>&nbsp;&nbsp; &nbsp; Half-equation 1: &nbsp; &nbsp; \({\text{Fe(s)}} \to {\text{F}}{{\text{e}}^{2 + }}{\text{(aq)}} + {\text{2}}{{\text{e}}^ - }\)</p>
<p>&nbsp;&nbsp; &nbsp; Half-equation 2: &nbsp; &nbsp; \({{\text{O}}_{\text{2}}}{\text{(aq)}} + {\text{4}}{{\text{e}}^ - } + {\text{2}}{{\text{H}}_{\text{2}}}{\text{O(l)}} \to {\text{4O}}{{\text{H}}^ - }{\text{(aq)}}\)</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) &nbsp; &nbsp; Identify whether half-equation 1 represents oxidation or reduction, giving a reason for your answer.</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>(ii) &nbsp; &nbsp; Identify the oxidation number of each atom in the three species in half-equation 2.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-22_om_05.46.30.png" alt="N14/4/CHEMI/HP2/ENG/TZ0/10.a.ii"></p>
<p>(iii) &nbsp; &nbsp; Deduce the overall redox equation for the first step of rusting by combining half-equations 1 and 2.</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>(iv) &nbsp; &nbsp; Identify the reducing agent in the redox equation in part (iii).</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The oxygen in half-equation 2 is atmospheric oxygen that is found dissolved in water in very small concentrations. Explain, in terms of intermolecular forces, why oxygen is not very soluble in water.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the relationship between the electron arrangement of an element and its group and period in the periodic table.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Transition metals and their compounds often catalyse reactions. The catalyzed decomposition of hydrogen peroxide by CuO is an example. State <strong>two other</strong> examples of catalyzed reactions giving the transition metal or its compound acting as catalyst.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) &nbsp; &nbsp; State a chemical equation for the partial dissociation of water into ions, including state symbols.</p>
<p>&nbsp;</p>
<p>(ii) &nbsp; &nbsp; The dissociation of water into ions is reversible. State the expression for the ionic product constant of water.</p>
<p>&nbsp;</p>
<p>(iii) &nbsp; &nbsp; The ionic product constant of water was measured at three different temperatures.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-22_om_06.07.14.png" alt="N14/4/CHEMI/HP2/ENG/TZ0/10.e.iii"></p>
<p>Deduce whether the ionization of water is exothermic or endothermic, giving your reason.</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>(iv) &nbsp; &nbsp; Use the data in part (iii) to determine the pH of water at 373 K, correct to <strong>two</strong> decimal places.</p>
<div class="marks">[6]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) &nbsp; &nbsp; An aqueous solution of sodium chloride is electrolysed using inert electrodes. Explain which product is obtained at the positive electrode (anode) if the concentration of sodium chloride is high.</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>(ii) &nbsp; &nbsp; State the half-equations occurring at the electrodes during the electrolysis of the <strong>concentrated </strong>aqueous solution of sodium chloride.</p>
<p>&nbsp;</p>
<p>Negative electrode (cathode):</p>
<p>&nbsp;</p>
<p>Positive electrode (anode):</p>
<div class="marks">[5]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe how electrolysis can be used to electroplate a bracelet with a layer of silver metal. Include the choice of electrodes and electrolyte needed in your description.</p>
<div class="marks">[3]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Chromium is a transition metal with many uses.</p>
</div>

<div class="specification">
<p class="p1">A voltaic cell is constructed as follows. One half-cell contains a chromium electrode immersed in a solution containing \({\text{C}}{{\text{r}}^{3 + }}{\text{(aq)}}\) ions. The other half-cell contains a copper electrode immersed in a solution containing \({\text{C}}{{\text{u}}^{2 + }}{\text{(aq)}}\) ions. The two electrodes are connected to a voltmeter and the two solutions by a salt bridge.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-08-07_om_11.31.53.png" alt="M15/4/CHEMI/HP2/ENG/TZ2/08.e"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Draw an orbital diagram (using the arrow-in-box notation) showing the electrons in the 4s and 3d sub-levels in chromium metal.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Outline the nature of the metallic bonding present in chromium.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain why chromium metal is malleable.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the name of \({\text{C}}{{\text{r}}_{\text{2}}}{{\text{O}}_{\text{3}}}\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Describe the ionic bonding present in \({\text{C}}{{\text{r}}_{\text{2}}}{{\text{O}}_{\text{3}}}\) and how the ions are formed.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Suggest why solid \({\text{C}}{{\text{r}}_{\text{2}}}{{\text{O}}_{\text{3}}}\) does <strong>not </strong>conduct electricity.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Chromium forms the complex ion \({[{\text{Cr}}{({\text{N}}{{\text{H}}_{\text{3}}})_{\text{4}}}{\text{C}}{{\text{l}}_2}]^ + }\).</p>
<p class="p2">Deduce the oxidation number of chromium in this complex.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Chromium forms the complex ion \({[{\text{Cr}}{({\text{N}}{{\text{H}}_{\text{3}}})_{\text{4}}}{\text{C}}{{\text{l}}_2}]^ + }\).</p>
<p class="p1">Describe the nature of the ligand-chromium ion bonds in terms of acid-base theory.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Chromium forms the complex ion \({[{\text{Cr}}{({\text{N}}{{\text{H}}_{\text{3}}})_{\text{4}}}{\text{C}}{{\text{l}}_2}]^ + }\).</p>
<p class="p2">Explain why \({[{\text{Cr}}{({\text{N}}{{\text{H}}_{\text{3}}})_{\text{4}}}{\text{C}}{{\text{l}}_{\text{2}}}{\text{]}}^ + }\) is coloured.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Chromium forms the complex ion \({[{\text{Cr}}{({\text{N}}{{\text{H}}_{\text{3}}})_{\text{4}}}{\text{C}}{{\text{l}}_2}]^ + }\).</p>
<p class="p1">Draw the structures of <strong>two </strong>possible isomers of this complex ion.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The dichromate ion, \({\text{C}}{{\text{r}}_{\text{2}}}{\text{O}}_{\text{7}}^{2 - }{\text{(aq)}}\)<span class="s1">, and the iodide ion, \({{\text{I}}^ - }{\text{(aq)}}\)</span>, react together in the presence of an acid to form \({\text{C}}{{\text{r}}^{3 + }}{\text{(aq)}}\)<span class="s1"> and \({\text{IO}}_3^ - {\text{(aq)}}\) ions. Deduce the half-equation for the reaction of \({{\text{I}}^ - }\)</span> <span class="s1">to \({\text{IO}}_3^ - \)</span> and the overall equation for this reaction.</p>
<p class="p2">&nbsp;</p>
<p class="p1">Half-equation:</p>
<p class="p2">&nbsp;</p>
<p class="p2">&nbsp;</p>
<p class="p1">Overall equation:</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain in terms of oxidation numbers whether iodine is oxidized or reduced in part (d) (i).</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Define the term <em>standard electrode potential</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the cell potential, in V, under standard conditions, for this voltaic cell, using table 14 of the data booklet and \({\text{E}}_{{\text{C}}{{\text{r}}^{3 + }}/{\text{Cr}}}^\Theta&nbsp; = -0.74{\text{ V}}\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Predict the balanced equation for the spontaneous reaction which will produce a current in this voltaic cell.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Identify the negative and the positive electrodes in this cell.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Predict the direction of movement of electrons in the external circuit.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.v.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the directions in which the negative ions (anions) and the positive ions (cations) flow in the salt bridge.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.vi.</div>
</div>
<br><hr><br><div class="specification">
<p>Magnesium is a group 2 metal which exists as a number of isotopes and forms many compounds.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Magnesium ions produce no emission or absorption lines in the visible region of the electromagnetic spectrum. Suggest why most magnesium compounds tested in a school laboratory show traces of yellow in the flame.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Explain the convergence of lines in a hydrogen emission spectrum.</p>
<p>(ii) State what can be determined from the frequency of the convergence limit.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Magnesium chloride can be electrolysed.</p>
<p>(i) Deduce the half-equations for the reactions at each electrode when <strong>molten</strong> magnesium chloride is electrolysed, showing the state symbols of the products. The melting points of magnesium and magnesium chloride are 922K and 987K respectively.</p>
<p><img src="" alt></p>
<p>(ii) Identify the type of reaction occurring at the cathode (negative electrode).</p>
<p>(iii) State the products when a very <strong>dilute</strong> aqueous solution of magnesium chloride is electrolysed.</p>
<p><img src="" alt></p>
<div class="marks">[5]</div>
<div class="question_part_label">i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Standard electrode potentials are measured relative to the standard hydrogen electrode. Describe a standard hydrogen electrode.</p>
<div class="marks">[2]</div>
<div class="question_part_label">j.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A magnesium half-cell, Mg(s)/Mg<sup>2+</sup>(aq), can be connected to a copper half-cell, Cu(s)/Cu<sup>2+</sup>(aq).</p>
<p>(i) Formulate an equation for the spontaneous reaction that occurs when the circuit is completed.</p>
<p>(ii) Determine the standard cell potential, in V, for the cell. Refer to section 24 of the data booklet.</p>
<p>(iii) Predict, giving a reason, the change in cell potential when the concentration of copper ions increases.</p>
<div class="marks">[4]</div>
<div class="question_part_label">k.</div>
</div>
<br><hr><br><div class="specification">
<p>The diagram shows an incomplete voltaic cell with a light bulb in the circuit.</p>
<p><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the missing component of the cell and its function.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the half-equations for the reaction at each electrode when current flows.</p>
<p><img src=""></p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Annotate the diagram with the location and direction of electron movement when current flows.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the cell potential, in V, using section 24 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the loss in mass of one electrode if the mass of the other electrode increases by 0.10 g.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Vanadium has a number of different oxidation states.</p>
</div>

<div class="specification">
<p>Electrode potentials for the reactions of vanadium and other species are shown below.</p>
<p style="text-align: center;"><img src=""></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the oxidation state of vanadium in each of the following species.</p>
<p><img src="images/Schermafbeelding_2017-09-20_om_09.58.14.png" alt="M17/4/CHEMI/HP2/ENG/TZ1/03.a"></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify, from the table, a non-vanadium species that can reduce VO<sup>2+</sup>(aq) to&nbsp;V<sup>3+</sup>(aq) but no further.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify, from the table, a non-vanadium species that could convert \({\text{VO}}_2^ + {\text{(aq)}}\)&nbsp;to&nbsp;V<sup>2+</sup>(aq).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Formulate an equation for the reaction between VO<sup>2+</sup>(aq) and V<sup>2+</sup>(aq) in acidic solution&nbsp;to form V<sup>3+</sup>(aq).</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Comment on the spontaneity of this reaction by calculating a value for \(\Delta {G^\theta }\)&nbsp;using&nbsp;the data given in (b) and in section 1 of the data booklet.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Phosphine (IUPAC name phosphane) is a hydride of phosphorus, with the formula PH<sub>3</sub>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Draw a Lewis (electron dot) structure of phosphine.</p>
<p>(ii) State the hybridization of the phosphorus atom in phosphine.</p>
<p>(iii) Deduce, giving your reason, whether phosphine would act as a Lewis acid, a Lewis base, or neither.</p>
<p>(iv) Outline whether you expect the bonds in phosphine to be polar or non-polar, giving a brief reason.</p>
<p>(v) Phosphine has a much greater molar mass than ammonia. Explain why phosphine has a significantly lower boiling point than ammonia.</p>
<p>(vi) Ammonia acts as a weak Br&oslash;nsted&ndash;Lowry base when dissolved in water.</p>
<p style="text-align: center;"><img src="" alt></p>
<p style="text-align: left;">Outline what is meant by the terms &ldquo;weak&rdquo; and &ldquo;Br&oslash;nsted&ndash;Lowry base&rdquo;.</p>
<p style="text-align: left;">Weak:</p>
<p style="text-align: left;">Br&oslash;nsted&ndash;Lowry base:</p>
<div class="marks">[8]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Phosphine is usually prepared by heating white phosphorus, one of the allotropes of phosphorus, with concentrated aqueous sodium hydroxide. The equation for the reaction is:</p>
<p style="text-align: center;"><img src="" alt></p>
<p style="text-align: left;">(i) The first reagent is written as P<sub>4</sub>, not 4P. Describe the difference between&nbsp;P<sub>4</sub> and 4P.</p>
<p style="text-align: left;">(ii) The ion H<sub>2</sub>PO<sub>2</sub><sup>&minus;</sup> is amphiprotic. Outline what is meant by amphiprotic, giving the formulas of <strong>both</strong> species it is converted to when it behaves in this manner.</p>
<p style="text-align: left;">(iii) State the oxidation state of phosphorus in P<sub>4</sub> and H<sub>2</sub>PO<sub>2</sub><sup>&minus;</sup>.</p>
<p style="text-align: left;">P<sub>4</sub>:</p>
<p style="text-align: left;">H<sub>2</sub>PO<sub>2</sub><sup>&minus;</sup>:</p>
<p style="text-align: left;">(iv) Oxidation is now defined in terms of change of oxidation number. Explore how earlier definitions of oxidation and reduction may have led to conflicting answers for the conversion of&nbsp;P<sub>4</sub> to&nbsp;H<sub>2</sub>PO<sub>2</sub><sup>&minus;</sup> and the way in which the use of oxidation numbers has resolved this.</p>
<div class="marks">[8]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>2.478 g of white phosphorus was used to make phosphine according to the equation:<img src="" alt></p>
<p>(i) Calculate the amount, in mol, of white phosphorus used.</p>
<p>(ii) This phosphorus was reacted with 100.0 cm<sup>3</sup> of 5.00 mol dm<sup>&minus;3</sup> aqueous sodium hydroxide. Deduce, showing your working, which was the limiting reagent.</p>
<p>(iii) Determine the excess amount, in mol, of the other reagent.</p>
<p>(iv) Determine the volume of phosphine, measured in cm<sup>3</sup> at standard temperature and pressure, that was produced.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Impurities cause phosphine to ignite spontaneously in air to form an oxide of phosphorus and water.</p>
<p>(i) 200.0 g of air was heated by the energy from the complete combustion of 1.00 mol phosphine. Calculate the temperature rise using section 1 of the data booklet and the data below.</p>
<p>Standard enthalpy of combustion of phosphine, <img src="" alt><br>Specific heat capacity of air = 1.00Jg<sup>&minus;1</sup>K<sup>&minus;1</sup>=1.00kJkg<sup>&minus;1</sup>K<sup>&minus;1</sup></p>
<p>(ii) The oxide formed in the reaction with air contains 43.6% phosphorus by mass. Determine the empirical formula of the oxide, showing your method.</p>
<p>(iii) The molar mass of the oxide is approximately 285 g mol<sup>&minus;1</sup>. Determine the molecular formula of the oxide.</p>
<p>(iv) State the equation for the reaction of this oxide of phosphorus with water.</p>
<p>(v) Suggest why oxides of phosphorus are not major contributors to acid deposition.</p>
<p>(vi) The levels of sulfur dioxide, a major contributor to acid deposition, can be minimized by either pre-combustion and post-combustion methods. Outline <strong>one</strong> technique of each method.</p>
<p>Pre-combustion:</p>
<p>Post-combustion:</p>
<div class="marks">[9]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br>