File "markSceme-HL-paper2.html"

Path: /IB QUESTIONBANKS/4 Fourth Edition - PAPER/HTML/Chemistry/Topic 6/markSceme-HL-paper2html
File size: 645.75 KB
MIME-type: text/x-tex
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-746ec5d03ead8d9e8b3bb7d32173f2b4e2e22a05f0c5278e086ab55b3c9c238e.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-3c91afd8a2942c18d21ed2700e1bdec14ada97f1d3788ae229315e1276d81453.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../index.html">Home</a>
</li>
<li class="active dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Questionbanks
<b class="caret"></b>
</a><ul class="dropdown-menu">
<li>
<a href="../../geography.html" target="_blank">DP Geography</a>
</li>
<li>
<a href="../../physics.html" target="_blank">DP Physics</a>
</li>
<li>
<a href="../../chemistry.html" target="_blank">DP Chemistry</a>
</li>
<li>
<a href="../../biology.html" target="_blank">DP Biology</a>
</li>
<li>
<a href="../../furtherMath.html" target="_blank">DP Further Mathematics HL</a>
</li>
<li>
<a href="../../mathHL.html" target="_blank">DP Mathematics HL</a>
</li>
<li>
<a href="../../mathSL.html" target="_blank">DP Mathematics SL</a>
</li>
<li>
<a href="../../mathStudies.html" target="_blank">DP Mathematical Studies</a>
</li>
</ul></li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">

<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">



</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="images/logo.jpg" alt="Ib qb 46 logo">
</div>
</div>
</div><h2>HL Paper 2</h2><div class="specification">
<p class="p1">Nitrogen monoxide reacts at 1280 &deg;C with hydrogen to form nitrogen and water. All reactants and products are in the gaseous phase.</p>
</div>

<div class="specification">
<p class="p1">The gas-phase decomposition of dinitrogen monoxide is considered to occur in two steps.</p>
<p class="p1">\[\begin{array}{*{20}{l}} {{\text{Step 1:}}}&amp;{{{\text{N}}_2}{\text{O(g)}}\xrightarrow{{{k_1}}}{{\text{N}}_2}({\text{g)}} + {\text{O(g)}}} \\ {{\text{Step 2:}}}&amp;{{{\text{N}}_2}{\text{O(g)}} + {\text{O(g)}}\xrightarrow{{{k_2}}}{{\text{N}}_2}({\text{g)}} + {{\text{O}}_2}{\text{(g)}}} \end{array}\]</p>
<p class="p1">The experimental rate expression for this reaction is rate \( = k{\text{[}}{{\text{N}}_2}{\text{O]}}\).</p>
</div>

<div class="specification">
<p class="p1">The conversion of \({\text{C}}{{\text{H}}_{\text{3}}}{\text{NC}}\) into \({\text{C}}{{\text{H}}_{\text{3}}}{\text{CN}}\) is an exothermic reaction which can be represented as follows.</p>
<p class="p1" style="text-align: center;">\({\text{C}}{{\text{H}}_{\text{3}}}&ndash;{\text{N}}\)\( \equiv \)\({\text{C}} \to {\text{transition state}} \to {\text{C}}{{\text{H}}_{\text{3}}}&ndash;{\text{C}}\)\( \equiv \)\({\text{N}}\)</p>
<p class="p1">This reaction was carried out at different temperatures and a value of the rate constant, \(k\), was obtained for each temperature. A graph of \(\ln k\) against \(1/T\) is shown below.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-10-18_om_05.48.16.png" alt="M09/4/CHEMI/HP2/ENG/TZ2/07.d"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Define the term <em>rate of reaction</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State an equation for the reaction of magnesium carbonate with dilute hydrochloric acid.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The rate of this reaction in (a) (ii), can be studied by measuring the volume of gas collected over a period of time. Sketch a graph which shows how the volume of gas collected changes with time.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The experiment is repeated using a sample of hydrochloric acid with double the volume, but half the concentration of the original acid. Draw a second line on the graph you sketched in part (a) (iii) to show the results in this experiment. Explain why this line is different from the original line.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The kinetics of the reaction were studied at this temperature. The table shows the initial rate of reaction for different concentrations of each reactant.</p>
<p class="p1">&nbsp;</p>
<p class="p1">Deduce the order of the reaction with respect to NO and \({{\text{H}}_2}\), and explain your reasoning.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce the rate expression for the reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine the value of the rate constant for the reaction from Experiment 3 and state its units.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Identify the rate-determining step.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Identify the intermediate involved in the reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Define the term <em>activation energy</em>, \({E_{\text{a}}}\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Construct the enthalpy level diagram and label the activation energy, \({E_{\text{a}}}\), the enthalpy change, \(\Delta H\), and the position of the transition state.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Describe qualitatively the relationship between the rate constant, \(k\), and the temperature, \(T\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the activation energy, \({E_{\text{a}}}\), for the reaction, using Table 1 of the Data Booklet.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.iv.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">decrease in concentration/mass/amount/volume of reactant with time / increase in concentration/mass/amount/volume of product with time / change in concentration/mass/amount/volume of reactant/product with time;</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\({\text{MgC}}{{\text{O}}_3}{\text{(s)}} + {\text{2HCl(aq)}} \to {\text{MgC}}{{\text{l}}_2}{\text{(aq)}} + {\text{C}}{{\text{O}}_2}{\text{(g)}} + {{\text{H}}_2}{\text{O(l)}}\);</p>
<p class="p1"><em>Ignore state symbols.</em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2016-10-18_om_09.32.57.png" alt="M09/4/CHEMI/HP2/ENG/TZ2/07.a.iii/M">&nbsp;;</p>
<p class="p1"><em>Plot starts at the origin and levels off. </em></p>
<p class="p1"><em>No mark awarded if axes are not labelled. </em></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">new curve reaches same height as original curve;</p>
<p class="p1">new curve less steep than original curve;</p>
<p class="p1">volume of gas produced is the same because the same amount of acid is used;</p>
<p class="p1">reaction is slower because concentration is decreased;</p>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(from experiments 1 and 2 at constant \({\text{[}}{{\text{H}}_2}{\text{]}}\)), [NO] doubles, rate quadruples;</p>
<p class="p1">hence, second order with respect to NO;</p>
<p class="p1">(from experiments 2 and 3 at constant [NO]), \({\text{[}}{{\text{H}}_{\text{2}}}{\text{]}}\)doubles, rate doubles;</p>
<p class="p1">first order with respect to \({{\text{H}}_2}\);</p>
<p class="p1"><em>Allow alternative mathematical deductions also.</em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\({\text{rate}} = k{{\text{[NO]}}^{\text{2}}}{\text{[}}{{\text{H}}_{\text{2}}}{\text{]}}\);</p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(k\left( { = (10.00 \times {{10}^{ - 5}})/{{(10.00 \times {{10}^{ - 3}})}^2}(4.00 \times {{10}^{ - 3}})} \right) = 2.50 \times {10^2}\);</p>
<p class="p1"><em>Do not penalize if Experiments 1 or 2 are used to determine k.</em></p>
<p class="p1">\({\text{mo}}{{\text{l}}^{ - 2}}{\text{d}}{{\text{m}}^6}{{\text{s}}^{ - 1}}\);</p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">step 1 / equation showing step 1;</p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">O (atom) / oxygen atom;</p>
<p class="p1"><em>Do not allow oxygen or O</em><sub><span class="s1"><em>2</em></span></sub><em>.</em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(minimum) energy needed for a reaction to occur / difference in energy between the reactants and transition state;</p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2016-10-18_om_14.29.46.png" alt="M09/4/CHEMI/HP2/ENG/TZ2/07.d.ii/M"></p>
<p class="p1">correct position of activation energy;</p>
<p class="p1">correct position of \(\Delta H\) <strong>and</strong> \(H{\text{(C}}{{\text{H}}_3}{\text{NC)}}\)/reactant line above \(H{\text{(C}}{{\text{H}}_3}{\text{CN)}}\) product line;</p>
<p class="p1"><em>Accept </em>\(\Delta E\)<em> instead of </em>\(\Delta H\)<em> on diagram if y-axis is labelled as energy.</em></p>
<p class="p1"><em>Do not penalize if CH</em><sub><span class="s1"><em>3</em></span></sub><em>NC and CH</em><sub><span class="s1"><em>3</em></span></sub><em>CN are not labelled on diagram.</em></p>
<p class="p1">correct position of transition state;</p>
<p class="p1"><em>Allow </em><strong><em>[2 max] </em></strong><em>if axes are not labelled on diagram.</em></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">as temperature/\(T\)<em>&nbsp;</em>increases rate constant/<em>k </em>increases (exponentially);</p>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>from graph gradient \(m =&nbsp; - \frac{{{E_{\text{a}}}}}{R}\);</p>
<p class="p1">measurement of gradient from chosen points on graph;</p>
<p class="p1"><em>Units of m are K. Do not penalize if not given, but do not award mark for incorrect units.</em></p>
<p class="p1"><em>Value of m is based on any two suitable points well separated on the plot.</em></p>
<p class="p1">correct answer for \({E_{\text{a}}}\);</p>
<p class="p1">correct units corresponding to answer;</p>
<p class="p1"><strong><em>Note: </em></strong><em>A typical answer for E<sub>a</sub> = 1.6 </em>\( \times \)<em> 10<sup>2</sup> kJ / kJ</em>\(\,\)<em>mol<sup>&ndash;1</sup>.</em></p>
<div class="question_part_label">d.iv.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">Surprisingly, the rate of reaction was only correctly defined by approximately 50% of candidates in (a) (i).</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">The equation for the reaction of magnesium carbonate with dilute hydrochloric acid was not well answered (part (ii)), and often candidates did not write correct formula or forgot to include water as a product.</p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Part (iii) was well answered by most candidates.</p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Part (iv) was well answered by most candidates, although the weaker candidates often only scored two or three marks.</p>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Part (b) (i) was well answered and many candidates scored all four marks. Some candidates used a simple mathematical approach and those that followed this method typically were able to deduce the order correctly.</p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">For (ii) most candidates were able to write the rate expression for the reaction.</p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">In (iii), determining the value of the rate constant and its corresponding units was difficult for many candidates and only the better candidates scored both marks. Many mistakes were seen in the units.</p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Part (c) (i) was usually well answered.</p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">A common mistake for (ii) involved candidates writing \({{\text{O}}_{\text{2}}}\) instead of O.</p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">The definition of activation energy was well answered.</p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Part (ii) was a question where most candidates scored at least one/two marks although perfect answers were less common. Reasons leading to the loss of marks included: absence of axes, incomplete libelling of axes and the incorrect identification of the position of the transition state.</p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Parts (iii) and (iv) were very poorly answered for such a fundamental topic. All sorts of errors were evident, including incorrect gradients, inability to rearrange the Arrhenius Equation etc.</p>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Even the better candidates struggled greatly with this question, even though this comes straight from AS 16.3.2.</p>
<div class="question_part_label">d.iv.</div>
</div>
<br><hr><br><div class="specification">
<p>Calcium carbonate reacts with hydrochloric acid.</p>
<p style="text-align: center;">CaCO<sub>3</sub>(s) + 2HCl(aq) &rarr; CaCl<sub>2</sub>(aq) + H<sub>2</sub>O(l) + CO<sub>2</sub>(g)</p>
</div>

<div class="specification">
<p>The results of a series of experiments in which the concentration of HCl was varied are shown below.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-07_om_11.18.37.png" alt="M18/4/CHEMI/HP2/ENG/TZ1/X04.b"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline <strong>two </strong>ways in which the progress of the reaction can be monitored. No practical details are required.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why point D is so far out of line assuming human error is not the cause.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the best fit line for the reaction excluding point D.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest the relationship that points A, B and C show between the concentration of the acid and the rate of reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the rate expression for the reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the rate constant of the reaction, stating its units.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.v.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Predict from your line of best fit the rate of reaction when the concentration of HCl is 1.00 mol dm<sup>−3</sup>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe how the activation energy of this reaction could be determined.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p><em>Any two of:</em></p>
<p>loss of mass <strong>«</strong>of reaction mixture/CO<sub>2</sub><strong>»</strong></p>
<p><strong>«</strong>increase in<strong>» </strong>volume of gas produced</p>
<p>change of conductivity</p>
<p>change of pH</p>
<p>change in temperature</p>
<p> </p>
<p><em>Do </em><strong><em>not </em></strong><em>accept “disappearance of </em><em>calcium carbonate”.</em></p>
<p><em>Do </em><strong><em>not </em></strong><em>accept “gas bubbles”.</em></p>
<p><em>Do </em><strong><em>not </em></strong><em>accept “colour change” or </em><em>“indicator”.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>reaction is fast at high concentration <strong><em>AND </em></strong>may be difficult to measure accurately</p>
<p><strong><em>OR</em></strong></p>
<p>so many bubbles of CO<sub>2</sub> produced that inhibit contact of HCl(aq) with CaCO<sub>3</sub>(s)</p>
<p><strong><em>OR</em></strong></p>
<p>insufficient change in conductivity/pH at high concentrations</p>
<p><strong><em>OR</em></strong></p>
<p>calcium carbonate has been used up/is limiting reagent/ there is not enough calcium carbonate <strong>«</strong>to react with the high concentration of HCl<strong>»</strong></p>
<p><strong><em>OR</em></strong></p>
<p>HCl is in excess</p>
<p><strong><em>OR</em></strong></p>
<p>so many bubbles of CO<sub>2</sub> produced that inhibit contact of HCl(aq) with CaCO<sub>3</sub>(s)</p>
<p> </p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2018-08-07_om_14.39.56.png" alt="M18/4/CHEMI/HP2/ENG/TZ1/04.b.ii/M"></p>
<p>straight line going through the origin <strong><em>AND </em></strong>as close to A, B, C as is reasonably possible</p>
<p><em><strong>[1 mark]</strong></em></p>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong>«</strong>directly<strong>»</strong> proportional</p>
<p> </p>
<p><em>Accept “first order” or “linear”.</em></p>
<p><em>Do </em><strong><em>not </em></strong><em>accept “rate increases as </em><em>concentration increases” or “positive </em><em>correlation”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>rate = <em>k </em>[H<sup>+</sup>]</p>
<p> </p>
<p><em>Accept “rate =</em><em> </em><em>k [HCl]”.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">b.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>0.02</p>
<p>s<sup>–1</sup></p>
<p> </p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">b.v.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>20.5 \( \times \) 10<sup>–3</sup> <strong>«</strong>mol dm<sup>–3</sup> s<sup>–1</sup><strong>»</strong></p>
<p> </p>
<p><em>Accept any answer in the range </em><em>19.5–21.5.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><strong><em>ALTERNATIVE 1:</em></strong></p>
<p>carry out reaction at several temperatures</p>
<p>plot \(\frac{1}{{\text{T}}}\) against log rate constant</p>
<p><em>E</em><sub>a</sub> = – gradient \( \times \) R</p>
<p> </p>
<p><strong><em>ALTERNATIVE 2:</em></strong></p>
<p>carry out reaction at two temperatures</p>
<p> </p>
<p>determine two rate constants</p>
<p><strong><em>OR</em></strong></p>
<p>determine the temperature coefficient of the rate</p>
<p> </p>
<p>use the formula  \(\ln \frac{{{k_1}}}{{{k_2}}} = \frac{{{E_{\text{a}}}}}{R}\left( {\frac{1}{{{T_2}}} - \frac{1}{{{T_1}}}} \right)\)</p>
<p> </p>
<p> </p>
<p><em>Accept “gradient </em>= \(\frac{{ - {E_{\text{a}}}}}{R}\)<em>” for M3.</em></p>
<p><em>Award both M2 and M3 for the formula  </em>\({\text{ln}}\frac{{rat{e_1}}}{{rat{e_2}}} = \frac{{{E_{\text{a}}}}}{R}\left( {\frac{1}{{{T_2}}} - \frac{1}{{{T_1}}}} \right)\).</p>
<p><em>Accept any variation of the formula, </em><em>such as </em>\(\frac{{rat{e_1}}}{{rat{e_2}}} = {e^{ - \frac{{{E_{\text{a}}}}}{R}\left( {\frac{1}{{{T_1}}} - \frac{1}{{{T_2}}}} \right)}}\).</p>
<p><strong><em>[3 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.v.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">To determine the activation energy of a reaction, the rate of reaction was measured at different temperatures. The rate constant, \(k\), was determined and \(\ln k\) was plotted against the inverse of the temperature in Kelvin, \({T^{ - 1}}\). The following graph was obtained.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-13_om_08.54.02.png" alt="M13/4/CHEMI/HP2/ENG/TZ1/03"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Define the term <em>activation energy</em>, \({E_{\text{a}}}\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Use the graph on page 8 to determine the value of the activation energy, \({E_{\text{a}}}\), in \({\text{kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">On the graph on page 8, sketch the line you would expect if a catalyst is added to the reactants.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1"><span style="text-decoration: underline;">minimum</span> energy needed to react/start a reaction / energy difference between reactants and transition state;</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>gradient of the line</em>: &ndash;63;</p>
<p><em>Accept &ndash;60 to &ndash;65.</em></p>
<p>\({E_{\text{a}}}{\text{ }}( =&nbsp; - R \times {\text{gradient}}) = 0.52{\text{ (kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}{\text{)}}\);</p>
<p><em>Accept 0.50 to 0.54.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">gradient of the line less steep (less negative);</p>
<p class="p1"><em>Accept any position as long as gradient less steep.</em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">The idea of activation energy being a <em>minimum </em>was seldom communicated. Few were able to follow through all the mathematics to find \({E_{\text{a}}}\) by a graphical method and those that did had often omitted \({\text{1}}{{\text{0}}^{ - 2}}\) in their calculations. The answers were often poorly set out so it was difficult to assess the award of part marks; indeed, many candidates seemed to hope that a correct answer would somehow emerge from a mass of incomprehensible figures.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">The idea of activation energy being a <em>minimum </em>was seldom communicated. Few were able to follow through all the mathematics to find \({E_{\text{a}}}\) by a graphical method and those that did had often omitted \({\text{1}}{{\text{0}}^{ - 2}}\) in their calculations. The answers were often poorly set out so it was difficult to assess the award of part marks; indeed, many candidates seemed to hope that a correct answer would somehow emerge from a mass of incomprehensible figures.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">The idea of activation energy being a <em>minimum </em>was seldom communicated. Few were able to follow through all the mathematics to find \({E_{\text{a}}}\) by a graphical method and those that did had often omitted \({\text{1}}{{\text{0}}^{ - 2}}\) in their calculations. The answers were often poorly set out so it was difficult to assess the award of part marks; indeed, many candidates seemed to hope that a correct answer would somehow emerge from a mass of incomprehensible figures. The gradient of the graph for (c) was generously marked; all candidates had to do was to realize that the catalyst would lower the activation energy and thus the gradient would be less negative. As long as a line with less negative gradient was drawn, the mark was awarded.</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Consider the following reaction studied at 263 K.</p>
<p class="p1">\[{\text{2NO(g)}} + {\text{C}}{{\text{l}}_{\text{2}}}{\text{(g)}} \rightleftharpoons {\text{2NOCl(g)}}\]</p>
<p class="p1">It was found that the forward reaction is first order with respect to&nbsp;<span class="s1">\({\rm{C}}{{\rm{l}}_2}\) </span>and second order with respect to NO. The reverse reaction is second order with respect to NOCl.</p>
</div>

<div class="specification">
<p class="p1">Consider the following equilibrium reaction.</p>
<p class="p1">\[\begin{array}{*{20}{c}} {{\text{C}}{{\text{l}}_2}({\text{g)}} + {\text{S}}{{\text{O}}_2}({\text{g)}} \rightleftharpoons {\text{S}}{{\text{O}}_2}{\text{C}}{{\text{l}}_2}({\text{g)}}}&amp;{\Delta {H^\Theta } = - 84.5{\text{ kJ}}} \end{array}\]</p>
<p class="p1">In a \({\text{1.00 d}}{{\text{m}}^{\text{3}}}\) closed container, at 375 &deg;C, \({\text{8.60}} \times {\text{1}}{{\text{0}}^{ - 3}}{\text{ mol}}\) of \({\text{S}}{{\text{O}}_{\text{2}}}\) and \({\text{8.60}} \times {\text{1}}{{\text{0}}^{ - 3}}{\text{ mol}}\) of \({\text{C}}{{\text{l}}_{\text{2}}}\) were introduced. At equilibrium, \({\text{7.65}} \times {\text{1}}{{\text{0}}^{ - 4}}{\text{ mol}}\) of \({\text{S}}{{\text{O}}_{\text{2}}}{\text{C}}{{\text{l}}_{\text{2}}}\) was formed.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the rate expression for the forward reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Predict the effect on the rate of the forward reaction and on the rate constant if the concentration of NO is halved.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">1.0 mol of&nbsp;<span class="s1">\({\rm{C}}{{\rm{l}}_2}\) </span>and 1.0 mol of NO are mixed in a closed container at constant temperature. Sketch a graph to show how the concentration of NO and NOCl change with time until after equilibrium has been reached. Identify the point on the graph where equilibrium is established.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Consider the following reaction.</p>
<p class="p1">\[{\text{N}}{{\text{O}}_2}{\text{(g)}} + {\text{CO(g)}} \to {\text{NO(g)}} + {\text{C}}{{\text{O}}_2}{\text{(g)}}\]</p>
<p class="p1">Possible reaction mechanisms are:</p>
<p class="p1">\(\begin{array}{*{20}{l}} {{\text{Above 775 K:}}}&amp;{{\text{N}}{{\text{O}}_2} + {\text{CO}} \to {\text{NO}} + {\text{C}}{{\text{O}}_{\text{2}}}}&amp;{{\text{slow}}} \\ {{\text{Below 775 K:}}}&amp;{{\text{2N}}{{\text{O}}_2} \to {\text{NO}} + {\text{N}}{{\text{O}}_{\text{3}}}}&amp;{{\text{slow}}} \\ {}&amp;{{\text{N}}{{\text{O}}_3} + {\text{CO}} \to {\text{N}}{{\text{O}}_2} + {\text{C}}{{\text{O}}_2}}&amp;{{\text{fast}}} \end{array}\)</p>
<p class="p1">Based on the mechanisms, deduce the rate expressions above and below 775 K.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State <strong>two </strong>situations when the rate of a chemical reaction is equal to the rate constant.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Consider the following graph of \(\ln k\) against \(\frac{1}{T}\) for the first order decomposition of \({{\text{N}}_{\text{2}}}{{\text{O}}_{\text{4}}}\) into \({\text{N}}{{\text{O}}_{\text{2}}}\). Determine the activation energy in \({\text{kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\) for this reaction.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-10-03_om_06.19.19.png" alt="N09/4/CHEMI/HP2/ENG/TZ0/06.d"></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce the equilibrium constant expression, \({K_{\text{c}}}\), for the reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine the value of the equilibrium constant, \({K_{\text{c}}}\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">If the temperature of the reaction is changed to 300 &deg;C, predict, stating a reason in each case, whether the equilibrium concentration of \({\text{S}}{{\text{O}}_{\text{2}}}{\text{C}}{{\text{l}}_{\text{2}}}\) and the value of \({K_{\text{c}}}\) will increase or decrease.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">If the volume of the container is changed to \({\text{1.50 d}}{{\text{m}}^{\text{3}}}\), predict, stating a reason in each case, how this will affect the equilibrium concentration of \({\text{S}}{{\text{O}}_2}{\text{C}}{{\text{l}}_2}\) and the value of \({K_{\text{c}}}\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Suggest, stating a reason, how the addition of a catalyst at constant pressure and temperature will affect the equilibrium concentration of \({\text{S}}{{\text{O}}_{\text{2}}}{\text{C}}{{\text{l}}_{\text{2}}}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.v.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">\({\text{rate}} = k{{\text{[NO]}}^2}{\text{[C}}{{\text{l}}_{\text{2}}}{\text{]}}\);</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">rate of reaction will decrease by a factor of 4;</p>
<p class="p1">no effect on the rate constant;</p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2016-10-03_om_05.50.02.png" alt="N09/4/CHEMI/HP2/ENG/TZ0/06.a.iii/M"></p>
<p class="p1"><span class="s1"><em>y </em></span>axis labelled concentration/\({\text{mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\)<span class="s3">&nbsp;</span>and <span class="s1"><em>x </em></span>axis is labelled time/s;</p>
<p class="p1">gradient for [NO];</p>
<p class="p1">gradient for [NOCl] will be equal and opposite;</p>
<p class="p1">equilibrium point identified / two curves level off at same time;</p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Above 775 K: \({\text{rate}} = k{\text{[N}}{{\text{O}}_2}{\text{][CO]}}\);</p>
<p class="p1">Below 775 K: \({\text{rate}} = k{{\text{[N}}{{\text{O}}_2}{\text{]}}^2}\);</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">zero order reaction;</p>
<p class="p1">all concentrations are \({\text{1.0 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\);</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\({\text{slope}} = \frac{{9.2 - 8.4}}{{(3.53 - 3.65) \times {{10}^{ - 3}}}} =&nbsp; - 6.67 \times {10^3}\);</p>
<p>\(({E_{\text{a}}} = 6.67 \times {10^3} \times 8.31)\)</p>
<p>\({\text{55.4 (kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}{\text{)}}\);</p>
<p><em>Accept in range 55.0 &ndash; 56.0</em></p>
<p><em>Award </em><strong><em>[1] </em></strong><em>if 55454 (J) stated</em></p>
<p><em>Award </em><strong><em>[2] </em></strong><em>for the correct final answer</em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(({K_{\text{c}}}) = \frac{{{\text{[S}}{{\text{O}}_2}{\text{C}}{{\text{l}}_2}{\text{]}}}}{{{\text{[C}}{{\text{l}}_2}{\text{][S}}{{\text{O}}_2}{\text{]}}}}\);</p>
<p class="p1"><em>Ignore state symbols.</em></p>
<p class="p1"><em>Square brackets [ ] required for the equilibrium expression.</em></p>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\({\text{7.84}} \times {\text{1}}{{\text{0}}^{ - 3}}{\text{ mol of S}}{{\text{O}}_2}\) and \({\text{7.84}} \times {\text{1}}{{\text{0}}^{ - 3}}{\text{ mol of C}}{{\text{l}}_2}\);</p>
<p class="p1">\({\text{7.84}} \times {\text{1}}{{\text{0}}^{ - 3}}{\text{ mol}}\,{\text{d}}{{\text{m}}^{ - 3}}{\text{ of S}}{{\text{O}}_2}\), \({\text{7.84}} \times {\text{1}}{{\text{0}}^{ - 3}}{\text{ mol}}\,{\text{d}}{{\text{m}}^{ - 3}}{\text{ of C}}{{\text{l}}_2}\) <strong>and</strong></p>
<p class="p1">\({\text{7.65}} \times {\text{1}}{{\text{0}}^{ - 4}}{\text{ mol}}\,{\text{d}}{{\text{m}}^{ - 3}}{\text{ of S}}{{\text{O}}_2}{\text{C}}{{\text{l}}_2}\);</p>
<p class="p1">12.5;</p>
<p class="p2"><em>Award </em><span class="s1"><strong><em>[1] </em></strong></span><em>for 10.34</em></p>
<p class="p2"><em>Award </em><span class="s1"><strong><em>[3] </em></strong></span><em>for the correct final answer</em></p>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">value of \({K_{\text{c}}}\) increases;</p>
<p class="p1">\({\text{[S}}{{\text{O}}_2}{\text{C}}{{\text{l}}_2}{\text{]}}\) increases;</p>
<p class="p1">decrease in temperature favours (forward) reaction which is exothermic;</p>
<p class="p2"><em>Do not allow ECF.</em></p>
<div class="question_part_label">e.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">no effect on the value of \({K_{\text{c}}}\) / depends only on temperature;</p>
<p class="p1">\({\text{[S}}{{\text{O}}_2}{\text{C}}{{\text{l}}_2}{\text{]}}\) decreases;</p>
<p class="p1">increase in volume favours the reverse reaction which has more <span style="text-decoration: underline;">gaseous</span> moles;</p>
<p class="p2"><em>Do not allow ECF.</em></p>
<div class="question_part_label">e.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">no effect;</p>
<p class="p1">catalyst increases the rate of forward and reverse reactions (equally) / catalyst decreases activation energies (equally);</p>
<div class="question_part_label">e.v.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">In part (a) the rate expression was correctly stated although some confused this with an equilibrium constant expression.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Only the better candidates realized that the rate of reaction will decrease by a factor of four and there will be no effect on the rate constant.</p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Although most candidates were able to correctly sketch the concentration versus time graph many forgot to label the axes or include units.</p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Part (b) was well answered and candidates demonstrated a good understanding of rate expressions based on reaction mechanism.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">The better candidates were able to figure out that the rate of a chemical reaction is equal to the rate constant when all concentrations are \({\text{1.0 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) or for a zero order reaction.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Most candidates had difficulty in calculating activation energy from the graph in part (d) and some gave the answer in \({\text{J}}\,{\text{mo}}{{\text{l}}^{ - 1}}\) instead of \({\text{kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\) which showed that they missed this instruction in the question.</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">In part (e), the equilibrium constant expression was correctly stated by the majority but calculating the value of\({K_{\text{c}}}\)&nbsp;proved to be difficult.</p>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">A large number of candidates obtained the incorrect answer of 10.34 as a result of using the initial concentrations of the reactants instead of equilibrium concentrations.</p>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">e.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">The application of Le Chatelier&rsquo;s principle was handled well by the majority with minor omissions such as not using the term gaseous particles in part (iv).</p>
<div class="question_part_label">e.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Some candidates stated that the addition of a catalyst does not affect the value of \({K_{\text{c}}}\) or the position of equilibrium, which did not answer the question and scored no marks because they had not commented on the concentration of \({\text{SOC}}{{\text{l}}_{\text{2}}}\). Some candidates correctly stated that a catalyst increases the rate of forward and reverse reactions equally.</p>
<div class="question_part_label">e.v.</div>
</div>
<br><hr><br><div class="specification">
<p>A group of students investigated the rate of the reaction between aqueous sodium thiosulfate and hydrochloric acid according to the equation below.</p>
<p>\[{\text{N}}{{\text{a}}_2}{{\text{S}}_2}{{\text{O}}_3}{\text{(aq)}} + {\text{2HCl(aq)}} \to {\text{2NaCl(aq)}} + {\text{S}}{{\text{O}}_2}{\text{(g)}} + {\text{S(s)}} + {{\text{H}}_2}{\text{O(l )}}\]</p>
<p>The two reagents were rapidly mixed together in a beaker and placed over a mark on a piece of paper. The time taken for the precipitate of sulfur to obscure the mark when viewed through the reaction mixture was recorded.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-13_om_06.28.11.png" alt="M14/4/CHEMI/HP2/ENG/TZ2/06"></p>
<p>Initially they measured out \({\text{10.0 c}}{{\text{m}}^{\text{3}}}\) of \({\text{0.500 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) hydrochloric acid and then added \({\text{40.0 c}}{{\text{m}}^{\text{3}}}\) of \({\text{0.0200 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) aqueous sodium thiosulfate. The mark on the paper was obscured 47 seconds after the solutions were mixed.</p>
</div>

<div class="specification">
<p>One proposed mechanism for this reaction is:</p>
<p>&nbsp; &nbsp; &nbsp;\({{\text{S}}_2}{\text{O}}_3^{2 - }{\text{(aq)}} + {{\text{H}}^ + }{\text{(aq)}} \rightleftharpoons {\text{H}}{{\text{S}}_2}{\text{O}}_3^ - {\text{(aq)}}\) &nbsp; &nbsp; Fast</p>
<p>&nbsp; &nbsp; &nbsp;\({\text{H}}{{\text{S}}_2}{\text{O}}_3^ - {\text{(aq)}} + {{\text{H}}^ + }{\text{(aq)}} \to {\text{S}}{{\text{O}}_2}{\text{(g)}} + {\text{S(s)}} + {{\text{H}}_2}{\text{O(l)}}\) &nbsp; &nbsp; Slow</p>
</div>

<div class="specification">
<p>The teacher asked the students to devise another technique to measure the rate of this reaction.</p>
</div>

<div class="specification">
<p>Another group suggested collecting the sulfur dioxide and drawing a graph of the volume of gas against time.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) &nbsp; &nbsp; State the volumes of the liquids that should be mixed.</p>
<p><img src="images/Schermafbeelding_2016-08-13_om_06.41.23.png" alt="M14/4/CHEMI/HP2/ENG/TZ2/06.a.i"></p>
<p>(ii) &nbsp; &nbsp; State why it is important that the students use a similar beaker for both reactions.</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>(iii) &nbsp; &nbsp; If the reaction were first order with respect to the thiosulfate ion, predict the time it would take for the mark on the paper to be obscured when the concentration of sodium thiosulfate solution is halved.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) &nbsp; &nbsp; Deduce the rate expression of this mechanism.</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>(ii) &nbsp; &nbsp; The results of an experiment investigating the effect of the concentration of hydrochloric acid on the rate, while keeping the concentration of thiosulfate at the original value, are given in the table below.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-13_om_06.54.21.png" alt="M14/4/CHEMI/HP2/ENG/TZ2/06,b.ii"></p>
<p>On the axes provided, draw an appropriate graph to investigate the order of the reaction with respect to hydrochloric acid.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-13_om_06.55.35.png" alt="M14/4/CHEMI/HP2/ENG/TZ2/06.b.ii.02"></p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>(iii) &nbsp; &nbsp; Identify <strong>two </strong>ways in which these data <strong>do not </strong>support the rate expression deduced in part (i).</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) &nbsp; &nbsp; Sketch and label, indicating an approximate activation energy, the Maxwell&ndash;Boltzmann energy distribution curves for two temperatures, \({T_1}\) and \(T2{\text{ }}({T_2} &gt; {T_1})\), at which the rate of reaction would be significantly different.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-13_om_07.20.03.png" alt="M14/4/CHEMI/HP2/ENG/TZ2/06.c.i"></p>
<p>(ii) &nbsp; &nbsp; Explain why increasing the temperature of the reaction mixture would significantly increase the rate of the reaction.</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) &nbsp; &nbsp; One group suggested recording how long it takes for the pH of the solution to change by one unit. Calculate the initial pH of the original reaction mixture.</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>(ii) &nbsp; &nbsp; Deduce the percentage of hydrochloric acid that would have to be used up for the pH to change by one unit.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the volume of sulfur dioxide, in \({\text{c}}{{\text{m}}^{\text{3}}}\), that the original reaction mixture would produce if it were collected at \(1.00 \times {10^5}{\text{ Pa}}\) and 300 K.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sulfur dioxide, a major cause of acid rain, is quite soluble in water and the equilibrium shown below is established.</p>
<p>\({\text{S}}{{\text{O}}_2}{\text{(aq)}} + {{\text{H}}_2}{\text{O(l)}} \rightleftharpoons {\text{HSO}}_3^ - {\text{(aq)}} + {{\text{H}}^ + }{\text{(aq)}}\)</p>
<p>Given that the \({K_{\text{a}}}\) for this equilibrium is \(1.25 \times {10^{ - 2}}{\text{ mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\), determine the pH of a \(2.00{\text{ mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) solution of sulfur dioxide.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using Table 15 of the Data Booklet, identify an organic acid that is a stronger acid than sulfur dioxide.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.iii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>(i) &nbsp; &nbsp; <img src="images/Schermafbeelding_2016-08-13_om_06.43.40.png" alt="M14/4/CHEMI/HP2/ENG/TZ2/06.a.i/M">&nbsp;;</p>
<p><em>Accept other volumes in a 1:2:2 ratio.</em></p>
<p>(ii) &nbsp; &nbsp; depth of liquid in the beaker must remain constant / <em>OWTTE</em>;</p>
<p><em>Accept &ldquo;same thickness of glass&rdquo; and any other valid point, such as answers framed around minimizing uncontrolled variables / making it a &ldquo;fair test&rdquo;.</em></p>
<p>(iii) &nbsp; &nbsp; 94 (s) / 1 min 34 s;</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) &nbsp; &nbsp; \({\text{rate}} = k{\text{[}}{{\text{S}}_{\text{2}}}{\text{O}}_3^{2 - }{\text{][}}{{\text{H}}^ + }{{\text{]}}^2}/{\text{rate}} = k{\text{[N}}{{\text{a}}_2}{{\text{S}}_2}{{\text{O}}_3}{\text{][HCl}}{{\text{]}}^2}\);</p>
<p>(ii) &nbsp; &nbsp;&nbsp;<img src="images/Schermafbeelding_2016-08-13_om_07.04.02.png" alt="M14/4/CHEMI/HP2/ENG/TZ2/06.b.ii.01/M"></p>
<p>correct scale and units on <em>y</em>-axis;</p>
<p><em>Accept other suitable scales (such as 1/t) and units (such as ms</em><sup><em>&ndash;1</em></sup><em>).</em></p>
<p><em>Axes do not have to show origin/start at zero.</em></p>
<p>correct calculation of rate in \({s^{ - 1}}\);</p>
<p><img src="images/Schermafbeelding_2016-08-13_om_07.06.20.png" alt="M14/4/CHEMI/HP2/ENG/TZ2/06.b.ii.02/M"></p>
<p><em>If graph correct, assume this has been done on calculator and not written down.</em></p>
<p>correct plotting of points that the student decides to use <strong>and </strong>a connecting line;</p>
<p><em>Award final mark if 3 or more points are correct, irrespective of what is plotted on y-axis.</em></p>
<p><em>If line goes through the correct values at given concentrations of HCl, assume that points are marked there.</em></p>
<p>(iii) &nbsp; &nbsp; linear dependence on [HCl] (so not second order in \({\text{[}}{{\text{H}}^ + }{\text{]}}\));</p>
<p><em>Accept that doubling of concentration does not result in quadrupling of rate / OWTTE.</em></p>
<p>does not go through origin;</p>
<p><em>Remember to allow ECF from (b) (i).</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) &nbsp; &nbsp;&nbsp;<img src="images/Schermafbeelding_2016-08-13_om_07.24.33.png" alt="M14/4/CHEMI/HP2/ENG/TZ2/06.c.i/M"></p>
<p><em>labelled y-axis: </em>number of particles / probability of particles (with that kinetic energy) <strong>and </strong><em>labelled x-axis: </em>(kinetic) energy;</p>
<p><em>Allow fraction/proportion/amount of particles (with kinetic energy) for y-axis label.</em></p>
<p><em>Allow speed/velocity for x-axis label.</em></p>
<p>\({T_2}\) curve broader <strong>and </strong>with maximum lower <strong>and </strong>to right of \({T_1}\) curve;</p>
<p><em>Do not award this mark if both curves not asymmetric.</em></p>
<p><em>Curves must pass through the origin and be asymptotic to x axis.</em></p>
<p><em>Do not award this mark if curves not labelled.</em></p>
<p>\({E_{\text{a}}}\) marked on graph;</p>
<p>(ii) &nbsp; &nbsp; kinetic energy of molecules increases;</p>
<p><em>This may be answered implicitly in the final marking point.</em></p>
<p>frequency of collision/number of collisions per unit time increases;</p>
<p><em>Do </em><strong><em>not </em></strong><em>accept &ldquo;number of collisions increases&rdquo;.</em></p>
<p>greater proportion of molecules have energy greater than/equal to activation energy / rate related to temperature by the Arrhenius equation;</p>
<p><em>Award </em><strong><em>[1 max] </em></strong><em>for statements such as &ldquo;there will be more successful collisions&rdquo; if neither of last two marking points awarded.</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) &nbsp; &nbsp; \({\text{[}}{{\text{H}}^ + }{\text{]}} = 0.5 \times \frac{{10}}{{50}} = 0.1{\text{ (mol}}\,{\text{d}}{{\text{m}}^{ - 3}}{\text{)}}\);</p>
<p>\({\text{pH (}} =&nbsp; - \log {\text{[H}}{{\text{r}}^ + }{\text{]}} =&nbsp; - \log (0.10)) = 1\);</p>
<p>(ii) &nbsp; &nbsp; 90%;</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\({\text{mol N}}{{\text{a}}_{\text{2}}}{{\text{S}}_{\text{2}}}{{\text{O}}_{\text{3}}} = {\text{mol S}}{{\text{O}}_{\text{2}}} = 0.0400 \times 0.0200 = 0.000800\);</p>
<p>\(V = \frac{{n \times R \times T}}{p}/\frac{{0.000800 \times 8.31 \times 300}}{{{{10}^5}}}\);</p>
<p>\((1.99 \times {10^{ - 5}}{\text{ }}{{\text{m}}^3}) = 19.9{\text{ }}({\text{c}}{{\text{m}}^3})\);</p>
<p><em>Note that two errors involving a factor of 1000 can also produce the correct answer. If this is the case award </em><strong><em>[1] </em></strong><em>not </em><strong><em>[3]</em></strong><em>.</em></p>
<p><em>Accept 20.0 cm</em><sup><em>3 </em></sup><em>if R =8.314 is used.</em></p>
<p><em>Award </em><strong><em>[2] </em></strong><em>for 17.9 cm</em><sup><em>3 </em></sup><em>or 19.2 cm</em><sup><em>3 </em></sup><em>(result from using molar volume at standard temperature and pressure or at room temperature and pressure).</em></p>
<p><strong>OR</strong></p>
<p>\({\text{mol N}}{{\text{a}}_2}{{\text{S}}_2}{{\text{O}}_3} = {\text{mol S}}{{\text{O}}_2} = 0.0400 \times 0.0200 = 0.000800\);</p>
<p>\(V = 0.00080 \times 2.24 \times {10^{ - 2}} \times \left[ {\frac{{1.00 \times {{10}^5}}}{{1.01 \times {{10}^5}}}} \right] \times \frac{{300}}{{273}}\);</p>
<p>\((1.95 \times {10^{ - 5}}{\text{ }}{{\text{m}}^3}) = 19.5{\text{ }}({\text{c}}{{\text{m}}^3})\);</p>
<p><em>Note that two errors involving a factor of 1000 can also produce the correct answer. If this is the case award [1] not [3].</em></p>
<p><em>Deduct </em><strong><em>[1] </em></strong><em>for answers based on amount of HCl, so correct calculation would score </em><strong><em>[2 max]</em></strong><em>.</em></p>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\({K_{\text{a}}} = \frac{{{\text{[}}{{\text{H}}^ + }{\text{][HSO}}_3^ - {\text{]}}}}{{{\text{[}}{{\text{H}}_2}{\text{S}}{{\text{O}}_3}{\text{]}}}} = \frac{{{x^2}}}{{2 - x}} \approx \frac{{{x^2}}}{2} \approx 1.25 \times {10^{ - 2}}{\text{ (mol}}\,{\text{d}}{{\text{m}}^{ - 3}}{\text{)}}\);</p>
<p>\({\text{[}}{{\text{H}}^ + }{\text{]}} = \sqrt {2.50 \times {{10}^{ - 2}}}&nbsp; = 0.158{\text{ }}({\text{mol}}\,{\text{d}}{{\text{m}}^{ - 3}})\);</p>
<p>\({\text{pH}} =&nbsp; - \log (0.158) = 0.80\);</p>
<p><em>Award </em><strong><em>[3] </em></strong><em>for correct final answer.</em></p>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>dichloroethanoic acid / trichloroethanoic acid / 2,4,6-trinitrophenol;</p>
<div class="question_part_label">e.iii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>This was quite a popular question, though generally not well answered. In the first part students again appeared to display a lack of expertise in a practical context with very few able to devise a mixture that would halve the concentration of thiosulfate, whilst keeping other concentrations constant, and answers predicting that this would halve the reaction time were far more commonly encountered than those doubling it. Many candidates did however suggest valid reasons why the reaction vessel should remain unchanged and a significant number of students were able to correctly deduce the rate equation that the mechanism given would predict. Again a lack of ability to interpret experimental data was evident in the fact that it was very rare to find students who realised that a graph of (time)-1 against concentration was required to be able to deduce the reaction order, with almost all simply plotting time-concentration graphs and, as a result, very few could evaluate the mechanism in the light of the experimental data. Part (c) was a fairly standard question on the effect of temperature on reaction rate, hence it was a surprise that students did not score better on it, with many of the oft repeated mistakes (number of collisions rather than collision frequency) again coming to the surface. Again it was probably inability to interpret experimental data that led to only very few students being able to correctly state the initial pH of the mixture (I am certain almost all would have gained the mark if the pH of \({\text{ 0.1 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) HCl had been asked for) and the percentage that would have to be consumed to increase the pH by one unit (which is independent of the previous answer) proved too much for almost all candidates. In part (e) most students could quote and substitute into the ideal gas equation, but converting from \({{\text{m}}^3}\) to \({\text{c}}{{\text{m}}^3}\) posed a problem for most candidates. Quite a number of candidates were however able to calculate the pH of the sulfur dioxide solution and identify a stronger acid.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was quite a popular question, though generally not well answered. In the first part students again appeared to display a lack of expertise in a practical context with very few able to devise a mixture that would halve the concentration of thiosulfate, whilst keeping other concentrations constant, and answers predicting that this would halve the reaction time were far more commonly encountered than those doubling it. Many candidates did however suggest valid reasons why the reaction vessel should remain unchanged and a significant number of students were able to correctly deduce the rate equation that the mechanism given would predict. Again a lack of ability to interpret experimental data was evident in the fact that it was very rare to find students who realised that a graph of (time)-1 against concentration was required to be able to deduce the reaction order, with almost all simply plotting time-concentration graphs and, as a result, very few could evaluate the mechanism in the light of the experimental data. Part (c) was a fairly standard question on the effect of temperature on reaction rate, hence it was a surprise that students did not score better on it, with many of the oft repeated mistakes (number of collisions rather than collision frequency) again coming to the surface. Again it was probably inability to interpret experimental data that led to only very few students being able to correctly state the initial pH of the mixture (I am certain almost all would have gained the mark if the pH of \({\text{ 0.1 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) HCl had been asked for) and the percentage that would have to be consumed to increase the pH by one unit (which is independent of the previous answer) proved too much for almost all candidates. In part (e) most students could quote and substitute into the ideal gas equation, but converting from \({{\text{m}}^3}\) to \({\text{c}}{{\text{m}}^3}\) posed a problem for most candidates. Quite a number of candidates were however able to calculate the pH of the sulfur dioxide solution and identify a stronger acid.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was quite a popular question, though generally not well answered. In the first part students again appeared to display a lack of expertise in a practical context with very few able to devise a mixture that would halve the concentration of thiosulfate, whilst keeping other concentrations constant, and answers predicting that this would halve the reaction time were far more commonly encountered than those doubling it. Many candidates did however suggest valid reasons why the reaction vessel should remain unchanged and a significant number of students were able to correctly deduce the rate equation that the mechanism given would predict. Again a lack of ability to interpret experimental data was evident in the fact that it was very rare to find students who realised that a graph of (time)-1 against concentration was required to be able to deduce the reaction order, with almost all simply plotting time-concentration graphs and, as a result, very few could evaluate the mechanism in the light of the experimental data. Part (c) was a fairly standard question on the effect of temperature on reaction rate, hence it was a surprise that students did not score better on it, with many of the oft repeated mistakes (number of collisions rather than collision frequency) again coming to the surface. Again it was probably inability to interpret experimental data that led to only very few students being able to correctly state the initial pH of the mixture (I am certain almost all would have gained the mark if the pH of \({\text{ 0.1 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) HCl had been asked for) and the percentage that would have to be consumed to increase the pH by one unit (which is independent of the previous answer) proved too much for almost all candidates. In part (e) most students could quote and substitute into the ideal gas equation, but converting from \({{\text{m}}^3}\) to \({\text{c}}{{\text{m}}^3}\) posed a problem for most candidates. Quite a number of candidates were however able to calculate the pH of the sulfur dioxide solution and identify a stronger acid.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was quite a popular question, though generally not well answered. In the first part students again appeared to display a lack of expertise in a practical context with very few able to devise a mixture that would halve the concentration of thiosulfate, whilst keeping other concentrations constant, and answers predicting that this would halve the reaction time were far more commonly encountered than those doubling it. Many candidates did however suggest valid reasons why the reaction vessel should remain unchanged and a significant number of students were able to correctly deduce the rate equation that the mechanism given would predict. Again a lack of ability to interpret experimental data was evident in the fact that it was very rare to find students who realised that a graph of (time)-1 against concentration was required to be able to deduce the reaction order, with almost all simply plotting time-concentration graphs and, as a result, very few could evaluate the mechanism in the light of the experimental data. Part (c) was a fairly standard question on the effect of temperature on reaction rate, hence it was a surprise that students did not score better on it, with many of the oft repeated mistakes (number of collisions rather than collision frequency) again coming to the surface. Again it was probably inability to interpret experimental data that led to only very few students being able to correctly state the initial pH of the mixture (I am certain almost all would have gained the mark if the pH of \({\text{ 0.1 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) HCl had been asked for) and the percentage that would have to be consumed to increase the pH by one unit (which is independent of the previous answer) proved too much for almost all candidates. In part (e) most students could quote and substitute into the ideal gas equation, but converting from \({{\text{m}}^3}\) to \({\text{c}}{{\text{m}}^3}\) posed a problem for most candidates. Quite a number of candidates were however able to calculate the pH of the sulfur dioxide solution and identify a stronger acid.</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was quite a popular question, though generally not well answered. In the first part students again appeared to display a lack of expertise in a practical context with very few able to devise a mixture that would halve the concentration of thiosulfate, whilst keeping other concentrations constant, and answers predicting that this would halve the reaction time were far more commonly encountered than those doubling it. Many candidates did however suggest valid reasons why the reaction vessel should remain unchanged and a significant number of students were able to correctly deduce the rate equation that the mechanism given would predict. Again a lack of ability to interpret experimental data was evident in the fact that it was very rare to find students who realised that a graph of (time)-1 against concentration was required to be able to deduce the reaction order, with almost all simply plotting time-concentration graphs and, as a result, very few could evaluate the mechanism in the light of the experimental data. Part (c) was a fairly standard question on the effect of temperature on reaction rate, hence it was a surprise that students did not score better on it, with many of the oft repeated mistakes (number of collisions rather than collision frequency) again coming to the surface. Again it was probably inability to interpret experimental data that led to only very few students being able to correctly state the initial pH of the mixture (I am certain almost all would have gained the mark if the pH of \({\text{ 0.1 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) HCl had been asked for) and the percentage that would have to be consumed to increase the pH by one unit (which is independent of the previous answer) proved too much for almost all candidates. In part (e) most students could quote and substitute into the ideal gas equation, but converting from \({{\text{m}}^3}\) to \({\text{c}}{{\text{m}}^3}\) posed a problem for most candidates. Quite a number of candidates were however able to calculate the pH of the sulfur dioxide solution and identify a stronger acid.</p>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was quite a popular question, though generally not well answered. In the first part students again appeared to display a lack of expertise in a practical context with very few able to devise a mixture that would halve the concentration of thiosulfate, whilst keeping other concentrations constant, and answers predicting that this would halve the reaction time were far more commonly encountered than those doubling it. Many candidates did however suggest valid reasons why the reaction vessel should remain unchanged and a significant number of students were able to correctly deduce the rate equation that the mechanism given would predict. Again a lack of ability to interpret experimental data was evident in the fact that it was very rare to find students who realised that a graph of (time)-1 against concentration was required to be able to deduce the reaction order, with almost all simply plotting time-concentration graphs and, as a result, very few could evaluate the mechanism in the light of the experimental data. Part (c) was a fairly standard question on the effect of temperature on reaction rate, hence it was a surprise that students did not score better on it, with many of the oft repeated mistakes (number of collisions rather than collision frequency) again coming to the surface. Again it was probably inability to interpret experimental data that led to only very few students being able to correctly state the initial pH of the mixture (I am certain almost all would have gained the mark if the pH of \({\text{ 0.1 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) HCl had been asked for) and the percentage that would have to be consumed to increase the pH by one unit (which is independent of the previous answer) proved too much for almost all candidates. In part (e) most students could quote and substitute into the ideal gas equation, but converting from \({{\text{m}}^3}\) to \({\text{c}}{{\text{m}}^3}\) posed a problem for most candidates. Quite a number of candidates were however able to calculate the pH of the sulfur dioxide solution and identify a stronger acid.</p>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This was quite a popular question, though generally not well answered. In the first part students again appeared to display a lack of expertise in a practical context with very few able to devise a mixture that would halve the concentration of thiosulfate, whilst keeping other concentrations constant, and answers predicting that this would halve the reaction time were far more commonly encountered than those doubling it. Many candidates did however suggest valid reasons why the reaction vessel should remain unchanged and a significant number of students were able to correctly deduce the rate equation that the mechanism given would predict. Again a lack of ability to interpret experimental data was evident in the fact that it was very rare to find students who realised that a graph of (time)-1 against concentration was required to be able to deduce the reaction order, with almost all simply plotting time-concentration graphs and, as a result, very few could evaluate the mechanism in the light of the experimental data. Part (c) was a fairly standard question on the effect of temperature on reaction rate, hence it was a surprise that students did not score better on it, with many of the oft repeated mistakes (number of collisions rather than collision frequency) again coming to the surface. Again it was probably inability to interpret experimental data that led to only very few students being able to correctly state the initial pH of the mixture (I am certain almost all would have gained the mark if the pH of \({\text{ 0.1 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) HCl had been asked for) and the percentage that would have to be consumed to increase the pH by one unit (which is independent of the previous answer) proved too much for almost all candidates. In part (e) most students could quote and substitute into the ideal gas equation, but converting from \({{\text{m}}^3}\) to \({\text{c}}{{\text{m}}^3}\) posed a problem for most candidates. Quite a number of candidates were however able to calculate the pH of the sulfur dioxide solution and identify a stronger acid.</p>
<div class="question_part_label">e.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>Reaction kinetics can be investigated using the iodine clock reaction. The equations for two reactions that occur are given below.</p>
<p>&nbsp;&nbsp; &nbsp; Reaction A: &nbsp; &nbsp; \({{\text{H}}_2}{{\text{O}}_2}{\text{(aq)}} + {\text{2}}{{\text{I}}^ - }{\text{(aq)}} + {\text{2}}{{\text{H}}^ + }{\text{(aq)}} \to {{\text{I}}_2}{\text{(aq)}} + {\text{2}}{{\text{H}}_2}{\text{O(l)}}\)</p>
<p>&nbsp;&nbsp; &nbsp; Reaction B: &nbsp; &nbsp; \({\text{ }}{{\text{I}}_2}{\text{(aq)}} + {\text{2}}{{\text{S}}_2}{\text{O}}_3^{2 - }{\text{(aq)}} \to {\text{2}}{{\text{I}}^ - }{\text{(aq)}} + {{\text{S}}_4}{\text{O}}_6^{2 - }{\text{(aq)}}\)</p>
<p>Reaction B is much faster than reaction A, so the iodine, \({\text{I}_2}\), formed in reaction A immediately reacts with thiosulfate ions, \({{\text{S}}_{\text{2}}}{\text{O}}_3^{2 - }\), in reaction B, before it can react with starch to form the familiar blue-black, starch-iodine complex.</p>
<p>In one experiment the reaction mixture contained:</p>
<p>5.0 &plusmn; 0.1 \({\text{c}}{{\text{m}}^{\text{3}}}\) of 2.00 \({\text{mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) hydrogen peroxide (\({{\text{H}}_{\text{2}}}{{\text{O}}_{\text{2}}}\))</p>
<p>5.0 &plusmn; 0.1 \({\text{c}}{{\text{m}}^{\text{3}}}\) of 1% aqueous starch</p>
<p>20.0 &plusmn; 0.1 \({\text{c}}{{\text{m}}^{\text{3}}}\) of 1.00 \({\text{mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) sulfuric acid (\({{\text{H}}_{\text{2}}}{\text{S}}{{\text{O}}_{\text{4}}}\))</p>
<p>20.0 &plusmn; 0.1 \({\text{c}}{{\text{m}}^{\text{3}}}\) of 0.0100 \({\text{mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) sodium thiosulfate (\({\text{N}}{{\text{a}}_{\text{2}}}{{\text{S}}_{\text{2}}}{{\text{O}}_{\text{3}}}\))</p>
<p>50.0 &plusmn; 0.1 \({\text{c}}{{\text{m}}^{\text{3}}}\) of water with 0.0200 &plusmn; 0.0001 g of potassium iodide (KI) dissolved in it.</p>
<p>After 45 seconds this mixture suddenly changed from colourless to blue-black.</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
</div>

<div class="specification">
<p>The activation energy can be determined using the Arrhenius equation, which is given in Table 1 of the Data Booklet. The experiment was carried out at five different temperatures. An incomplete graph to determine the activation energy of the reaction, based on these results, is shown below.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-24_om_17.22.48.png" alt="N13/4/CHEMI/HP2/ENG/TZ0/01.f"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The concentration of iodide ions, \({{\text{I}}^ - }\), is assumed to be constant. Outline why this is a valid assumption.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For this mixture the concentration of hydrogen peroxide, \({{\text{H}}_{\text{2}}}{{\text{O}}_{\text{2}}}\), can also be assumed to be constant. Explain why this is a valid assumption.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the solution suddenly changes colour.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the total uncertainty, in \({\text{c}}{{\text{m}}^{\text{3}}}\), of the volume of the reaction mixture.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the percentage uncertainty of the concentration of potassium iodide solution added to the overall reaction mixture.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the percentage uncertainty in the concentration of potassium iodide in the final reaction solution.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The colour change occurs when \(1.00 \times {10^{ - 4}}{\text{ mol}}\) of iodine has been formed. Use the total volume of the solution and the time taken, to calculate the rate of the reaction, including appropriate units.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the labels for each axis.</p>
<p>&nbsp;</p>
<p><em>x</em>-axis:</p>
<p>&nbsp;</p>
<p><em>y</em>-axis:</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the graph to determine the activation energy of the reaction, in \({\text{kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\), correct to <strong>three</strong> significant figures.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In another experiment, 0.100 g of a black powder was also added while all other concentrations and volumes remained unchanged. The time taken for the solution to change colour was now 20 seconds. Outline why you think the colour change occurred more rapidly and how you could confirm your hypothesis.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>KI/\({{\text{I}}^ - }\)/potassium iodide/iodide (ion) (rapidly) reformed (in second stage of reaction);</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>amount (in mol) of \({{\text{H}}_{\text{2}}}{{\text{O}}_{\text{2}}}\)/hydrogen peroxide \( \gg \) amount (in mol) \({\text{N}}{{\text{a}}_{\text{2}}}{{\text{S}}_{\text{2}}}{{\text{O}}_{\text{3}}}{\text{/}}{{\text{S}}_{\text{2}}}{\text{O}}_3^{2 - }\)/sodium thiosulfate/ thiosulfate (ion);</p>
<p><em>Accept amount (in mol) of H<sub>2</sub>O<sub>2</sub>/hydrogen peroxide \( \gg \) amount (in mol) KI/I<sup>&ndash;</sup>/potassium iodide/iodide (ion).</em></p>
<p><em>Accept &ldquo;H<sub>2</sub>O<sub>2</sub>/hydrogen peroxide is in (large) excess/high concentration&rdquo;.</em></p>
<p>(at end of reaction) \({\text{[}}{{\text{H}}_{\text{2}}}{{\text{O}}_{\text{2}}}{\text{]}}\) is only slightly decreased/virtually unchanged;</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>all \({\text{N}}{{\text{a}}_{\text{2}}}{{\text{S}}_{\text{2}}}{{\text{O}}_{\text{3}}}\)/sodium thiosulfate/\({{\text{S}}_{\text{2}}}{\text{O}}_3^{2 - }\)/thiosulfate consumed/used up;</p>
<p><em>Accept &ldquo;iodine no longer converted to iodide&rdquo;.</em></p>
<p>(free) iodine is formed / iodine reacts with starch / forms iodine-starch complex;</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\((5 \times 0.1) = ( \pm )0.5{\text{ }}({\text{c}}{{\text{m}}^{\text{3}}})\);</p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(( \pm )0.7(\% )\);</p>
<p><em>Comprises both mass of KI = &plusmn; 0.5% and volume of KI = &plusmn; 0.2%.</em></p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(0.5 + 0.7 = ( \pm )1.2\% \);</p>
<p><em>Sum of (i) and (ii) (percentage uncertainty of total volume = absolute uncertainty as 100 cm<sup>3</sup>).</em></p>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>total volume \(0.100{\text{ }}({\text{d}}{{\text{m}}^3})/100{\text{ }}({\text{c}}{{\text{m}}^3})\);</p>
<p>\(\left( {{\text{change in concentration }} = \frac{{{\text{1.00}} \times {\text{1}}{{\text{0}}^{ - 4}}}}{{{\text{0.100}}}} = } \right){\text{ 1.00}} \times {\text{1}}{{\text{0}}^{ - 3}}{\text{ (mol}}\,{\text{d}}{{\text{m}}^{\text{3}}}{\text{)}}\);</p>
<p>\(\left( {{\text{rate}} = \frac{{1.00 \times {{10}^{ - 3}}}}{{45}} = } \right){\text{ }}2.2 \times {10^{ - 5}}\);</p>
<p><em>Award <strong>[3]</strong> for the correct final answer.</em></p>
<p>\({\text{mol}}\,{\text{d}}{{\text{m}}^{ - 3}}{{\text{s}}^{ - 1}}\);</p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>x-axis:</em> \(\frac{1}{{{\text{Temperature}}}}/\frac{1}{T}/{{\text{T}}^{ - 1}}\);</p>
<p><em>Ignore units.</em></p>
<p><em>y-axis:</em> ln rate/\({\log _{\text{e}}}\) rate / ln rate constant/\({\log _{\text{e}}}\) rate constant / ln k/\({\log _{\text{e}}}k\);</p>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>gradient \( = \frac{{ - {E_{\text{a}}}}}{R}\);</p>
<p>gradient \( = \frac{{ - 4.00}}{{(3.31 \times {{10}^{ - 3}} - 2.83 \times {{10}^{ - 3}})}} =&nbsp; - 8333/ = \frac{{ - 4.80}}{{(3.41 \times {{10}^{ - 3}} - 2.83 \times {{10}^{ - 3}})}} =&nbsp; - 8276\);</p>
<p>\({E_{\text{a}}} = \left( {\frac{{8.31 \times 8333}}{{1000}}} \right) = 69.3{\text{ }}({\text{kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}})/ = \left( {\frac{{8.31 \times 8276}}{{1000}}} \right) = 68.8{\text{ }}({\text{kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}})\);</p>
<p><em>Award <strong>[3]</strong> for correct final answer.</em></p>
<p><em>Accept values from 65.0 to 73.0 kJ mol<sup>&ndash;1</sup>.</em></p>
<p><em>Deduct <strong>[1]</strong> for final answer in J mol<sup>&ndash;1</sup>.</em></p>
<p><em>Deduct <strong>[1]</strong> for final answer not to 3 significant figures.</em></p>
<div class="question_part_label">f.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>acting as a catalyst / black powder reacts with thiosulfate ions / solid dissolves to give blue-black solution;</p>
<p><em>Accept any other valid suggestion which will make colour change more rapid.</em></p>
<p><em>For catalyst: amount/mass of black powder remains constant / no new/different&nbsp;</em><em>products formed / activation energy decreased;</em></p>
<p><em>For other suggestions: any appropriate way to test the hypothesis;</em></p>
<p><em>Award <strong>[1]</strong> for valid hypothesis, <strong>[1]</strong> for appropriate method of testing the stated&nbsp;</em><em>hypothesis.</em></p>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>This question explored basic chemical concepts in the context of a practical situation. Whilst this is one frequently carried out during practical courses, none of the questions depended on prior knowledge. Students varied significantly in their ability to interpret the information given to answer parts (a) to (c), but very few could correctly carry out the propagation of uncertainties required in part (d). An encouraging number were able to carry out the rate calculation required in part (e). It was surprising how many students, though unable to identify the axes of the Arrhenius graph given in part (f), were still able to interpret it to correctly calculate the activation energy. Part (g) was deliberately open ended and elicited a number of interesting responses, though frequently the tests proposed would not in fact confirm the suggested hypothesis.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This question explored basic chemical concepts in the context of a practical situation. Whilst this is one frequently carried out during practical courses, none of the questions depended on prior knowledge. Students varied significantly in their ability to interpret the information given to answer parts (a) to (c), but very few could correctly carry out the propagation of uncertainties required in part (d). An encouraging number were able to carry out the rate calculation required in part (e). It was surprising how many students, though unable to identify the axes of the Arrhenius graph given in part (f), were still able to interpret it to correctly calculate the activation energy. Part (g) was deliberately open ended and elicited a number of interesting responses, though frequently the tests proposed would not in fact confirm the suggested hypothesis.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This question explored basic chemical concepts in the context of a practical situation. Whilst this is one frequently carried out during practical courses, none of the questions depended on prior knowledge. Students varied significantly in their ability to interpret the information given to answer parts (a) to (c), but very few could correctly carry out the propagation of uncertainties required in part (d). An encouraging number were able to carry out the rate calculation required in part (e). It was surprising how many students, though unable to identify the axes of the Arrhenius graph given in part (f), were still able to interpret it to correctly calculate the activation energy. Part (g) was deliberately open ended and elicited a number of interesting responses, though frequently the tests proposed would not in fact confirm the suggested hypothesis.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This question explored basic chemical concepts in the context of a practical situation. Whilst this is one frequently carried out during practical courses, none of the questions depended on prior knowledge. Students varied significantly in their ability to interpret the information given to answer parts (a) to (c), but very few could correctly carry out the propagation of uncertainties required in part (d). An encouraging number were able to carry out the rate calculation required in part (e). It was surprising how many students, though unable to identify the axes of the Arrhenius graph given in part (f), were still able to interpret it to correctly calculate the activation energy. Part (g) was deliberately open ended and elicited a number of interesting responses, though frequently the tests proposed would not in fact confirm the suggested hypothesis.</p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This question explored basic chemical concepts in the context of a practical situation. Whilst this is one frequently carried out during practical courses, none of the questions depended on prior knowledge. Students varied significantly in their ability to interpret the information given to answer parts (a) to (c), but very few could correctly carry out the propagation of uncertainties required in part (d). An encouraging number were able to carry out the rate calculation required in part (e). It was surprising how many students, though unable to identify the axes of the Arrhenius graph given in part (f), were still able to interpret it to correctly calculate the activation energy. Part (g) was deliberately open ended and elicited a number of interesting responses, though frequently the tests proposed would not in fact confirm the suggested hypothesis.</p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This question explored basic chemical concepts in the context of a practical situation. Whilst this is one frequently carried out during practical courses, none of the questions depended on prior knowledge. Students varied significantly in their ability to interpret the information given to answer parts (a) to (c), but very few could correctly carry out the propagation of uncertainties required in part (d). An encouraging number were able to carry out the rate calculation required in part (e). It was surprising how many students, though unable to identify the axes of the Arrhenius graph given in part (f), were still able to interpret it to correctly calculate the activation energy. Part (g) was deliberately open ended and elicited a number of interesting responses, though frequently the tests proposed would not in fact confirm the suggested hypothesis.</p>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This question explored basic chemical concepts in the context of a practical situation. Whilst this is one frequently carried out during practical courses, none of the questions depended on prior knowledge. Students varied significantly in their ability to interpret the information given to answer parts (a) to (c), but very few could correctly carry out the propagation of uncertainties required in part (d). An encouraging number were able to carry out the rate calculation required in part (e). It was surprising how many students, though unable to identify the axes of the Arrhenius graph given in part (f), were still able to interpret it to correctly calculate the activation energy. Part (g) was deliberately open ended and elicited a number of interesting responses, though frequently the tests proposed would not in fact confirm the suggested hypothesis.</p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This question explored basic chemical concepts in the context of a practical situation. Whilst this is one frequently carried out during practical courses, none of the questions depended on prior knowledge. Students varied significantly in their ability to interpret the information given to answer parts (a) to (c), but very few could correctly carry out the propagation of uncertainties required in part (d). An encouraging number were able to carry out the rate calculation required in part (e). It was surprising how many students, though unable to identify the axes of the Arrhenius graph given in part (f), were still able to interpret it to correctly calculate the activation energy. Part (g) was deliberately open ended and elicited a number of interesting responses, though frequently the tests proposed would not in fact confirm the suggested hypothesis.</p>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This question explored basic chemical concepts in the context of a practical situation. Whilst this is one frequently carried out during practical courses, none of the questions depended on prior knowledge. Students varied significantly in their ability to interpret the information given to answer parts (a) to (c), but very few could correctly carry out the propagation of uncertainties required in part (d). An encouraging number were able to carry out the rate calculation required in part (e). It was surprising how many students, though unable to identify the axes of the Arrhenius graph given in part (f), were still able to interpret it to correctly calculate the activation energy. Part (g) was deliberately open ended and elicited a number of interesting responses, though frequently the tests proposed would not in fact confirm the suggested hypothesis.</p>
<div class="question_part_label">f.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>This question explored basic chemical concepts in the context of a practical situation. Whilst this is one frequently carried out during practical courses, none of the questions depended on prior knowledge. Students varied significantly in their ability to interpret the information given to answer parts (a) to (c), but very few could correctly carry out the propagation of uncertainties required in part (d). An encouraging number were able to carry out the rate calculation required in part (e). It was surprising how many students, though unable to identify the axes of the Arrhenius graph given in part (f), were still able to interpret it to correctly calculate the activation energy. Part (g) was deliberately open ended and elicited a number of interesting responses, though frequently the tests proposed would not in fact confirm the suggested hypothesis.</p>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Consider the following graph of \(\ln k\) against <span class="s1">\(\frac{1}{T}\)</span>.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-15_om_17.34.42.png" alt="M13/4/CHEMI/HP2/ENG/TZ2/02"></p>
<p class="p1" style="text-align: center;">\[\frac{1}{T}/{10^{ - 3}}{\text{ }}{{\text{K}}^{ - 1}}\]</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">A catalyst provides an alternative pathway for a reaction, lowering the activation energy, \({E_{\text{a}}}\). Define the term <em>activation energy</em>, \({E_{\text{a}}}\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State how the rate constant, <em>k </em>, varies with temperature, <em>T</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine the activation energy, \({E_{\text{a}}}\), correct to <strong>three </strong>significant figures and state its units.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1"><span style="text-decoration: underline;">minimum</span> energy needed (by reactants/colliding particles) to react/start/initiate a reaction / for a successful collision;</p>
<p class="p1"><em>Allow energy difference between reactants and transition state</em>.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><em>k </em>increases with <em>T</em>;</p>
<p class="p1"><em>Do not accept k proportional to T or statement of Arrhenius equation from Data&nbsp;</em><em>booklet.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">slope/gradient/\(m = \frac{{ - {E_{\text{a}}}}}{R}/ - 6.20 \times {10^3}\);</p>
<p class="p1"><em>Allow range of m from </em>&ndash;<em>5</em>.<em>96 </em>\( \times \) <em>10</em><sup><span class="s1"><em>3 </em></span></sup><em>to </em>&ndash;<em>6</em>.<em>44 </em>\( \times \) <em>10<sup><em>3</em></sup></em>.</p>
<p class="p1"><em>Award M1 for </em>\(m = \frac{{ - {E_{\text{a}}}}}{R}\) <em>even if gradient is out of range.</em></p>
<p class="p1">\({E_{\text{a}}} = (6.20 \times {10^3} \times 8.31) = 51.5{\text{ kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}/5.15 \times {10^4}{\text{ J}}\,{\text{mo}}{{\text{l}}^{ - 1}}\)</p>
<p class="p1">\({E_{\text{a}}}\) value correct;</p>
<p class="p1">units correct;</p>
<p class="p1"><em>Award </em><strong><em>[3] </em></strong><em>for correct final answer.</em></p>
<p class="p1"><em>Allow range of E</em><sub><span class="s2">a </span></sub><em>from 49.5 to 53.5 kJ</em>\(\,\)<em>mol</em><sup><span class="s2"><em>&ndash;1 </em></span></sup><em>/ 4.95 </em>\( \times \) <em>10</em><sup><span class="s1"><em>4 </em></span></sup><em>to 5.35 </em>\( \times \) <em>10</em><sup><span class="s1"><em>4 </em></span></sup><em>J</em>\(\,\)<em>mol</em><sup><span class="s2"><em>&ndash;1</em></span></sup><em>.</em></p>
<p class="p1"><em>Answer must be given correct to three significant figures.</em></p>
<p class="p1"><em>M3 can be scored independently.</em></p>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">In (a) the most common mistake was for students to omit minimum in the definition of activation energy. Many described the relation between temperature and rate constant as linear or &lsquo;proportional&rsquo;. Only a small number of students gained full marks for the determination of activation energy because many either calculated an incorrect gradient or used the wrong units.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>In (a) the most common mistake was for students to omit minimum in the definition of activation energy. Many described the relation between temperature and rate constant as linear or &lsquo;proportional&rsquo;. Only a small number of students gained full marks for the determination of activation energy because many either calculated an incorrect gradient or used the wrong units.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>In (a) the most common mistake was for students to omit minimum in the definition of activation energy. Many described the relation between temperature and rate constant as linear or &lsquo;proportional&rsquo;. Only a small number of students gained full marks for the determination of activation energy because many either calculated an incorrect gradient or used the wrong units.</p>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Alex and Hannah were asked to investigate the kinetics involved in the iodination of propanone. They were given the following equation by their teacher.</p>
<p>\[{\text{C}}{{\text{H}}_3}{\text{COC}}{{\text{H}}_3}{\text{(aq)}} + {{\text{I}}_2}{\text{(aq)}}\xrightarrow{{{{\text{H}}^ + }{\text{(aq)}}}}{\text{C}}{{\text{H}}_2}{\text{ICOC}}{{\text{H}}_3}{\text{(aq)}} + {\text{HI(aq)}}\]</p>
<p class="p1">Alex&rsquo;s hypothesis was that the rate will be affected by changing the concentrations of the propanone and the iodine, as the reaction can happen without a catalyst. Hannah&rsquo;s hypothesis was that as the catalyst is involved in the reaction, the concentrations of the propanone, iodine and the hydrogen ions will all affect the rate.</p>
<p class="p1">They carried out several experiments varying the concentration of one of the reactants or the catalyst whilst keeping other concentrations and conditions the same, and obtained the results below.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-10-06_om_13.31.34.png" alt="M10/4/CHEMI/HP2/ENG/TZ1/02"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain why they added water to the mixtures.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i)&nbsp; &nbsp; &nbsp;Deduce the order of reaction for each substance and the rate expression from the results.</p>
<p class="p1">(ii)&nbsp; &nbsp; &nbsp;Comment on whether Alex&rsquo;s or Hannah&rsquo;s hypothesis is correct.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Using the data from Experiment 1, determine the concentration of the substances used and the rate constant for the reaction including its units.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i)&nbsp; &nbsp; &nbsp;This reaction uses a catalyst. Sketch and annotate the Maxwell-Boltzmann energy distribution curve for a reaction with and without a catalyst on labelled axes below.</p>
<p class="p1">(ii)&nbsp; &nbsp; &nbsp;Describe how a catalyst works.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">to maintain a constant volume / <span class="s1"><em>OWTTE</em></span>;</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({\text{[}}{{\text{H}}^ + }{\text{]}}\) order 1, \({\text{[C}}{{\text{H}}_{\text{3}}}{\text{COC}}{{\text{H}}_{\text{3}}}{\text{]}}\) order 1, \({\text{[}}{{\text{I}}_{\text{2}}}{\text{]}}\) order 0;</p>
<p class="p1">\({\text{(rate}} = {\text{)}}k{\text{[}}{{\text{H}}^ + }{\text{][C}}{{\text{H}}_{\text{3}}}{\text{COC}}{{\text{H}}_{\text{3}}}{\text{]}}\);</p>
<p class="p1"><em>Award </em><strong><em>[2] </em></strong><em>for correct rate expression.</em></p>
<p class="p1"><em>Allow expressions including [I</em><sub><span class="s1"><em>2</em></span></sub><em>]</em><sup><span class="s1"><em>0</em></span></sup><em>.</em></p>
<p class="p1">(ii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>neither were correct / Alex was right about propanone and wrong about iodine / Hannah was right about propanone and hydrogen ions but wrong about iodine / <em>OWTTE</em>;</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\({\text{[C}}{{\text{H}}_{\text{3}}}{\text{COC}}{{\text{H}}_{\text{3}}}{\text{]}} = 0.100{\text{ mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) <strong>and</strong> \({\text{[}}{{\text{H}}^ + }{\text{]}} = 0.100{\text{ mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\);</p>
<p class="p1">\(k = \frac{{4.96 \times {{10}^{ - 6}}}}{{(0.100 \times 0.100)}} = 4.96 \times {10^{ - 4}}\);</p>
<p class="p1">\({\text{mo}}{{\text{l}}^{ - 1}}{\text{d}}{{\text{m}}^{\text{3}}}{{\text{s}}^{ - 1}}\);</p>
<p class="p1"><em>Ignore calculation of [I</em><sub><span class="s1"><em>2</em></span></sub><em>].</em></p>
<p class="p1"><em>No ECF here for incorrect units.</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) &nbsp; &nbsp;&nbsp;<img src="images/Schermafbeelding_2016-10-06_om_14.52.42.png" alt="M10/4/CHEMI/HP2/ENG/TZ1/02.d/M"></p>
<p class="p1">axes correctly labelled <span class="s1"><em>x </em></span>= energy/velocity/speed, <span class="s1"><em>y </em></span>= number/% of molecules/particles;</p>
<p class="p1">graph showing correct curve for Maxwell-Boltzmann distribution;</p>
<p class="p2"><em>If two curves are drawn, first and second mark can still be scored, but not&nbsp;</em><em>third.</em></p>
<p class="p2"><em>Curve(s) must begin at origin and not go up at high energy.</em></p>
<p class="p1">two activation energies shown with \({E_{{\text{cat}}}}\)<span class="s2">&nbsp;</span>shown lower;</p>
<p class="p1"><em>Award the mark for the final point if shown on an enthalpy level diagram.</em></p>
<p class="p1">(ii)&nbsp; &nbsp; &nbsp;catalyst provides an alternative pathway of lower energy / <em>OWTTE</em>;</p>
<p class="p1"><em>Accept catalyst lowers activation energy (of reaction).</em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">The presented data in the question proved to be quite tricky for many candidates, and answers to this question were generally disappointing. Very few stated the need to maintain a constant volume in (a) and many thought that water was added in order to provide a solvent for the reagents.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">In (b)(i), although the question clearly told candidates to deduce the order for each substance, several did this for only two substances, often the species shown as reactants in the supplied equation. Then the orders shown in the rate expression did not always match the ones deduced. Only the better candidates got the rate expression correct and lots of guess work was seen here. A number gave \({K_c}\) instead of \(k\). The hypothesis question was also poorly answered and many candidates were not prepared for a question where both were incorrect.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Part (c) proved difficult and only the very best candidates got the two concentrations correct most just substituted volumes into their rate expression.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">In (d), many candidates drew an enthalpy level diagram and not the Maxwell-Boltzmann distribution curve and others showed two curves. Those that did draw a correct curve often mislabelled the axes. However, the vast majority could explain how a catalyst worked.</p>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Sodium thiosulfate solution, \({\text{N}}{{\text{a}}_{\text{2}}}{{\text{S}}_{\text{2}}}{{\text{O}}_{\text{3}}}{\text{(aq)}}\), and hydrochloric acid, \({\text{HCl(aq)}}\), react to produce solid sulfur as in the equation below.</p>
<p>\[{{\text{S}}_2}{\text{O}}_3^{2 - }{\text{(aq)}} + {\text{2}}{{\text{H}}^ + }{\text{(aq)}} \to {\text{S(s)}} + {\text{S}}{{\text{O}}_2}{\text{(g)}} + {{\text{H}}_2}{\text{O(l)}}\]</p>
<p>The following results to determine the initial rate were obtained:</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-11_om_17.38.17.png" alt="M14/4/CHEMI/HP2/ENG/TZ1/02"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce, with a reason, the order of reaction with respect to each reactant.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the rate expression for this reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the value of the rate constant, \(k\), and state its units.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State an equation for a possible rate-determining step for the reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest how the activation energy, \({E_{\text{a}}}\), for this reaction may be determined.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>experiments 1 and 2 (\({\text{[}}{{\text{S}}_2}{\text{O}}_3^{2 - }{\text{]}}\) remains constant) change in \({\text{[}}{{\text{H}}^ + }{\text{]}}\) does not affect the rate so zero order with respect to \({{\text{H}}^ + }{\text{(aq)}}\) / <em>OWTTE</em>;</p>
<p>experiment 1/2 and 3 (\({\text{[}}{{\text{H}}^ + }{\text{]}}\) has no effect) \({\text{[}}{{\text{S}}_2}{\text{O}}_3^{2 - }{\text{]}}\) is halved and rate is also halved so first order with respect to \({\text{[}}{{\text{S}}_2}{\text{O}}_3^{2 - }{\text{]}}\) / <em>OWTTE</em>;</p>
<p><em>Accept explanation given in mathematical terms.</em></p>
<p><em>Award </em><strong><em>[1 max] </em></strong><em>if both [S</em><sub><em>2</em></sub><em>O</em><em><sub>3</sub><sup>2&ndash;</sup></em><em>] is first order, </em><strong><em>and </em></strong><em>[H</em><sup><em>+</em></sup><em>] is zero order are stated without reason.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>rate \( = k{\text{[}}{{\text{S}}_2}{\text{O}}_3^{2 - }{\text{]}}\);</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>0.18;</p>
<p>\({{\text{s}}^{ - 1}}\);</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\({{\text{S}}_2}{\text{O}}_3^{2 - } \to {\text{S}} + {\text{SO}}_3^{2 - }\);</p>
<p><em>Accept any balanced equation that starts with only one S</em><sub><em>2</em></sub><em>O</em><em><sub>3</sub><sup>2&ndash;</sup></em><em>.</em></p>
<p><em>Equations must be balanced in terms of number of atoms and charge.</em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>determine rate at a range of temperatures (while keeping concentrations constant);</p>
<p>calculate \(k\) for each temperature;</p>
<p>plot graph of \(\ln k\) against \({T^{ - {\text{1}}}}\);</p>
<p>gradient is \(\frac{{ - {E_{\text{a}}}}}{R}/\)<em>OWTTE</em>;</p>
<div class="question_part_label">e.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>The interpretation of orders of rate from experimental data was well understood, and explained. Calculations of both the value and units of \({K_{\text{c}}}\) were also done well. Very few candidates produced an acceptable equation for the rate determining step, many did not realise the importance of balancing both the number of atoms and charge on both sides. The required careful explanation of how \({E_{\text{a}}}\) is determined from experimental data was lacking, too often a vague description of using gradient and \(R\) without context was considered sufficient by many candidates.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The interpretation of orders of rate from experimental data was well understood, and explained. Calculations of both the value and units of \({K_{\text{c}}}\) were also done well. Very few candidates produced an acceptable equation for the rate determining step, many did not realise the importance of balancing both the number of atoms and charge on both sides. The required careful explanation of how \({E_{\text{a}}}\) is determined from experimental data was lacking, too often a vague description of using gradient and \(R\) without context was considered sufficient by many candidates.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The interpretation of orders of rate from experimental data was well understood, and explained. Calculations of both the value and units of \({K_{\text{c}}}\) were also done well. Very few candidates produced an acceptable equation for the rate determining step, many did not realise the importance of balancing both the number of atoms and charge on both sides. The required careful explanation of how \({E_{\text{a}}}\) is determined from experimental data was lacking, too often a vague description of using gradient and \(R\) without context was considered sufficient by many candidates.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The interpretation of orders of rate from experimental data was well understood, and explained. Calculations of both the value and units of \({K_{\text{c}}}\) were also done well. Very few candidates produced an acceptable equation for the rate determining step, many did not realise the importance of balancing both the number of atoms and charge on both sides. The required careful explanation of how \({E_{\text{a}}}\) is determined from experimental data was lacking, too often a vague description of using gradient and \(R\) without context was considered sufficient by many candidates.</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>The interpretation of orders of rate from experimental data was well understood, and explained. Calculations of both the value and units of \({K_{\text{c}}}\) were also done well. Very few candidates produced an acceptable equation for the rate determining step, many did not realise the importance of balancing both the number of atoms and charge on both sides. The required careful explanation of how \({E_{\text{a}}}\) is determined from experimental data was lacking, too often a vague description of using gradient and \(R\) without context was considered sufficient by many candidates.</p>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The Haber process enables the large-scale production of ammonia needed to make fertilizers.</p>
</div>

<div class="specification">
<p class="p1">The equation for the Haber process is given below.</p>
<p class="p2">\[{{\text{N}}_2}({\text{g)}} + 3{{\text{H}}_2}({\text{g)}} \rightleftharpoons {\text{2N}}{{\text{H}}_3}({\text{g)}}\]</p>
<p class="p1">The percentage of ammonia in the equilibrium mixture varies with temperature.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-25_om_14.22.46.png" alt="N10/4/CHEMI/HP2/ENG/TZ0/06.a"></p>
</div>

<div class="specification">
<p class="p1">Ammonia can be converted into nitric acid, \({\text{HN}}{{\text{O}}_{\text{3}}}{\text{(aq)}}\), and hydrocyanic acid, HCN(aq). The \({\text{p}}{K_{\text{a}}}\) of hydrocyanic acid is 9.21.</p>
</div>

<div class="specification">
<p class="p1">A student decided to investigate the reactions of the two acids with separate samples of \({\text{0.20 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) sodium hydroxide solution.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">&nbsp; &nbsp; </span>Use the graph to deduce whether the forward reaction is exothermic or endothermic and explain your choice.</p>
<p class="p1">(ii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>State and explain the effect of increasing the pressure on the yield of ammonia.</p>
<p class="p1">(iii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>Deduce the equilibrium constant expression, \({K_{\text{c}}}\), for the reaction.</p>
<p class="p1">(iv) <span class="Apple-converted-space">&nbsp; &nbsp; </span>A mixture of 1.00 mol \({{\text{N}}_{\text{2}}}\) and 3.00 mol \({{\text{H}}_{\text{2}}}\) was placed in a \({\text{1.0 d}}{{\text{m}}^{\text{3}}}\) flask at <span class="s2">400 &deg;C</span>. When the system was allowed to reach equilibrium, the concentration of was found to be \({\text{0.062 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\). Determine the equilibrium constant, \({K_{\text{c}}}\), of the reaction at this temperature.</p>
<p class="p1">(v) <span class="Apple-converted-space">&nbsp; &nbsp; </span>Iron is used as a catalyst in the Haber process. State the effect of a catalyst on the value of \({K_{\text{c}}}\).</p>
<div class="marks">[9]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">&nbsp; &nbsp; </span>Distinguish between the terms <em>strong </em>and <em>weak acid </em>and state the equations used to show the dissociation of each acid in aqueous solution.</p>
<p class="p1">(ii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>Deduce the expression for the ionization constant, \({K_{\text{a}}}\), of hydrocyanic acid and calculate its value from the \({\text{p}}{K_{\text{a}}}\) value given.</p>
<p class="p1">(iii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>Use your answer from part (b) (ii) to calculate the \({\text{[}}{{\text{H}}^ + }{\text{]}}\) and the pH of an aqueous solution of hydrocyanic acid of concentration \({\text{0.108 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\). State <strong>one </strong>assumption made in arriving at your answer.</p>
<div class="marks">[9]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">A small piece of magnesium ribbon is added to solutions of nitric and hydrocyanic acid of the same concentration at the same temperature. Describe <strong>two </strong>observations that would allow you to distinguish between the two acids.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">&nbsp; &nbsp; </span>Calculate the volume of the sodium hydroxide solution required to react exactly with a \({\text{15.0 c}}{{\text{m}}^{\text{3}}}\) solution of \({\text{0.10 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) nitric acid.</p>
<p class="p1">(ii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>The following hypothesis was suggested by the student: &ldquo;Since hydrocyanic acid is a weak acid it will react with a smaller volume of the \({\text{0.20 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) sodium hydroxide solution.&rdquo; Comment on whether or not this is a valid hypothesis.</p>
<p class="p1">(iii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>Use Table 16 of the Data Booklet to identify a suitable indicator for the titration of sodium hydroxide and hydrocyanic acid.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">&nbsp; &nbsp; </span>exothermic;</p>
<p class="p1"><em>Accept either of the following for the second mark.</em></p>
<p class="p1">increasing temperature favours endothermic/reverse reaction;</p>
<p class="p1">as yield decreases with increasing temperature;</p>
<p class="p1">(ii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>yield increases / equilibrium moves to the right / more ammonia;</p>
<p class="p1">increase in pressure favours the reaction which has fewer moles of <span style="text-decoration: underline;">gaseous</span> products;</p>
<p class="p1">(iii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({K_{\text{c}}} = \frac{{{{{\text{[N}}{{\text{H}}_3}{\text{]}}}^2}}}{{{\text{[}}{{\text{N}}_2}{\text{][}}{{\text{H}}_2}{{\text{]}}^3}}}\);</p>
<p class="p1">(iv) <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({\text{[}}{{\text{N}}_2}{\text{]}}\): (at equilibrium \( = 1.00 - 0.031 = \)) \({\text{0.969 (mol}}\,{\text{d}}{{\text{m}}^{ - 3}}{\text{)}}\);</p>
<p class="p1">\({\text{[}}{{\text{H}}_2}{\text{]}}\): (at equilibrium \( = 3.00 - 3(0.031) = \)) \({\text{2.91 (mol}}\,{\text{d}}{{\text{m}}^{ - 3}}{\text{)}}\);</p>
<p class="p1">\({K_{\text{c}}}{\text{ }}\left( { = \frac{{{{{\text{(0.062)}}}^2}}}{{{\text{(0.969) (2.91}}{{\text{)}}^3}}}} \right) = {\text{1.6(1)}} \times {\text{1}}{{\text{0}}^{ - 4}}\);</p>
<p class="p1"><em>Ignore units.</em></p>
<p class="p1"><em>Award </em><strong><em>[1] </em></strong><em>for K<sub>c</sub> = 1.4 </em>\( \times \)<em> 10<sup>&ndash;4</sup></em></p>
<p class="p1">(v) <span class="Apple-converted-space">&nbsp; &nbsp; </span>no effect;</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) &nbsp; &nbsp; strong acid completely dissociated/ionized <strong>and </strong>weak acid partially dissociated/ionized;</p>
<p>\({\text{HN}}{{\text{O}}_3}{\text{(aq)}} \to {{\text{H}}^ + }{\text{(aq)}} + {\text{NO}}_3^ - {\text{(aq)}}\);</p>
<p>\({\text{HCN(aq)}} \rightleftharpoons {{\text{H}}^ + }{\text{(aq)}} + {\text{C}}{{\text{N}}^ - }{\text{(aq)}}\);</p>
<p><em>Insist on both arrows as shown.</em></p>
<p><em>State symbols not needed.</em></p>
<p><em>Accept H</em><em><sub>2</sub></em><em>O and H</em><em><sub>3</sub></em><em>O</em><em><sup>+</sup></em><em>.</em></p>
<p>(ii) &nbsp; &nbsp; \({K_{\text{a}}} = \frac{{{\text{[}}{{\text{H}}^ + }{\text{][C}}{{\text{N}}^ - }{\text{]}}}}{{{\text{[HCN]}}}}\);</p>
<p><em>Allow H</em><em><sub>3</sub></em><em>O</em><em><sup>+</sup></em> <em>instead of H</em><em><sup>+</sup></em><em>.</em></p>
<p>\({K_{\text{a}}} = {10^{ - 9.21}} = 6.17 \times {10^{ - 10}}\);</p>
<p class="p1">(iii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({[{{\text{H}}^ + }] = \sqrt {{K_{\text{a}}}[{\text{HCN}}]} /\sqrt {(6.17 \times {{10}^{ - 10}} \times 0.108)} }\);</p>
<p class="p1">\({ = 8.16 \times {{10}^{ - 6}}}\);</p>
<p><em>Allow in the range 8.13 </em>\( \times \)<em> 10</em><em><sup>&ndash;6</sup></em><em> to 8.16 </em>\( \times \)<em> 10</em><em><sup>&ndash;6</sup></em><em>.</em></p>
<p>\({\text{pH}} = 5.09\);</p>
<p><strong>OR</strong></p>
<p class="p1">\({{\text{pH}} = \frac{1}{2}{\text{(p}}{K_{\text{a}}} - {\text{log}}[{\text{HCN}}])/\frac{1}{2}(9.21 - \log \,0.108)}\);</p>
<p class="p1">\({ = 5.09}\);</p>
<p>\({\text{[}}{{\text{H}}^ + }{\text{]}} = {10^{ - 5.09}} = 8.16 \times {10^{ - 6}}\);</p>
<p><em>Allow in the range 8.13 </em>\( \times \)<em>&nbsp;</em><em>10<em><sup>&ndash;6</sup></em> </em><em>to 8.16 </em>\( \times \)<em> 10</em><em><sup>&ndash;6</sup></em><em>.</em></p>
<p><em>If expression for [H</em><em><sup>+</sup></em><em>] missing but both answers correct, award </em><strong><em>[3]</em></strong><em>, if one answer</em></p>
<p><em>correct, award </em><strong><em>[2]</em></strong><em>.</em></p>
<p>assume \({\text{[}}{{\text{H}}^ + }{\text{]}} \ll 0.108\) / negligible dissociation;</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><em>With </em><em>HNO<sub>3</sub></em>:</p>
<p class="p1">faster rate of bubble/hydrogen/gas production;</p>
<p class="p1">faster rate of magnesium dissolving;</p>
<p class="p1">higher temperature change;</p>
<p class="p1"><em>Accept opposite argument for HCN</em>.</p>
<p class="p1"><em>Reference to specific observations needed.</em></p>
<p class="p1"><em>Award </em><strong><em>[1] </em></strong><em>if 2 observations given but acid is not identified.</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i)&nbsp; &nbsp; &nbsp;(nitric acid) 7.5 cm<sup><span class="s1">3</span></sup>;</p>
<p class="p1">(ii)&nbsp; &nbsp; &nbsp;not valid as hydrocyanic acid reacts with same volume/ 7.5 cm<sup><span class="s1">3</span></sup>;</p>
<p class="p1">(iii)&nbsp; &nbsp; &nbsp;bromothymol blue / phenol red / phenolphthalein;</p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">Equilibrium is a topic that has shown substantial improvement in recent sessions with some very well produced arguments. The reaction was correctly described as exothermic with a reason correctly given in most cases. Most candidates knew that yield would increase with increased pressure, but some failed to identify the change in the number of &ldquo;gaseous&rdquo; molecules as the reason. More candidates had difficulty with the equilibrium constant calculation often using the initial not equilibrium concentrations.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">In (b) most correctly defined strong and weak acids and many also wrote correct equations. A few, however, missed the equilibrium sign for hydrocyanic acid. HA, CH<sub><span class="s1">3</span></sub>COOH and HCl were commonly given instead of HCN and HNO<sub><span class="s1">3</span></sub>, suggesting that students sometimes have difficulty applying general concepts to specific cases. It was encouraging to see many candidates determine the pH from the p<em>K</em><sub><span class="s1">a </span></sub>value including the assumption that there is negligible dissociation, as this has challenged students in previous sessions. A significant number of weaker candidates reported however that the acid solution would have pH values above 7.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Part (c) presented problems with many candidates unable to describe specific observations related to rate which would distinguish between a strong and weak acid and simply stated that the reaction would be faster.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">The moles calculation was answered well in (d) with most candidates able to identify phenolphthalein as a suitable indicator.</p>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Chemical kinetics involves an understanding of how the molecular world changes with time.</p>
</div>

<div class="specification">
<p class="p1">A catalyst provides an alternative pathway for a reaction, lowering the activation energy, \({E_{\text{a}}}\).</p>
</div>

<div class="specification">
<p class="p1">Sketch graphical representations of the following reactions, for X \( \to \) products.</p>
</div>

<div class="specification">
<p class="p1">For the reaction below, consider the following experimental data.</p>
<p class="p1">\[{\text{2Cl}}{{\text{O}}_2}{\text{(aq)}} + {\text{2O}}{{\text{H}}^ - }{\text{(aq)}} \to {\text{ClO}}_3^ - {\text{(aq)}} + {\text{ClO}}_2^ - {\text{(aq)}} + {{\text{H}}_2}{\text{O(l)}}\]</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-22_om_06.42.05.png" alt="N12/4/CHEMI/HP2/ENG/TZ0/06.d"></p>
</div>

<div class="specification">
<p class="p1">Another reaction involving&nbsp;<span class="s1">\({\rm{O}}{{\rm{H}}^ - }\) </span>(aq) is the base hydrolysis reaction of an ester.</p>
<p class="p1">\[{\text{C}}{{\text{H}}_3}{\text{COOC}}{{\text{H}}_2}{\text{CH(aq)}} + {\text{O}}{{\text{H}}^ - }{\text{(aq)}} \to {\text{C}}{{\text{H}}_3}{\text{CO}}{{\text{O}}^ - }{\text{(aq)}} + {\text{C}}{{\text{H}}_3}{\text{C}}{{\text{H}}_2}{\text{OH(aq)}}\]</p>
</div>

<div class="specification">
<p class="p1">A two-step mechanism has been proposed for the following reaction.</p>
<p class="p1">\[\begin{array}{*{20}{l}} {{\text{Step 1:}}}&amp;{{\text{Cl}}{{\text{O}}^ - }{\text{(aq)}} + {\text{Cl}}{{\text{O}}^ - }{\text{(aq)}} \to {\text{ClO}}_2^ - {\text{(aq)}} + {\text{C}}{{\text{l}}^ - }{\text{(aq)}}} \\ {{\text{Step 2:}}}&amp;{{\text{ClO}}_2^ - {\text{(aq)}} + {\text{Cl}}{{\text{O}}^ - }{\text{(aq)}} \to {\text{ClO}}_3^ - {\text{(aq)}} + {\text{C}}{{\text{l}}^ - }{\text{(aq)}}} \end{array}\]</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i)&nbsp; &nbsp; &nbsp;Define the term <em>rate of reaction</em>.</p>
<p class="p1">(ii)&nbsp; &nbsp; &nbsp;Temperature and the addition of a catalyst are two factors that can affect the rate of a reaction. State <strong>two </strong>other factors.</p>
<p class="p1">(iii)&nbsp; &nbsp; &nbsp;In the reaction represented below, state <strong>one </strong>method that can be used to measure the rate of the reaction.</p>
<p class="p1">\[{\text{ClO}}_3^ - {\text{(aq)}} + {\text{5C}}{{\text{l}}^ - }{\text{(aq)}} + {\text{6}}{{\text{H}}^ + }{\text{(aq)}} \to {\text{3C}}{{\text{l}}_2}{\text{(aq)}} + {\text{3}}{{\text{H}}_2}{\text{O(l)}}\]</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">&nbsp; &nbsp; </span>Define the term <em>activation energy</em>, \({E_{\text{a}}}\).</p>
<p class="p1">(ii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>Sketch the <strong>two </strong>Maxwell&ndash;Boltzmann energy distribution curves for a fixed amount of gas at two different temperatures, \({T_1}\) and \({T_2}{\text{ }}({T_2} &gt; {T_1})\). Label <strong>both </strong>axes.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-22_om_10.54.29.png" alt="N12/4/CHEMI/HP2/ENG/TZ0/06.b"></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i)&nbsp; &nbsp; &nbsp;Concentration of reactant X against time for a <strong>zero-order </strong>reaction.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-22_om_11.01.44.png" alt="N12/4/CHEMI/HP2/ENG/TZ0/06.c_1"></p>
<p class="p1">(ii)&nbsp; &nbsp; &nbsp;Rate of reaction against concentration of reactant X for a <strong>zero-order </strong>reaction.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-22_om_11.03.21.png" alt="N12/4/CHEMI/HP2/ENG/TZ0/06.c_2"></p>
<p class="p1">(iii)&nbsp; &nbsp; &nbsp;Rate of reaction against concentration of reactant X for a <strong>first-order </strong>reaction.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-22_om_11.04.24.png" alt="N12/4/CHEMI/HP2/ENG/TZ0/06.c_3"></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i)&nbsp; &nbsp; &nbsp;Deduce the rate expression.</p>
<p class="p1">(ii)&nbsp; &nbsp; &nbsp;Determine the rate constant, \(k\), and state its units, using the data from Experiment 2.</p>
<p class="p1">(iii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>Calculate the rate, in \({\text{mol}}\,{\text{d}}{{\text{m}}^{ - 3}}{{\text{s}}^{ - 1}}\), when \({\text{[Cl}}{{\text{O}}_2}{\text{(aq)]}} = 1.50 \times {10^{ - 2}}{\text{ mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) and \({\text{[O}}{{\text{H}}^ - }{\text{(aq)]}} = 2.35 \times {10^{ - 2}}{\text{ mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\).</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Apply IUPAC rules to name the ester, CH<sub><span class="s1">3</span></sub>COOCH<sub><span class="s1">2</span></sub>CH<sub><span class="s1">3</span></sub>(aq).</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Describe <strong>qualitatively </strong>the relationship between the rate constant, <em>k</em>, and temperature, <em>T</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The rate of this reaction was measured at different temperatures and the following data were recorded.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-22_om_11.31.05.png" alt="N12/4/CHEMI/HP2/ENG/TZ0/06.e.iii"></p>
<p class="p1">Using data from the graph, determine the activation energy, \({E_{\text{a}}}\), correct to <strong>three</strong>&nbsp;significant figures and <strong>state its units</strong>.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce the overall equation for the reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce the rate expression for each step.</p>
<p class="p2">&nbsp;</p>
<p class="p1">Step 1:</p>
<p class="p2">&nbsp;</p>
<p class="p2">&nbsp;</p>
<p class="p1">Step 2:</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">&nbsp; &nbsp; </span>change in concentration of reactant/product with time / rate of change of concentration;</p>
<p class="p1"><em>Increase can be used instead of change for product or decrease can be used instead of change for reactant.</em></p>
<p class="p1"><em>Allow mass/amount/volume instead of concentration.</em></p>
<p class="p1"><em>Do not accept substance.</em></p>
<p class="p1">(ii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>concentration;</p>
<p class="p1">particle size / surface area;</p>
<p class="p1">light;</p>
<p class="p1">pressure;</p>
<p class="p1"><em>Allow pH.</em></p>
<p class="p1">(iii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>(measuring electrical) conductivity / (measuring) pH;</p>
<p class="p1"><em>Accept other suitable method.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">&nbsp; &nbsp; </span>minimum/least/smallest energy needed (by reactants/colliding particles) to react/start/initiate a reaction;</p>
<p class="p1"><em>Allow energy difference between reactants and transition state</em>.</p>
<p class="p1"><em>Minimum/least/smallest required for the mark.</em></p>
<p class="p1">(ii) <span class="Apple-converted-space">&nbsp; &nbsp; </span><em>x-axis label</em>: (kinetic) energy/(K)E <strong>and </strong><em>y-axis label</em>: probability/fraction of molecules/particles / probability density;</p>
<p class="p1"><em>Allow number of molecules/particles for y-axis</em>.</p>
<p class="p1">correct shape of a typical Maxwell&ndash;Boltzmann energy distribution curve;</p>
<p class="p1"><em>Do not award mark if curve is symmetric, does not start at zero or if it crosses x-axis.</em></p>
<p class="p1">two curves represented with second curve for \({T_2} &gt; {T_1}\) to right of first curve, peak maximum lower than first curve and after the curves cross going to the right, \({T_2}\) curve needs to be above \({T_1}\) curve as illustrated;</p>
<p class="p1"><em>M2 and M3 can be scored independently.</em></p>
<p class="p1"><em><img src="images/Schermafbeelding_2016-09-22_om_10.58.14.png" alt="N12/4/CHEMI/HP2/ENG/TZ0/06.b/M"></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) &nbsp; &nbsp; <img src="images/Schermafbeelding_2016-09-22_om_11.06.57.png" alt="N12/4/CHEMI/HP2/ENG/TZ0/06.c_1/M">&nbsp;;</p>
<p class="p1">(ii) &nbsp; &nbsp; <img src="images/Schermafbeelding_2016-09-22_om_11.08.02.png" alt="N12/4/CHEMI/HP2/ENG/TZ0/06.c_2/M">&nbsp;;</p>
<p class="p1">(iii) &nbsp; &nbsp; <img src="images/Schermafbeelding_2016-09-22_om_11.08.55.png" alt="N12/4/CHEMI/HP2/ENG/TZ0/06.c_3/M">&nbsp;;</p>
<p class="p1">&nbsp;</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">&nbsp; &nbsp; </span>second order in \({\text{Cl}}{{\text{O}}_2}\) <strong>and </strong>first order in \({\text{O}}{{\text{H}}^ - }\);</p>
<p class="p1">rate \( = k{{\text{[Cl}}{{\text{O}}_{\text{2}}}{\text{]}}^2}{\text{[O}}{{\text{H}}^ - }{\text{]}}\);</p>
<p class="p1"><em>Award </em><strong><em>[2] </em></strong><em>for correct final answer</em>.</p>
<p class="p1">(ii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(k = 2.30 \times {10^2}/230\);</p>
<p class="p1">\({\text{mo}}{{\text{l}}^{ - 2}}{\text{d}}{{\text{m}}^6}{{\text{s}}^{ - 1}}\);</p>
<p class="p1">(iii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(1.22 \times {10^{ - 3}}/0.00122{\text{ (mol}}\,{\text{d}}{{\text{m}}^{ - 3}}{{\text{s}}^{ - 1}}{\text{)}}\);</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">ethyl ethanoate;</p>
<p class="p1"><em>Do not allow ethyl acetate.</em></p>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">as temperature/<em>T </em>increases, (value of) rate constant/<em>k </em>increases (exponentially);</p>
<p class="p1"><em>Do not allow answers involving ln k from the Arrhenius equation.</em></p>
<p class="p1"><em>Do not allow T directly proportional to k.</em></p>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>slope \( =&nbsp; - 5.6 \times {10^3}/ - 5600{\text{ (K)}}\);</p>
<p>\({E_{\text{a}}} =&nbsp; - {\text{slope}} \times {\text{R}}/{\text{slope}} =&nbsp; - {E_{\text{a}}}/R\);</p>
<p>\({E_{\text{a}}}{\text{(}} = 5.60 \times {10^3}{\text{ }}K \times 8.31{\text{ J}}\,{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}}{\text{)}} = 4.65 \times {10^4}{\text{ (J}}\,{\text{mo}}{{\text{l}}^{ - 1}}{\text{)}}/46.5{\text{ (kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}{\text{)}}\);</p>
<p><em>Accept answers in range 4</em>.<em>60 </em>\( \times \)<em> 10</em><em><sup>4</sup></em><em>&nbsp;J</em>\(\,\)<em>mol</em><em>\(^{ - 1}\) </em><em>to 4</em>.<em>67 </em>\( \times \)<em>&nbsp;</em><em>\({10^4}\) </em><em>(J mol \(^{ - 1}\))</em><em>.</em></p>
<p>\({\text{J}}\,{\text{mo}}{{\text{l}}^{ - 1}}/{\text{kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\);</p>
<p><em>Accept J or kJ.</em></p>
<p><em>Unit mark can be scored independently but correct </em>\({E_a}\) <em>values with incorrect units scores only </em><strong><em>[3 max] </em></strong><em>(for example 46.5 </em><em>J mol \(^{ - 1}\)).</em></p>
<p><em>Award </em><strong><em>[4] </em></strong><em>for correct final answer.</em></p>
<div class="question_part_label">e.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\({\text{3Cl}}{{\text{O}}^ - }{\text{(aq)}} \to {\text{ClO}}_3^ - {\text{(aq)}} + {\text{2C}}{{\text{l}}^ - }{\text{(aq)}}\);</p>
<p class="p1"><em>Ignore state symbols.</em></p>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><em>Step 1</em>: rate \( = k{{\text{[Cl}}{{\text{O}}^ - }{\text{]}}^{\text{2}}}\);</p>
<p class="p1"><em>Step 2</em>: rate \( = k{\text{[ClO}}_2^ - {\text{][Cl}}{{\text{O}}^ - }{\text{]}}\);</p>
<p class="p1"><em>Penalize missing k once only.</em></p>
<div class="question_part_label">f.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">This was the most popular question in Section B of the paper. Part (a) was very well answered.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">In (b) (i), some candidates failed to mention minimum/least/smallest energy in the definition of activation energy. In part (ii), again candidates often dropped easy marks here for poor representations of the Maxwell-Boltzmann energy distribution curves. In some cases the curves were drawn symmetrically, which was incorrect. In addition, incorrect labels were often given for the x- and y-axes. Some candidates mixed these curves up with enthalpy level diagrams. It was nice to see more candidates giving a more precise label for the y-axis as probability/fraction of molecules rather than just number of molecules. The latter was allowed but is less precise (although does tend to be used in many IB textbooks).</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Part (c) however was very well answered.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">In part (d), many candidates also scored highly though the units of <em>k </em>in (ii) did cause a problem for some candidates.</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">In (e) (i), the most common mistake was candidates stating ethyl methanoate instead of ethyl ethanoate.</p>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">In part (ii), a number of candidates stated incorrectly that <em>T </em>is directly proportional to <em>k</em>, which is incorrect. Proportionality is a concept embedded in AS 11.3.1 in Topic 11, and may be worth some further discussion in the light of the Arrhenius Equation.</p>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">The most difficult part of Q6 however involved (e) (iii). Very few candidates scored full marks here and simply did not know how to manipulate the equation to get the activation energy. Others even gave incorrect units.</p>
<div class="question_part_label">e.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">One respondent stated that part (f) (ii) would be difficult for candidates. (f) certainly did prove challenging and the rate expression for step two was often given incorrectly. This question became a good discriminating question in Section B. However the better students did manage to score all three marks in part (f).</p>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">One respondent stated that part (f) (ii) would be difficult for candidates. (f) certainly did prove challenging and the rate expression for step two was often given incorrectly. This question became a good discriminating question in Section B. However the better students did manage to score all three marks in part (f).</p>
<div class="question_part_label">f.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Hydrogen peroxide decomposes according to the equation below.</p>
<p>\({\text{2}}{{\text{H}}_{\text{2}}}{{\text{O}}_{\text{2}}}{\text{(aq)}} \to {\text{2}}{{\text{H}}_{\text{2}}}{\text{O(l)}} + {{\text{O}}_{\text{2}}}{\text{(g)}}\)</p>
<p>The rate of the decomposition can be monitored by measuring the volume of oxygen gas released. The graph shows the results obtained when a solution of hydrogen peroxide decomposed in the presence of a CuO catalyst.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-22_om_06.42.58.png" alt="N14/4/CHEMI/HP2/ENG/TZ0/11"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how the initial rate of reaction can be found from the graph.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain how and why the rate of reaction changes with time.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A Maxwell-Boltzmann energy distribution curve is drawn below. Label both axes and explain, by annotating the graph, how catalysts increase the rate of reaction.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-22_om_06.52.11.png" alt="N14/4/CHEMI/HP2/ENG/TZ0/11.b"></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) &nbsp; &nbsp; In some reactions, increasing the concentration of a reactant does not increase the rate of reaction. Describe how this may occur.</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>(ii) &nbsp; &nbsp; Consider the reaction</p>
<p>\[{\text{2A}} + {\text{B}} \to {\text{C}} + {\text{D}}\]</p>
<p>The reaction is first order with respect to <strong>A</strong>, and zero order with respect to <strong>B</strong>. Deduce the rate expression for this reaction.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch a graph of rate constant \((k)\) versus temperature.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-22_om_07.07.50.png" alt="N14/4/CHEMI/HP2/ENG/TZ0/11.d"></p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hydrochloric acid neutralizes sodium hydroxide, forming sodium chloride and water.</p>
<p>\({\text{NaOH(aq)}} + {\text{HCl(aq)}} \to {\text{NaCl(aq)}} + {{\text{H}}_{\text{2}}}{\text{O(l)}}\) &nbsp; &nbsp; \(\Delta {H^\Theta } =&nbsp; - 57.9{\text{ kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\)</p>
<p>(i) &nbsp; &nbsp; Define <em>standard enthalpy change of reaction</em>, \(\Delta {H^\Theta }\).</p>
<p>(ii) &nbsp; &nbsp; Determine the amount of energy released, in kJ, when \({\text{50.0 c}}{{\text{m}}^{\text{3}}}\) of \({\text{1.00 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) sodium hydroxide solution reacts with \({\text{50.0 c}}{{\text{m}}^{\text{3}}}\) of \({\text{1.00 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) hydrochloric acid solution.</p>
<p>(iii) &nbsp; &nbsp; In an experiment, 2.50 g of solid sodium hydroxide was dissolved in \({\text{50.0 c}}{{\text{m}}^{\text{3}}}\) of water. The temperature rose by 13.3 &deg;C. Calculate the standard enthalpy change, in \({\text{kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\), for dissolving one mole of solid sodium hydroxide in water.</p>
<p>\[{\text{NaOH(s)}} \to {\text{NaOH(aq)}}\]</p>
<p>(iv) &nbsp; &nbsp; Using relevant data from previous question parts, determine \(\Delta {H^\Theta }\), in \({\text{kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\), for the reaction of solid sodium hydroxide with hydrochloric acid.</p>
<p>\[{\text{NaOH(s)}} + {\text{HCl(aq)}} \to {\text{NaCl(aq)}} + {{\text{H}}_{\text{2}}}{\text{O(l)}}\]</p>
<div class="marks">[9]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) &nbsp; &nbsp; Zinc is found in the d-block of the periodic table. Explain why it is not considered a transition metal.</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>&nbsp;</p>
<p>(ii) &nbsp; &nbsp; Explain why \({\text{F}}{{\text{e}}^{3 + }}\) is a more stable ion than \({\text{F}}{{\text{e}}^{2 + }}\) by reference to their electron configurations.</p>
<div class="marks">[5]</div>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>(draw a) tangent to the curve at origin/time = 0/start of reaction;</p>
<p>(calculate) the gradient/slope (of the tangent);</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>rate decreases (with time);</p>
<p>concentration/number of (reactant) molecules per unit volume decreases (with time);</p>
<p><em>Do not accept &ldquo;number of molecules decreases&rdquo; or &ldquo;amount of reactant&nbsp;</em><em>decreases&rdquo;.</em></p>
<p>collisions (between reactant molecules/reactant and catalyst) become less frequent;</p>
<p><em>Do not accept &ldquo;fewer collisions&rdquo; without reference to frequency (eg, no.&nbsp;</em><em>collisions per second).</em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>y</em>-<em>axis</em>: probability / fraction of molecules/particles / probability density</p>
<p><em>Allow &ldquo;number of particles/molecules&rdquo; on y-axis.</em></p>
<p><strong>and</strong></p>
<p><em>x</em>-<em>axis</em>: (kinetic) energy;</p>
<p><em>Accept &ldquo;speed/velocity&rdquo; on x-axis.</em></p>
<p><img src="images/Schermafbeelding_2016-08-22_om_06.55.55.png" alt="N14/4/CHEMI/HP2/ENG/TZ0/11.b/M"></p>
<p>correct relative position of \({E_{\text{a}}}\) catalysed and \({E_{\text{a}}}\) uncatalysed;</p>
<p>more/greater proportion of molecules/collisions have the lower/required/catalysed \({E_{\text{a}}}\) (and can react upon collision);</p>
<p><em>M3 can be scored by stating </em><strong><em>or </em></strong><em>shading and annotating the graph.</em></p>
<p><em>Accept &ldquo;a greater number/proportion of successful collisions as catalyst reduces </em>\({E_a}\)<em>&rdquo;.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) &nbsp; &nbsp; reactant not involved in (or before) the slowest/rate-determining step/RDS;</p>
<p>reactant is in (large) excess;</p>
<p>(ii) &nbsp; &nbsp; \({\text{(rate}} = {\text{) }}k{\text{[A]}}\);</p>
<p><em>Accept rate =</em> <em>k[A]<sup>1</sup>[B]<sup>0</sup></em><em>.</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>curve with a positive slope curving upwards;</p>
<p><em>Do not penalize if curve passes through the origin.</em></p>
<p><img src="images/Schermafbeelding_2016-08-22_om_07.10.15.png" alt="N14/4/CHEMI/HP2/ENG/TZ0/11.d/M"></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) &nbsp; &nbsp; heat transferred/absorbed/released/enthalpy/<span style="text-decoration: underline;">potential</span> energy change when 1 mol/molar amounts of reactant(s) react (to form products) <em>/ OWTTE</em>;</p>
<p>under standard conditions / at a pressure 100 kPa/101.3 kPa/1 atm <strong>and</strong> temperature 298 K/25 &deg;C;</p>
<p><em>Award </em><strong><em>[2] </em></strong><em>for difference between standard enthalpies of products and standard enthalpies of reactants / </em>\({H^\Theta }\) <em>(products) &ndash; </em>\({H^\Theta }\) <em>(reactants).</em></p>
<p><em>Award </em><strong><em>[2] </em></strong><em>for difference between standard enthalpies of formation of products and standard enthalpies of formation of reactants / </em>\(\Sigma \Delta H_f^\Theta \)<em> (products) &ndash; </em>\(\Sigma \Delta H_f^\Theta \) <em>(reactants).</em></p>
<p>(ii) &nbsp; &nbsp; \((1.00 \times 0.0500 = ){\text{ }}0.0500{\text{ (mol)}}\);</p>
<p>\((0.0500 \times 57.9 = ){\text{ }}2.90{\text{ (kJ)}}\);</p>
<p><em>Ignore any negative sign.</em></p>
<p><em>Award </em><strong><em>[2] </em></strong><em>for correct final answer.</em></p>
<p><em>Award </em><strong><em>[1 max] </em></strong><em>for 2900 J.</em></p>
<p>(iii) &nbsp; &nbsp; \(\left( {\frac{{2.50}}{{40.00}} = } \right){\text{ }}0.0625{\text{ (mol NaOH)}}\);</p>
<p>\(0.0500 \times 4.18 \times 13.3 = 2.78{\text{ (kJ)}}/50.0 \times 4.18 \times 13.3 = 2780{\text{ (J)}}\);</p>
<p>\(\left( {\frac{{2.78}}{{0.0625}}} \right) =&nbsp; - 44.5{\text{ (kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}})\);</p>
<p><em>Award </em><strong><em>[3] </em></strong><em>for correct final answer.</em></p>
<p><em>Negative sign is necessary for M3.</em></p>
<p><em>Award M2 and M3 if is used to obtain an enthalpy change of &ndash;46.7 (kJ mol<sup>&ndash;1</sup>).</em></p>
<p>(iv) &nbsp; &nbsp; \( - 44.5 - 57.9\) / correct Hess&rsquo;s Law cycle (as below) / correct manipulation of equations;</p>
<p><img src="images/Schermafbeelding_2016-08-22_om_07.41.59.png" alt="N14/4/CHEMI/HP2/ENG/TZ0/1.e.iv/M"></p>
<p>\( - 102.4{\text{ kJ}}\);</p>
<p><em>Award </em><strong><em>[2] </em></strong><em>for correct final answer.</em></p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i) &nbsp; &nbsp; zinc (only) forms the ion \({\text{Z}}{{\text{n}}^{2 + }}\) / has the oxidation state \( + 2\);</p>
<p><em>Allow forms only one ion / has only one oxidation state.</em></p>
<p>has full d-subshell/orbitals / does not have a partially filled d-subshell/orbitals (needed to exhibit transition metal properties);</p>
<p>(ii) &nbsp; &nbsp; \({\text{F}}{{\text{e}}^{2 + }}{\text{: 1}}{{\text{s}}^{\text{2}}}{\text{2}}{{\text{s}}^{\text{2}}}{\text{2}}{{\text{p}}^{\text{6}}}{\text{3}}{{\text{s}}^{\text{2}}}{\text{3}}{{\text{p}}^{\text{6}}}{\text{3}}{{\text{d}}^{\text{6}}}/{\text{[Ar] 3}}{{\text{d}}^{\text{6}}}\) <strong>and</strong> \({\text{F}}{{\text{e}}^{3 + }}{\text{: 1}}{{\text{s}}^{\text{2}}}{\text{2}}{{\text{s}}^{\text{2}}}{\text{2}}{{\text{p}}^{\text{6}}}{\text{3}}{{\text{s}}^{\text{2}}}{\text{3}}{{\text{p}}^{\text{6}}}{\text{3}}{{\text{d}}^{\text{5}}}/{\text{[Ar] 3}}{{\text{d}}^{\text{5}}}\);</p>
<p>half-full sub-level/3d<sup>5</sup> has extra stability;</p>
<p>less repulsion between electrons / electrons singly occupy orbitals / electrons do not have to pair with other electrons;</p>
<p><em>Accept converse points for Fe</em><sup><em>2+</em></sup><em>.</em></p>
<div class="question_part_label">f.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Most candidates related the rate of reaction to the gradient of the curve, but only a few suggested drawing a tangent at \(t = 0\).</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Answers were often disappointing and only a few candidates gained full marks.</p>
<p>Candidates often talked about the number of reactant molecules decreasing but neglected to relate this to a lower concentration. Also some candidates still fail to highlight frequency rather than the number of collisions.</p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Well answered by more than half of the candidates. The labelling of the axes was a challenge for some candidates. The annotation of the diagram with the energy of activation with and without a catalyst was mostly correct, though some weaker students confused it with the effect of temperature and constructed a second curve. Some candidates could not offer an explanation for the third mark.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i)&nbsp; &nbsp; &nbsp;Only a few candidates scored this mark. Many candidates stated that a reactant concentration having no effect indicated that the reaction that was zero order in that species, rather than describing the underlying mechanistic reason for the zero order dependence.</p>
<p>(ii)&nbsp; &nbsp; &nbsp;More than half of the candidates could construct a correct rate expression from information about the order of the reactants.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>A number of candidates gave a linear relationship, rather than an exponential one, between reaction rate and temperature.</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i)&nbsp; &nbsp; &nbsp;Defining the standard enthalpy change of reaction was not well answered.</p>
<p>(ii)&nbsp; &nbsp; &nbsp;More than half of the candidates calculated the amount of energy released correctly.</p>
<p>(iii)&nbsp; &nbsp; &nbsp;Half of the candidates were able to gain the three marks. Many candidates lost the third mark for not quoting the negative sign for the enthalpy change. Quite a few candidates used a wrong value for the mass of water.</p>
<p>(iv)&nbsp; &nbsp; &nbsp;Many good answers. A Hess&rsquo;s Law cycle wasn&rsquo;t often seen. Quite a few candidates scored through ECF from (iii).</p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i)&nbsp; &nbsp; &nbsp;Most candidates knew that zinc has a full 3d sub-shell but almost all missed out on the second mark about only having one possible oxidation state in its compounds.</p>
<p>(ii)&nbsp; &nbsp; &nbsp;This was a challenging question for many candidates. A large number of candidates did not give the correct electron configurations for the ions, and only few mentioned the stability of the half-full d-sub-shell. Very few scored the third mark.</p>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>When nitrogen gas and hydrogen gas are allowed to react in a closed container the following equilibrium is established.</p>
<p>\[{{\text{N}}_{\text{2}}}{\text{(g)}} + {\text{3}}{{\text{H}}_{\text{2}}}{\text{(g)}} \rightleftharpoons {\text{2N}}{{\text{H}}_{\text{3}}}{\text{(g) &nbsp; &nbsp; }}\Delta H = -92.6{\text{ kJ}}\]</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Outline <strong>two </strong>characteristics of a reversible reaction in a state of dynamic equilibrium.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Predict, with a reason, how each of the following changes affects the position of equilibrium.</p>
<p class="p1">&nbsp;</p>
<p class="p1">The volume of the container is increased.</p>
<p class="p1">&nbsp;</p>
<p class="p1">&nbsp;</p>
<p class="p1">Ammonia is removed from the equilibrium mixture.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Define the term <em>activation energy</em>, \({E_{\text{a}}}\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Ammonia is manufactured by the Haber process in which iron is used as a catalyst.</p>
<p class="p1">Explain the effect of a catalyst on the rate of reaction.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Typical conditions used in the Haber process are 500 &deg;C and 200 atm, resulting in approximately 15% yield of ammonia.</p>
<p class="p1">(i) <span class="Apple-converted-space">&nbsp; &nbsp; </span>Explain why a temperature lower than 500 &deg;C is <strong>not </strong>used.</p>
<p class="p2">&nbsp;</p>
<p class="p2">&nbsp;</p>
<p class="p2">&nbsp;</p>
<p class="p1">(ii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>Outline why a pressure higher than 200 atm is <strong>not </strong>often used.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce the equilibrium constant expression, \({K_{\text{c}}}\), for the reaction on page 10.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">When 1.00 mol of nitrogen and 3.00 mol of hydrogen were allowed to reach equilibrium in a \({\text{1.00 d}}{{\text{m}}^{\text{3}}}\) container at a temperature of 500 &deg;C and a pressure of 1000 atm, the equilibrium mixture contained 1.46 mol of ammonia.</p>
<p class="p1">Calculate the value of \({K_{\text{c}}}\) at 500 &deg;C.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Define the term <em>base </em>according to the Lewis theory.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Define the term <em>weak base </em>according to the Br&oslash;nsted&ndash;Lowry theory.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce the formulas of conjugate acid-base pairs in the reaction below.</p>
<p class="p1">\[{\text{C}}{{\text{H}}_{\text{3}}}{\text{N}}{{\text{H}}_{\text{2}}}{\text{(aq)}} + {{\text{H}}_{\text{2}}}{\text{O(l)}} \rightleftharpoons {\text{C}}{{\text{H}}_{\text{3}}}{\text{NH}}_{\text{3}}^ + {\text{(aq)}} + {\text{O}}{{\text{H}}^ - }{\text{(aq)}}\]</p>
<p class="p1"><img src="images/Schermafbeelding_2016-08-07_om_09.03.51.png" alt="M15/4/CHEMI/HP2/ENG/TZ2/07.e.iii"></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine the pH of a \({\text{0.100 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) solution of ammonia, \({\text{N}}{{\text{H}}_{\text{3}}}{\text{(aq)}}\), using tables 2 and 15 of the data booklet.</p>
<div class="marks">[4]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">&nbsp; &nbsp; </span>Sketch the pH titration curve obtained when \({\text{50.0 c}}{{\text{m}}^{\text{3}}}\) of \({\text{0.100 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}{\text{N}}{{\text{H}}_{\text{3}}}{\text{(aq)}}\) is added to \({\text{25.0 c}}{{\text{m}}^{\text{3}}}\) of \({\text{0.100 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}{\text{HCl (aq)}}\).</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-08-07_om_09.34.43.png" alt></p>
<p class="p1">(ii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>Identify an indicator from table 16 of the data booklet that could be used for this titration.</p>
<div class="marks">[4]</div>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">rates of forward <span class="s1"><strong>and </strong></span>reverse reactions are equal / opposing changes occur at equal rates;</p>
<p class="p1">the concentrations of all reactants <span class="s1"><strong>and </strong></span>products remain constant / macroscopic properties remain constant;</p>
<p class="p1">closed/isolated system;</p>
<p class="p1"><em>Accept &ldquo;the same&rdquo; for &ldquo;equal&rdquo; in M1 and for &ldquo;constant&rdquo; in M2.</em></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><em>The volume of the container is increased:</em></p>
<p class="p1">position of equilibrium shifts to the left/reactants <strong>and </strong>fewer moles of gas on the right hand side/pressure decreases / <em>OWTTE</em>;</p>
<p class="p1"><em>Ammonia is removed from the equilibrium mixture:</em></p>
<p class="p1">position of equilibrium shifts to the right/products <strong>and </strong>\({\text{[N}}{{\text{H}}_{\text{3}}}{\text{]}}\) decreases so \({\text{[}}{{\text{N}}_{\text{2}}}{\text{]}}\) and \({\text{[}}{{\text{H}}_{\text{2}}}{\text{]}}\) must also decrease to keep <em>K</em><sub><span class="s1">c </span></sub>constant</p>
<p class="p1"><strong>OR</strong></p>
<p class="p1">position of equilibrium shifts to the right/products <strong>and </strong>rate of reverse reaction decreases / <em>OWTTE</em>;</p>
<p class="p1"><em>Award </em><strong><em>[1 max] </em></strong><em>if both predicted changes are correct.</em></p>
<p class="p1"><em>Do not accept &ldquo;to increase </em>\([N{H_3}]\)<em>&rdquo; or reference to LCP without explanation.</em></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1"><span style="text-decoration: underline;">minimum</span> energy needed (by reactants/colliding particles) to react/start/initiate a reaction;</p>
<p class="p1"><em>Accept &ldquo;energy difference between reactants and transition state&rdquo;.</em></p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">more effective/successful collisions per unit time / greater proportion of collisions effective;</p>
<p class="p1">alternative pathway <span class="s1"><strong>and </strong></span>a lower activation energy</p>
<p class="p2"><strong><em>OR</em></strong></p>
<p class="p1">lowers activation energy so that more particles have enough energy to react;</p>
<p class="p1"><em>Do not accept just &ldquo;lowers/reduces the activation energy&rdquo;.</em></p>
<p class="p1"><em>Accept &ldquo;provides a surface for reacting/reactants/reaction&rdquo;.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">&nbsp; &nbsp; </span>slower rate / <em>OWTTE</em>;</p>
<p class="p1">uneconomic / <em>OWTTE</em>;</p>
<p class="p1">(ii) <span class="Apple-converted-space">&nbsp; &nbsp; </span>high cost for building/maintaining plant / high energy cost of compressor / <em>OWTTE</em>;</p>
<p class="p1"><em>Do not accept &ldquo;high pressure is expensive&rdquo; without justification.</em></p>
<p class="p1"><em>Accept high pressure requires high energy.</em></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">\(({K_{\text{c}}} = )\frac{{{{{\text{[N}}{{\text{H}}_3}{\text{(g)]}}}^2}}}{{{\text{[}}{{\text{N}}_2}{\text{(g)]}} \times {{{\text{[}}{{\text{H}}_2}{\text{(g)]}}}^3}}}\);</p>
<p class="p1"><em>Ignore state symbols.</em></p>
<p class="p1"><em>Concentrations must be represented by square brackets.</em></p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">moles at equilibrium: nitrogen 0.27, hydrogen 0.81 / concentrations at equilibrium: nitrogen \({\text{0.27 (mol}}\,{\text{d}}{{\text{m}}^{ - 3}}{\text{)}}\), hydrogen \({\text{0.81 (mol}}\,{\text{d}}{{\text{m}}^{ - 3}}{\text{)}}\) (and ammonia \({\text{1.46 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\));</p>
<p class="p1">\({K_{\text{c}}} = 15\);</p>
<p class="p1"><em>Actual calculation gives </em>\({K_{\text{c}}}{\text{ = }}14{\text{.}}86\)<em>.</em></p>
<p class="p1"><em>Award </em><span class="s1"><strong><em>[2] </em></strong></span><em>for correct final answer.</em></p>
<p class="p1"><em>Award </em><span class="s1"><strong><em>[1 max] </em></strong></span><em>if </em>\({K_{\text{c}}}\left( { = \frac{{{{1.46}^2}}}{{{3^3} \times 1}}} \right) = 0.079\)</p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">electron pair donor;</p>
<p class="p1"><em>Accept lone pair donor.</em></p>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">proton acceptor <span class="s1"><strong>and </strong></span>partially/slightly ionized;</p>
<p class="p1"><em>Accept &ldquo;proton acceptor </em><span class="s1"><strong><em>and </em></strong></span><em>partially/slightly dissociated&rdquo;.</em></p>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2016-08-07_om_09.05.17.png" alt="M15/4/CHEMI/HP2/ENG/TZ2/07.e.iii/M"></p>
<p class="p1"><em>Award </em><strong><em>[1 max] </em></strong><em>for two correct acids OR two correct conjugate bases.</em></p>
<div class="question_part_label">e.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\({K_{\text{b}}} = \frac{{{\text{[NH}}_4^ + {\text{][O}}{{\text{H}}^ - }{\text{]}}}}{{{\text{[N}}{{\text{H}}_3}{\text{]}}}} = 1.8 \times {10^{ - 5}}/{10^{ - 4.75}}\);</p>
<p>\({\text{[NH}}_4^ + {\text{]}} = {\text{[O}}{{\text{H}}^ - }{\text{]}}\) <strong>and</strong> \({\text{[N}}{{\text{H}}_3}{\text{]}} \approx 1.00 \times {10^{ - 1}}{\text{ (mol}}\,{\text{d}}{{\text{m}}^{ - 3}}{\text{)}}\);</p>
<p>\({\text{[O}}{{\text{H}}^ - }{\text{]}} = (\sqrt {1.8 \times {{10}^{ - 6}}}&nbsp; = )1.3 \times {10^{ - 3}}{\text{ (mol}}\,{\text{d}}{{\text{m}}^{ - 3}}{\text{)}}/{\text{pOH}} = 2.89\);</p>
<p>\({\text{pH}} = (14.0 - 2.89 = )11.1\);</p>
<p><em>Award </em><strong><em>[4] </em></strong><em>for correct final answer.</em></p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">(i) &nbsp; &nbsp;&nbsp;<img src="images/Schermafbeelding_2016-08-07_om_09.39.54.png" alt="M15/4/CHEMI/HP2/ENG/TZ2/07.g/M"></p>
<p class="p1"><em>For volume </em>\( = 0:{\text{ pH}} = 1\);</p>
<p class="p1"><span style="text-decoration: underline;"><span class="s1">vertical</span></span> jump should be positioned in volume range \({\text{24 c}}{{\text{m}}^{\text{3}}}\) to \({\text{26 c}}{{\text{m}}^{\text{3}}}\) and include pH range between 3 to 6;</p>
<p class="p1"><em>For volume = 50: </em>pH between 8 to 11;</p>
<p class="p1">(ii) &nbsp; &nbsp; methyl orange / bromophenol blue / bromocresol green / methyl red;</p>
<div class="question_part_label">g.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">Most candidates were able to give two characteristics of a dynamic equilibrium and explain the effect of changes in volume on the position of equilibrium but many had difficulty giving a complete explanation of the equilibrium shift resulting from the removal of ammonia. Candidates were expected to include a reference to the value of \({K_{\text{c}}}\) or the reduced rate of the reverse reaction when justifying their answer. The definition of activation energy was well known but some lost a mark in their explanation of catalyst action as they did not refer to an alternative pathway in their explanation for the lower activation energy. The explanation of why lower temperatures were not used in the Haber process was also incomplete with many not considering the economic disadvantages of a slow reaction rate. Similarly many did not explain why high pressure was expensive in terms of energy or building costs. Most were able to deduce the equilibrium constant but many lost a mark in the calculation of \({K_{\text{c}}}\) as they used the initial concentrations of nitrogen and hydrogen. Some teachers identified an inconsistency in the question in that the total number of moles of gas under the conditions stated in the question was not consistent with the ideal gas equation however this did not appear to be a problem for the candidates. (However, the ideal gas law cannot be applied here as under these conditions ammonia would be in its supercritical state.) Most candidates were able to define Lewis bases but the definition of weak Br&oslash;nsted-Lowry bases proved to be more problematic as many did not refer to partial ionisation in their response. Most students were able to identify the conjugate acid-base pairs. The calculation of the pH of an ammonia solution proved to be challenging with many confusing \({K_{\text{a}}}\) and \({K_{\text{b}}}\). Others did not recognize that since it is a weak base, \({\text{[N}}{{\text{H}}_{\text{3}}}{\text{]}}\) at equilibrium is approximately equal to starting concentration \({\text{(0.100 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}{\text{)}}\) or that \({\text{[NH}}{{\text{4}}^ + }{\text{]}} = {\text{[O}}{{\text{H}}^ - }{\text{]}}\). (The examination paper was rescaled for candidates sitting the examination in Spanish (due to the error in the question) and candidates close to a boundary given particular attention.) Only the strongest candidates were able to gain full marks for the pH curve although many recognised that the pH would be 1 before any ammonia was added given that HC<span class="s1">l </span>is a strong acid. A significant number had the final pH above 11 and did not allow for dilution of the \({\text{0.1 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) ammonia solution. Many correctly identified a possible indicator.</p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Most candidates were able to give two characteristics of a dynamic equilibrium and explain the effect of changes in volume on the position of equilibrium but many had difficulty giving a complete explanation of the equilibrium shift resulting from the removal of ammonia. Candidates were expected to include a reference to the value of \({K_{\text{c}}}\) or the reduced rate of the reverse reaction when justifying their answer. The definition of activation energy was well known but some lost a mark in their explanation of catalyst action as they did not refer to an alternative pathway in their explanation for the lower activation energy. The explanation of why lower temperatures were not used in the Haber process was also incomplete with many not considering the economic disadvantages of a slow reaction rate. Similarly many did not explain why high pressure was expensive in terms of energy or building costs. Most were able to deduce the equilibrium constant but many lost a mark in the calculation of \({K_{\text{c}}}\) as they used the initial concentrations of nitrogen and hydrogen. Some teachers identified an inconsistency in the question in that the total number of moles of gas under the conditions stated in the question was not consistent with the ideal gas equation however this did not appear to be a problem for the candidates. (However, the ideal gas law cannot be applied here as under these conditions ammonia would be in its supercritical state.) Most candidates were able to define Lewis bases but the definition of weak Br&oslash;nsted-Lowry bases proved to be more problematic as many did not refer to partial ionisation in their response. Most students were able to identify the conjugate acid-base pairs. The calculation of the pH of an ammonia solution proved to be challenging with many confusing \({K_{\text{a}}}\) and \({K_{\text{b}}}\). Others did not recognize that since it is a weak base, \({\text{[N}}{{\text{H}}_{\text{3}}}{\text{]}}\) at equilibrium is approximately equal to starting concentration \({\text{(0.100 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}{\text{)}}\) or that \({\text{[NH}}{{\text{4}}^ + }{\text{]}} = {\text{[O}}{{\text{H}}^ - }{\text{]}}\). (The examination paper was rescaled for candidates sitting the examination in Spanish (due to the error in the question) and candidates close to a boundary given particular attention.) Only the strongest candidates were able to gain full marks for the pH curve although many recognised that the pH would be 1 before any ammonia was added given that HC<span class="s1">l </span>is a strong acid. A significant number had the final pH above 11 and did not allow for dilution of the \({\text{0.1 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) ammonia solution. Many correctly identified a possible indicator.</p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Most candidates were able to give two characteristics of a dynamic equilibrium and explain the effect of changes in volume on the position of equilibrium but many had difficulty giving a complete explanation of the equilibrium shift resulting from the removal of ammonia. Candidates were expected to include a reference to the value of \({K_{\text{c}}}\) or the reduced rate of the reverse reaction when justifying their answer. The definition of activation energy was well known but some lost a mark in their explanation of catalyst action as they did not refer to an alternative pathway in their explanation for the lower activation energy. The explanation of why lower temperatures were not used in the Haber process was also incomplete with many not considering the economic disadvantages of a slow reaction rate. Similarly many did not explain why high pressure was expensive in terms of energy or building costs. Most were able to deduce the equilibrium constant but many lost a mark in the calculation of \({K_{\text{c}}}\) as they used the initial concentrations of nitrogen and hydrogen. Some teachers identified an inconsistency in the question in that the total number of moles of gas under the conditions stated in the question was not consistent with the ideal gas equation however this did not appear to be a problem for the candidates. (However, the ideal gas law cannot be applied here as under these conditions ammonia would be in its supercritical state.) Most candidates were able to define Lewis bases but the definition of weak Br&oslash;nsted-Lowry bases proved to be more problematic as many did not refer to partial ionisation in their response. Most students were able to identify the conjugate acid-base pairs. The calculation of the pH of an ammonia solution proved to be challenging with many confusing \({K_{\text{a}}}\) and \({K_{\text{b}}}\). Others did not recognize that since it is a weak base, \({\text{[N}}{{\text{H}}_{\text{3}}}{\text{]}}\) at equilibrium is approximately equal to starting concentration \({\text{(0.100 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}{\text{)}}\) or that \({\text{[NH}}{{\text{4}}^ + }{\text{]}} = {\text{[O}}{{\text{H}}^ - }{\text{]}}\). (The examination paper was rescaled for candidates sitting the examination in Spanish (due to the error in the question) and candidates close to a boundary given particular attention.) Only the strongest candidates were able to gain full marks for the pH curve although many recognised that the pH would be 1 before any ammonia was added given that HC<span class="s1">l </span>is a strong acid. A significant number had the final pH above 11 and did not allow for dilution of the \({\text{0.1 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) ammonia solution. Many correctly identified a possible indicator.</p>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Most candidates were able to give two characteristics of a dynamic equilibrium and explain the effect of changes in volume on the position of equilibrium but many had difficulty giving a complete explanation of the equilibrium shift resulting from the removal of ammonia. Candidates were expected to include a reference to the value of \({K_{\text{c}}}\) or the reduced rate of the reverse reaction when justifying their answer. The definition of activation energy was well known but some lost a mark in their explanation of catalyst action as they did not refer to an alternative pathway in their explanation for the lower activation energy. The explanation of why lower temperatures were not used in the Haber process was also incomplete with many not considering the economic disadvantages of a slow reaction rate. Similarly many did not explain why high pressure was expensive in terms of energy or building costs. Most were able to deduce the equilibrium constant but many lost a mark in the calculation of \({K_{\text{c}}}\) as they used the initial concentrations of nitrogen and hydrogen. Some teachers identified an inconsistency in the question in that the total number of moles of gas under the conditions stated in the question was not consistent with the ideal gas equation however this did not appear to be a problem for the candidates. (However, the ideal gas law cannot be applied here as under these conditions ammonia would be in its supercritical state.) Most candidates were able to define Lewis bases but the definition of weak Br&oslash;nsted-Lowry bases proved to be more problematic as many did not refer to partial ionisation in their response. Most students were able to identify the conjugate acid-base pairs. The calculation of the pH of an ammonia solution proved to be challenging with many confusing \({K_{\text{a}}}\) and \({K_{\text{b}}}\). Others did not recognize that since it is a weak base, \({\text{[N}}{{\text{H}}_{\text{3}}}{\text{]}}\) at equilibrium is approximately equal to starting concentration \({\text{(0.100 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}{\text{)}}\) or that \({\text{[NH}}{{\text{4}}^ + }{\text{]}} = {\text{[O}}{{\text{H}}^ - }{\text{]}}\). (The examination paper was rescaled for candidates sitting the examination in Spanish (due to the error in the question) and candidates close to a boundary given particular attention.) Only the strongest candidates were able to gain full marks for the pH curve although many recognised that the pH would be 1 before any ammonia was added given that HC<span class="s1">l </span>is a strong acid. A significant number had the final pH above 11 and did not allow for dilution of the \({\text{0.1 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) ammonia solution. Many correctly identified a possible indicator.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Most candidates were able to give two characteristics of a dynamic equilibrium and explain the effect of changes in volume on the position of equilibrium but many had difficulty giving a complete explanation of the equilibrium shift resulting from the removal of ammonia. Candidates were expected to include a reference to the value of \({K_{\text{c}}}\) or the reduced rate of the reverse reaction when justifying their answer. The definition of activation energy was well known but some lost a mark in their explanation of catalyst action as they did not refer to an alternative pathway in their explanation for the lower activation energy. The explanation of why lower temperatures were not used in the Haber process was also incomplete with many not considering the economic disadvantages of a slow reaction rate. Similarly many did not explain why high pressure was expensive in terms of energy or building costs. Most were able to deduce the equilibrium constant but many lost a mark in the calculation of \({K_{\text{c}}}\) as they used the initial concentrations of nitrogen and hydrogen. Some teachers identified an inconsistency in the question in that the total number of moles of gas under the conditions stated in the question was not consistent with the ideal gas equation however this did not appear to be a problem for the candidates. (However, the ideal gas law cannot be applied here as under these conditions ammonia would be in its supercritical state.) Most candidates were able to define Lewis bases but the definition of weak Br&oslash;nsted-Lowry bases proved to be more problematic as many did not refer to partial ionisation in their response. Most students were able to identify the conjugate acid-base pairs. The calculation of the pH of an ammonia solution proved to be challenging with many confusing \({K_{\text{a}}}\) and \({K_{\text{b}}}\). Others did not recognize that since it is a weak base, \({\text{[N}}{{\text{H}}_{\text{3}}}{\text{]}}\) at equilibrium is approximately equal to starting concentration \({\text{(0.100 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}{\text{)}}\) or that \({\text{[NH}}{{\text{4}}^ + }{\text{]}} = {\text{[O}}{{\text{H}}^ - }{\text{]}}\). (The examination paper was rescaled for candidates sitting the examination in Spanish (due to the error in the question) and candidates close to a boundary given particular attention.) Only the strongest candidates were able to gain full marks for the pH curve although many recognised that the pH would be 1 before any ammonia was added given that HC<span class="s1">l </span>is a strong acid. A significant number had the final pH above 11 and did not allow for dilution of the \({\text{0.1 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) ammonia solution. Many correctly identified a possible indicator.</p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Most candidates were able to give two characteristics of a dynamic equilibrium and explain the effect of changes in volume on the position of equilibrium but many had difficulty giving a complete explanation of the equilibrium shift resulting from the removal of ammonia. Candidates were expected to include a reference to the value of \({K_{\text{c}}}\) or the reduced rate of the reverse reaction when justifying their answer. The definition of activation energy was well known but some lost a mark in their explanation of catalyst action as they did not refer to an alternative pathway in their explanation for the lower activation energy. The explanation of why lower temperatures were not used in the Haber process was also incomplete with many not considering the economic disadvantages of a slow reaction rate. Similarly many did not explain why high pressure was expensive in terms of energy or building costs. Most were able to deduce the equilibrium constant but many lost a mark in the calculation of \({K_{\text{c}}}\) as they used the initial concentrations of nitrogen and hydrogen. Some teachers identified an inconsistency in the question in that the total number of moles of gas under the conditions stated in the question was not consistent with the ideal gas equation however this did not appear to be a problem for the candidates. (However, the ideal gas law cannot be applied here as under these conditions ammonia would be in its supercritical state.) Most candidates were able to define Lewis bases but the definition of weak Br&oslash;nsted-Lowry bases proved to be more problematic as many did not refer to partial ionisation in their response. Most students were able to identify the conjugate acid-base pairs. The calculation of the pH of an ammonia solution proved to be challenging with many confusing \({K_{\text{a}}}\) and \({K_{\text{b}}}\). Others did not recognize that since it is a weak base, \({\text{[N}}{{\text{H}}_{\text{3}}}{\text{]}}\) at equilibrium is approximately equal to starting concentration \({\text{(0.100 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}{\text{)}}\) or that \({\text{[NH}}{{\text{4}}^ + }{\text{]}} = {\text{[O}}{{\text{H}}^ - }{\text{]}}\). (The examination paper was rescaled for candidates sitting the examination in Spanish (due to the error in the question) and candidates close to a boundary given particular attention.) Only the strongest candidates were able to gain full marks for the pH curve although many recognised that the pH would be 1 before any ammonia was added given that HC<span class="s1">l </span>is a strong acid. A significant number had the final pH above 11 and did not allow for dilution of the \({\text{0.1 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) ammonia solution. Many correctly identified a possible indicator.</p>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Most candidates were able to give two characteristics of a dynamic equilibrium and explain the effect of changes in volume on the position of equilibrium but many had difficulty giving a complete explanation of the equilibrium shift resulting from the removal of ammonia. Candidates were expected to include a reference to the value of \({K_{\text{c}}}\) or the reduced rate of the reverse reaction when justifying their answer. The definition of activation energy was well known but some lost a mark in their explanation of catalyst action as they did not refer to an alternative pathway in their explanation for the lower activation energy. The explanation of why lower temperatures were not used in the Haber process was also incomplete with many not considering the economic disadvantages of a slow reaction rate. Similarly many did not explain why high pressure was expensive in terms of energy or building costs. Most were able to deduce the equilibrium constant but many lost a mark in the calculation of \({K_{\text{c}}}\) as they used the initial concentrations of nitrogen and hydrogen. Some teachers identified an inconsistency in the question in that the total number of moles of gas under the conditions stated in the question was not consistent with the ideal gas equation however this did not appear to be a problem for the candidates. (However, the ideal gas law cannot be applied here as under these conditions ammonia would be in its supercritical state.) Most candidates were able to define Lewis bases but the definition of weak Br&oslash;nsted-Lowry bases proved to be more problematic as many did not refer to partial ionisation in their response. Most students were able to identify the conjugate acid-base pairs. The calculation of the pH of an ammonia solution proved to be challenging with many confusing \({K_{\text{a}}}\) and \({K_{\text{b}}}\). Others did not recognize that since it is a weak base, \({\text{[N}}{{\text{H}}_{\text{3}}}{\text{]}}\) at equilibrium is approximately equal to starting concentration \({\text{(0.100 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}{\text{)}}\) or that \({\text{[NH}}{{\text{4}}^ + }{\text{]}} = {\text{[O}}{{\text{H}}^ - }{\text{]}}\). (The examination paper was rescaled for candidates sitting the examination in Spanish (due to the error in the question) and candidates close to a boundary given particular attention.) Only the strongest candidates were able to gain full marks for the pH curve although many recognised that the pH would be 1 before any ammonia was added given that HC<span class="s1">l </span>is a strong acid. A significant number had the final pH above 11 and did not allow for dilution of the \({\text{0.1 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) ammonia solution. Many correctly identified a possible indicator.</p>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Most candidates were able to give two characteristics of a dynamic equilibrium and explain the effect of changes in volume on the position of equilibrium but many had difficulty giving a complete explanation of the equilibrium shift resulting from the removal of ammonia. Candidates were expected to include a reference to the value of \({K_{\text{c}}}\) or the reduced rate of the reverse reaction when justifying their answer. The definition of activation energy was well known but some lost a mark in their explanation of catalyst action as they did not refer to an alternative pathway in their explanation for the lower activation energy. The explanation of why lower temperatures were not used in the Haber process was also incomplete with many not considering the economic disadvantages of a slow reaction rate. Similarly many did not explain why high pressure was expensive in terms of energy or building costs. Most were able to deduce the equilibrium constant but many lost a mark in the calculation of \({K_{\text{c}}}\) as they used the initial concentrations of nitrogen and hydrogen. Some teachers identified an inconsistency in the question in that the total number of moles of gas under the conditions stated in the question was not consistent with the ideal gas equation however this did not appear to be a problem for the candidates. (However, the ideal gas law cannot be applied here as under these conditions ammonia would be in its supercritical state.) Most candidates were able to define Lewis bases but the definition of weak Br&oslash;nsted-Lowry bases proved to be more problematic as many did not refer to partial ionisation in their response. Most students were able to identify the conjugate acid-base pairs. The calculation of the pH of an ammonia solution proved to be challenging with many confusing \({K_{\text{a}}}\) and \({K_{\text{b}}}\). Others did not recognize that since it is a weak base, \({\text{[N}}{{\text{H}}_{\text{3}}}{\text{]}}\) at equilibrium is approximately equal to starting concentration \({\text{(0.100 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}{\text{)}}\) or that \({\text{[NH}}{{\text{4}}^ + }{\text{]}} = {\text{[O}}{{\text{H}}^ - }{\text{]}}\). (The examination paper was rescaled for candidates sitting the examination in Spanish (due to the error in the question) and candidates close to a boundary given particular attention.) Only the strongest candidates were able to gain full marks for the pH curve although many recognised that the pH would be 1 before any ammonia was added given that HC<span class="s1">l </span>is a strong acid. A significant number had the final pH above 11 and did not allow for dilution of the \({\text{0.1 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) ammonia solution. Many correctly identified a possible indicator.</p>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Most candidates were able to give two characteristics of a dynamic equilibrium and explain the effect of changes in volume on the position of equilibrium but many had difficulty giving a complete explanation of the equilibrium shift resulting from the removal of ammonia. Candidates were expected to include a reference to the value of \({K_{\text{c}}}\) or the reduced rate of the reverse reaction when justifying their answer. The definition of activation energy was well known but some lost a mark in their explanation of catalyst action as they did not refer to an alternative pathway in their explanation for the lower activation energy. The explanation of why lower temperatures were not used in the Haber process was also incomplete with many not considering the economic disadvantages of a slow reaction rate. Similarly many did not explain why high pressure was expensive in terms of energy or building costs. Most were able to deduce the equilibrium constant but many lost a mark in the calculation of \({K_{\text{c}}}\) as they used the initial concentrations of nitrogen and hydrogen. Some teachers identified an inconsistency in the question in that the total number of moles of gas under the conditions stated in the question was not consistent with the ideal gas equation however this did not appear to be a problem for the candidates. (However, the ideal gas law cannot be applied here as under these conditions ammonia would be in its supercritical state.) Most candidates were able to define Lewis bases but the definition of weak Br&oslash;nsted-Lowry bases proved to be more problematic as many did not refer to partial ionisation in their response. Most students were able to identify the conjugate acid-base pairs. The calculation of the pH of an ammonia solution proved to be challenging with many confusing \({K_{\text{a}}}\) and \({K_{\text{b}}}\). Others did not recognize that since it is a weak base, \({\text{[N}}{{\text{H}}_{\text{3}}}{\text{]}}\) at equilibrium is approximately equal to starting concentration \({\text{(0.100 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}{\text{)}}\) or that \({\text{[NH}}{{\text{4}}^ + }{\text{]}} = {\text{[O}}{{\text{H}}^ - }{\text{]}}\). (The examination paper was rescaled for candidates sitting the examination in Spanish (due to the error in the question) and candidates close to a boundary given particular attention.) Only the strongest candidates were able to gain full marks for the pH curve although many recognised that the pH would be 1 before any ammonia was added given that HC<span class="s1">l </span>is a strong acid. A significant number had the final pH above 11 and did not allow for dilution of the \({\text{0.1 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) ammonia solution. Many correctly identified a possible indicator.</p>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Most candidates were able to give two characteristics of a dynamic equilibrium and explain the effect of changes in volume on the position of equilibrium but many had difficulty giving a complete explanation of the equilibrium shift resulting from the removal of ammonia. Candidates were expected to include a reference to the value of \({K_{\text{c}}}\) or the reduced rate of the reverse reaction when justifying their answer. The definition of activation energy was well known but some lost a mark in their explanation of catalyst action as they did not refer to an alternative pathway in their explanation for the lower activation energy. The explanation of why lower temperatures were not used in the Haber process was also incomplete with many not considering the economic disadvantages of a slow reaction rate. Similarly many did not explain why high pressure was expensive in terms of energy or building costs. Most were able to deduce the equilibrium constant but many lost a mark in the calculation of \({K_{\text{c}}}\) as they used the initial concentrations of nitrogen and hydrogen. Some teachers identified an inconsistency in the question in that the total number of moles of gas under the conditions stated in the question was not consistent with the ideal gas equation however this did not appear to be a problem for the candidates. (However, the ideal gas law cannot be applied here as under these conditions ammonia would be in its supercritical state.) Most candidates were able to define Lewis bases but the definition of weak Br&oslash;nsted-Lowry bases proved to be more problematic as many did not refer to partial ionisation in their response. Most students were able to identify the conjugate acid-base pairs. The calculation of the pH of an ammonia solution proved to be challenging with many confusing \({K_{\text{a}}}\) and \({K_{\text{b}}}\). Others did not recognize that since it is a weak base, \({\text{[N}}{{\text{H}}_{\text{3}}}{\text{]}}\) at equilibrium is approximately equal to starting concentration \({\text{(0.100 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}{\text{)}}\) or that \({\text{[NH}}{{\text{4}}^ + }{\text{]}} = {\text{[O}}{{\text{H}}^ - }{\text{]}}\). (The examination paper was rescaled for candidates sitting the examination in Spanish (due to the error in the question) and candidates close to a boundary given particular attention.) Only the strongest candidates were able to gain full marks for the pH curve although many recognised that the pH would be 1 before any ammonia was added given that HC<span class="s1">l </span>is a strong acid. A significant number had the final pH above 11 and did not allow for dilution of the \({\text{0.1 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) ammonia solution. Many correctly identified a possible indicator.</p>
<div class="question_part_label">e.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Most candidates were able to give two characteristics of a dynamic equilibrium and explain the effect of changes in volume on the position of equilibrium but many had difficulty giving a complete explanation of the equilibrium shift resulting from the removal of ammonia. Candidates were expected to include a reference to the value of \({K_{\text{c}}}\) or the reduced rate of the reverse reaction when justifying their answer. The definition of activation energy was well known but some lost a mark in their explanation of catalyst action as they did not refer to an alternative pathway in their explanation for the lower activation energy. The explanation of why lower temperatures were not used in the Haber process was also incomplete with many not considering the economic disadvantages of a slow reaction rate. Similarly many did not explain why high pressure was expensive in terms of energy or building costs. Most were able to deduce the equilibrium constant but many lost a mark in the calculation of \({K_{\text{c}}}\) as they used the initial concentrations of nitrogen and hydrogen. Some teachers identified an inconsistency in the question in that the total number of moles of gas under the conditions stated in the question was not consistent with the ideal gas equation however this did not appear to be a problem for the candidates. (However, the ideal gas law cannot be applied here as under these conditions ammonia would be in its supercritical state.) Most candidates were able to define Lewis bases but the definition of weak Br&oslash;nsted-Lowry bases proved to be more problematic as many did not refer to partial ionisation in their response. Most students were able to identify the conjugate acid-base pairs. The calculation of the pH of an ammonia solution proved to be challenging with many confusing \({K_{\text{a}}}\) and \({K_{\text{b}}}\). Others did not recognize that since it is a weak base, \({\text{[N}}{{\text{H}}_{\text{3}}}{\text{]}}\) at equilibrium is approximately equal to starting concentration \({\text{(0.100 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}{\text{)}}\) or that \({\text{[NH}}{{\text{4}}^ + }{\text{]}} = {\text{[O}}{{\text{H}}^ - }{\text{]}}\). (The examination paper was rescaled for candidates sitting the examination in Spanish (due to the error in the question) and candidates close to a boundary given particular attention.) Only the strongest candidates were able to gain full marks for the pH curve although many recognised that the pH would be 1 before any ammonia was added given that HC<span class="s1">l </span>is a strong acid. A significant number had the final pH above 11 and did not allow for dilution of the \({\text{0.1 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) ammonia solution. Many correctly identified a possible indicator.</p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Most candidates were able to give two characteristics of a dynamic equilibrium and explain the effect of changes in volume on the position of equilibrium but many had difficulty giving a complete explanation of the equilibrium shift resulting from the removal of ammonia. Candidates were expected to include a reference to the value of \({K_{\text{c}}}\) or the reduced rate of the reverse reaction when justifying their answer. The definition of activation energy was well known but some lost a mark in their explanation of catalyst action as they did not refer to an alternative pathway in their explanation for the lower activation energy. The explanation of why lower temperatures were not used in the Haber process was also incomplete with many not considering the economic disadvantages of a slow reaction rate. Similarly many did not explain why high pressure was expensive in terms of energy or building costs. Most were able to deduce the equilibrium constant but many lost a mark in the calculation of \({K_{\text{c}}}\) as they used the initial concentrations of nitrogen and hydrogen. Some teachers identified an inconsistency in the question in that the total number of moles of gas under the conditions stated in the question was not consistent with the ideal gas equation however this did not appear to be a problem for the candidates. (However, the ideal gas law cannot be applied here as under these conditions ammonia would be in its supercritical state.) Most candidates were able to define Lewis bases but the definition of weak Br&oslash;nsted-Lowry bases proved to be more problematic as many did not refer to partial ionisation in their response. Most students were able to identify the conjugate acid-base pairs. The calculation of the pH of an ammonia solution proved to be challenging with many confusing \({K_{\text{a}}}\) and \({K_{\text{b}}}\). Others did not recognize that since it is a weak base, \({\text{[N}}{{\text{H}}_{\text{3}}}{\text{]}}\) at equilibrium is approximately equal to starting concentration \({\text{(0.100 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}{\text{)}}\) or that \({\text{[NH}}{{\text{4}}^ + }{\text{]}} = {\text{[O}}{{\text{H}}^ - }{\text{]}}\). (The examination paper was rescaled for candidates sitting the examination in Spanish (due to the error in the question) and candidates close to a boundary given particular attention.) Only the strongest candidates were able to gain full marks for the pH curve although many recognised that the pH would be 1 before any ammonia was added given that HC<span class="s1">l </span>is a strong acid. A significant number had the final pH above 11 and did not allow for dilution of the \({\text{0.1 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) ammonia solution. Many correctly identified a possible indicator.</p>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Nitrogen(II) oxide reacts with hydrogen according to the equation below.</p>
<p class="p1">\[{\text{2NO(g)}} + {\text{2}}{{\text{H}}_{\text{2}}}{\text{(g)}} \to {{\text{N}}_{\text{2}}}{\text{(g)}} + {\text{2}}{{\text{H}}_{\text{2}}}{\text{O(g)}}\]</p>
<p class="p1">A suggested mechanism for this reaction is:</p>
<p class="p1"><span class="Apple-converted-space">&nbsp;&nbsp; &nbsp; </span>Step 1: <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({\text{NO}} + {{\text{H}}_{\text{2}}} \rightleftharpoons {\text{X}}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span>fast</p>
<p class="p1"><span class="Apple-converted-space">&nbsp;&nbsp; &nbsp; </span>Step 2: <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({\text{X}} + {\text{NO}} \to {\text{Y}} + {{\text{H}}_{\text{2}}}{\text{O}}\) <span class="Apple-converted-space">&nbsp; &nbsp; </span>slow</p>
<p class="p1"><span class="Apple-converted-space">&nbsp;&nbsp; &nbsp; </span>Step 3: <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({\text{Y}} + {{\text{H}}_{\text{2}}} \to {{\text{N}}_{\text{2}}} + {{\text{H}}_{\text{2}}}{\text{O}}\) &nbsp; &nbsp; fast</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Define the term <em>rate of reaction</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain why increasing the particle size of a solid reactant decreases the rate of reaction.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Identify the rate-determining step.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">A student hypothesized that the order of reaction with respect to \({{\text{H}}_{\text{2}}}\) is 2.</p>
<p class="p1">Evaluate this hypothesis.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">change in concentration of reactant/product with time / rate of change of concentration;</p>
<p class="p1"><em>Accept &ldquo;increase&rdquo; instead of &ldquo;change&rdquo; for product and &ldquo;decrease&rdquo; instead of &ldquo;change&rdquo; for reactant.</em></p>
<p class="p1"><em>Accept &ldquo;mass/amount/volume&rdquo; instead of &ldquo;concentration&rdquo;.</em></p>
<p class="p1"><em>Do not accept substance.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">surface area decreases;</p>
<p class="p1">frequency/probability of collisions decreases;</p>
<p class="p1"><em>Accept number of collisions per unit time decreases.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">step 2 \({\text{/ X}} + {\text{NO}} \to {\text{Y}} + {{\text{H}}_{\text{2}}}{\text{O /}}\) slow;</p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>invalid / unlikely as order most likely one (with respect to hydrogen);</p>
<p class="p1">\({\text{rate}} = k{{\text{[NO]}}^{\text{2}}}{\text{[}}{{\text{H}}_{\text{2}}}{\text{] / }}{{\text{H}}_{\text{2}}}\) only involved once in the formation of the intermediate before the slow step / <em>OWTTE</em>;</p>
<p class="p1"><em>Award M2 only if M1 is correct.</em></p>
<div class="question_part_label">c.ii.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">Although most candidates were able to define the rate of reaction, some of weaker candidates gave imprecise answers which did not refer to concentration of the reactants or products and the &ldquo;the time for the reaction to go to completion&rdquo; was not an uncommon response. Most candidates realized that the surface area would decrease but, as in previous sessions, lost marks as they did not refer to the reduced &ldquo;frequency&rdquo; of collisions. Most candidates were able to identify the rate determining step and correctly state that the reaction would be first order with respect to hydrogen however only a minority could explain their answer in sufficient detail <em>i.e. </em>that \({{\text{H}}_{\text{2}}}\) was involved only once in the formation of the intermediate before the rate determining step.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Although most candidates were able to define the rate of reaction, some of weaker candidates gave imprecise answers which did not refer to concentration of the reactants or products and the &ldquo;the time for the reaction to go to completion&rdquo; was not an uncommon response. Most candidates realized that the surface area would decrease but, as in previous sessions, lost marks as they did not refer to the reduced &ldquo;frequency&rdquo; of collisions. Most candidates were able to identify the rate determining step and correctly state that the reaction would be first order with respect to hydrogen however only a minority could explain their answer in sufficient detail <em>i.e. </em>that \({{\text{H}}_{\text{2}}}\) was involved only once in the formation of the intermediate before the rate determining step.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Although most candidates were able to define the rate of reaction, some of weaker candidates gave imprecise answers which did not refer to concentration of the reactants or products and the &ldquo;the time for the reaction to go to completion&rdquo; was not an uncommon response. Most candidates realized that the surface area would decrease but, as in previous sessions, lost marks as they did not refer to the reduced &ldquo;frequency&rdquo; of collisions. Most candidates were able to identify the rate determining step and correctly state that the reaction would be first order with respect to hydrogen however only a minority could explain their answer in sufficient detail <em>i.e. </em>that \({{\text{H}}_{\text{2}}}\) was involved only once in the formation of the intermediate before the rate determining step.</p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">Although most candidates were able to define the rate of reaction, some of weaker candidates gave imprecise answers which did not refer to concentration of the reactants or products and the &ldquo;the time for the reaction to go to completion&rdquo; was not an uncommon response. Most candidates realized that the surface area would decrease but, as in previous sessions, lost marks as they did not refer to the reduced &ldquo;frequency&rdquo; of collisions. Most candidates were able to identify the rate determining step and correctly state that the reaction would be first order with respect to hydrogen however only a minority could explain their answer in sufficient detail <em>i.e. </em>that \({{\text{H}}_{\text{2}}}\) was involved only once in the formation of the intermediate before the rate determining step.</p>
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>A class studied the equilibrium established when ethanoic acid and ethanol react together in the presence of a strong acid, using propanone as an inert solvent. The equation is given below.</p>
<p>\[{\text{C}}{{\text{H}}_{\text{3}}}{\text{COOH}} + {{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}{\text{OH}} \rightleftharpoons {\text{C}}{{\text{H}}_{\text{3}}}{\text{COO}}{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}} + {{\text{H}}_{\text{2}}}{\text{O}}\]</p>
<p>One group made the following <strong>initial mixture</strong>:</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-12_om_13.17.39.png" alt="M14/4/CHEMI/HP2/ENG/TZ2/01"></p>
</div>

<div class="specification">
<p>After one week, a \(5.00 \pm 0.05{\text{ c}}{{\text{m}}^{\text{3}}}\) sample of the final equilibrium mixture was pipetted out and titrated with \({\text{0.200 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) aqueous sodium hydroxide to determine the amount of ethanoic acid remaining. The following titration results were obtained:</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-12_om_14.35.01.png" alt="M14/4/CHEMI/HP2/ENG/TZ2/01.c"></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The density of ethanoic acid is \({\text{1.05 g}}\,{\text{c}}{{\text{m}}^{ - 3}}\). Determine the amount, in mol, of ethanoic acid present in the initial mixture.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The concentration of ethanoic acid can be calculated as \({\text{1.748 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\). Determine the percentage uncertainty of this value. (Neglect any uncertainty in the density and the molar mass.)</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the absolute uncertainty of the titre for Titration 1 (\({\text{27.60 c}}{{\text{m}}^3}\)).</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest the average volume of alkali, required to neutralize the \({\text{5.00 c}}{{\text{m}}^{\text{3}}}\) sample, that the student should use.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>\({\text{3.00 c}}{{\text{m}}^{\text{3}}}\) of the \({\text{0.200 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) aqueous sodium hydroxide reacted with the hydrochloric acid present in the \({\text{5.00 c}}{{\text{m}}^{\text{3}}}\) sample. Determine the concentration of ethanoic acid in the final equilibrium mixture.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the equilibrium constant expression for the reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The other concentrations in the equilibrium mixture were calculated as follows:</p>
<p><img src="images/Schermafbeelding_2016-08-12_om_15.09.29.png" alt="M14/4/CHEMI/HP2/ENG/TZ2/01.c.v"></p>
<p>Use these data, along with your answer to part (iii), to determine the value of the equilibrium constant. (If you did not obtain an answer to part (iii), assume the concentrations of ethanol and ethanoic acid are equal, although this is not the case.)</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.v.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how you could establish that the system had reached equilibrium at the end of one week.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why changing the temperature has only a very small effect on the value of the equilibrium constant for this equilibrium.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how adding some ethyl ethanoate to the initial mixture would affect the amount of ethanoic acid converted to product.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Propanone is used as the solvent because one compound involved in the equilibrium is insoluble in water. Identify this compound and explain why it is insoluble in water.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest <strong>one</strong> other reason why using water as a solvent would make the experiment less successful.</p>
<div class="marks">[1]</div>
<div class="question_part_label">h.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>\({\text{M(C}}{{\text{H}}_{\text{3}}}{\text{COOH)}}\left( { = (4 \times 1.01) + (2 \times 12.01) + (2 \times 16.00)} \right) = 60.06{\text{ (g}}\,{\text{mo}}{{\text{l}}^{ - 1}})\);</p>
<p><em>Accept 60 (g mol</em><sup><em>&ndash;1</em></sup><em>).</em></p>
<p>\({\text{mass (C}}{{\text{H}}_3}{\text{COOH) }}( = 5.00 \times 1.05) = 5.25{\text{ (g)}}\);</p>
<p>\(\frac{{5.25}}{{60.06}} = 0.0874{\text{ (mol)}}\);</p>
<p><em>Award </em><strong><em>[3] </em></strong><em>for correct final answer.</em></p>
<p><em>Accept 0.0875 (comes from using Mr = 60 g mol</em><sup><em>&ndash;1</em></sup><em>).</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>percentage uncertainty in volume of ethanoic acid \( = 100 \times \frac{{0.05}}{{5.00}}{\text{ }} = 1\% \);</p>
<p>percentage uncertainty in total volume \( = 100 \times \frac{{0.62}}{{50}} = 1.24\% \);</p>
<p>total percentage uncertainty \( = 1 + 1.24 = 2.24\% \);</p>
<p><em>Accept rounding down to 2.2/2%.</em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\( \pm 0.1/0.10{\text{ }}({\text{c}}{{\text{m}}^3})\);</p>
<p><em>Do </em><strong><em>not </em></strong><em>accept without &plusmn;.</em></p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\({\text{26.00 (c}}{{\text{m}}^{\text{3}}}{\text{)}}\);</p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(26.00 - 3.00 = 23.00{\text{ }}({\text{c}}{{\text{m}}^3})\);</p>
<p><em>If other methods used, award </em><strong><em>M1 </em></strong><em>for calculating amount of NaOH reacting with CH</em><sub><em>3</em></sub><em>COOH.</em></p>
<p>\(0.200 \times \frac{{23.00}}{{5.00}} = 0.920{\text{ }}({\text{mol}}\,{\text{d}}{{\text{m}}^{ - 3}})\);</p>
<p><em>Award </em><strong><em>[2] </em></strong><em>for correct final answer.</em></p>
<p><em>If (ii) given as mean titre (26.5 cm</em><sup><em>3</em></sup><em>) then ECF answer comes to 0.94 (mol dm</em><sup><em>&ndash;3</em></sup><em>).</em></p>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(({K_{\text{c}}} = )\frac{{{\text{[C}}{{\text{H}}_3}{\text{COO}}{{\text{C}}_2}{{\text{H}}_5}{\text{][}}{{\text{H}}_2}{\text{O]}}}}{{{\text{[}}{{\text{C}}_2}{{\text{H}}_5}{\text{OH][C}}{{\text{H}}_3}{\text{COOH]}}}}\);</p>
<p><em>Do not penalize minor errors in formulas.</em></p>
<p><em>Accept</em> \(({K_{\text{c}}} = )\frac{{{\text{[}}esther{\text{][}}water{\text{]}}}}{{[ethanol/alcohol{\text{][(}}ethanoic{\text{) }}acid{\text{]}}}}\)<em>.</em></p>
<div class="question_part_label">c.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\(({K_c} = )\frac{{0.828 \times 1.80}}{{0.884 \times 0.920}} = 1.83\);</p>
<p><em>If assumed [CH<sub>3</sub>COOH] = 0.884 mol dm<sup>-3</sup>, answer is 1.91 &ndash; allow this even if an answer was obtained for (iii).</em></p>
<p><em>If (ii) given as mean titre (26.5 cm<sup>3</sup>) then ECF answer comes to 1.79.</em></p>
<div class="question_part_label">c.v.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>repeat the titration a day/week later (and result should be the same) / <em>OWTTE</em>;</p>
<p><em>Accept &ldquo;concentrations/physical properties/macroscopic properties of the system&nbsp;</em><em>do not change&rdquo;.</em></p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>enthalpy change/\(\Delta H\) for the reaction is (very) small / <em>OWTTE</em>;</p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>decreases (the amount of ethanoic acid converted);</p>
<p><em>Accept &ldquo;increases amount of ethanoic acid present <span style="text-decoration: underline;">at equilibrium</span>&rdquo; / OWTTE.</em></p>
<p>(adding product) shifts position of equilibrium towards reactants/LHS / increases</p>
<p>the rate of the reverse reaction / <em>OWTTE</em>;</p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>ethyl ethanoate/\({\text{C}}{{\text{H}}_{\text{3}}}{\text{COO}}{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}\)/ester;</p>
<p>forms only weak hydrogen bonds (to water);</p>
<p><em>Allow &ldquo;does not hydrogen bond to water&rdquo; / &ldquo;hydrocarbon sections too long&rdquo; / OWTTE.</em></p>
<p><em>M2 can only be given only if M1 correct.</em></p>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(large excess of) water will shift the position of equilibrium (far to the left) /&nbsp;<em>OWTTE</em>;</p>
<p><em>Accept any other chemically sound response, such as &ldquo;dissociation of ethanoic&nbsp;</em><em>acid would affect equilibrium&rdquo;.</em></p>
<div class="question_part_label">h.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p>Generally candidates found this question quite challenging and some left quite a number of parts unanswered. The tradition is that the first question on the paper is a data response question, which often addresses many aspects of the syllabus, and unfortunately candidates, especially those of average or below average ability, seem to have difficulty in tackling questions of this nature. One other issue with data response questions is that, of necessity, the data appears at the beginning of the question whilst, mainly because of the space left for candidates to answer, the later parts of the question referring to these data may not appear until a number of pages into the paper.</p>
<p>Part (a) concerning density, volume and amount of substance was generally reasonably well answered, but the following parts, concerning uncertainties, were rarely answered correctly and a number confused precision (uncertainty, either absolute or as a percentage) and accuracy (percentage error in the value obtained). Many candidates also seemed to lack experimental common sense, simply taking an average that included an initial titre that was much larger than the concordant second and third titres, rather than excluding it. This lack of experimental &ldquo;know how&rdquo; was also evident in responses to (c) (iii) where it was unusual for the approach to the question to indicate the candidate had realised that the alkali was neutralising two different acids (HCl and \({\text{C}}{{\text{H}}_{\text{3}}}{\text{COOH}}\)) and again in part (d) where it was rare for the response to outline a practical solution to the problem, though quite a number of candidates suggested that the pH would become constant, presumably not realising that the pH would be dominated by the HCl catalyst. Most students could however carry out the more routine tasks of writing an equilibrium constant expression and determining its value from the data given. Many candidates were aware of Le Chatelier effects on the position of equilibrium, but a significant number failed to use this information to answer the question actually asked and the unusual approach to the effect of temperature disconcerted many. Whilst most students managed to identify the ester as the component of the mixture that was insoluble in water, the reasons given were usually couched in terms of the polarity of the molecule (many quite polar molecules, halogenoalkanes for example, are insoluble in water) rather than its inability to form strong hydrogen bonds to water, which is the critical factor. Quite a number of students came up with a valid reason why water would not be a suitable solvent, though some students appeared to have overlooked the fact the question stated &ldquo;other reason&rdquo;.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Generally candidates found this question quite challenging and some left quite a number of parts unanswered. The tradition is that the first question on the paper is a data response question, which often addresses many aspects of the syllabus, and unfortunately candidates, especially those of average or below average ability, seem to have difficulty in tackling questions of this nature. One other issue with data response questions is that, of necessity, the data appears at the beginning of the question whilst, mainly because of the space left for candidates to answer, the later parts of the question referring to these data may not appear until a number of pages into the paper.</p>
<p>Part (a) concerning density, volume and amount of substance was generally reasonably well answered, but the following parts, concerning uncertainties, were rarely answered correctly and a number confused precision (uncertainty, either absolute or as a percentage) and accuracy (percentage error in the value obtained). Many candidates also seemed to lack experimental common sense, simply taking an average that included an initial titre that was much larger than the concordant second and third titres, rather than excluding it. This lack of experimental &ldquo;know how&rdquo; was also evident in responses to (c) (iii) where it was unusual for the approach to the question to indicate the candidate had realised that the alkali was neutralising two different acids (HCl and \({\text{C}}{{\text{H}}_{\text{3}}}{\text{COOH}}\)) and again in part (d) where it was rare for the response to outline a practical solution to the problem, though quite a number of candidates suggested that the pH would become constant, presumably not realising that the pH would be dominated by the HCl catalyst. Most students could however carry out the more routine tasks of writing an equilibrium constant expression and determining its value from the data given. Many candidates were aware of Le Chatelier effects on the position of equilibrium, but a significant number failed to use this information to answer the question actually asked and the unusual approach to the effect of temperature disconcerted many. Whilst most students managed to identify the ester as the component of the mixture that was insoluble in water, the reasons given were usually couched in terms of the polarity of the molecule (many quite polar molecules, halogenoalkanes for example, are insoluble in water) rather than its inability to form strong hydrogen bonds to water, which is the critical factor. Quite a number of students came up with a valid reason why water would not be a suitable solvent, though some students appeared to have overlooked the fact the question stated &ldquo;other reason&rdquo;.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Generally candidates found this question quite challenging and some left quite a number of parts unanswered. The tradition is that the first question on the paper is a data response question, which often addresses many aspects of the syllabus, and unfortunately candidates, especially those of average or below average ability, seem to have difficulty in tackling questions of this nature. One other issue with data response questions is that, of necessity, the data appears at the beginning of the question whilst, mainly because of the space left for candidates to answer, the later parts of the question referring to these data may not appear until a number of pages into the paper.</p>
<p>Part (a) concerning density, volume and amount of substance was generally reasonably well answered, but the following parts, concerning uncertainties, were rarely answered correctly and a number confused precision (uncertainty, either absolute or as a percentage) and accuracy (percentage error in the value obtained). Many candidates also seemed to lack experimental common sense, simply taking an average that included an initial titre that was much larger than the concordant second and third titres, rather than excluding it. This lack of experimental &ldquo;know how&rdquo; was also evident in responses to (c) (iii) where it was unusual for the approach to the question to indicate the candidate had realised that the alkali was neutralising two different acids (HCl and \({\text{C}}{{\text{H}}_{\text{3}}}{\text{COOH}}\)) and again in part (d) where it was rare for the response to outline a practical solution to the problem, though quite a number of candidates suggested that the pH would become constant, presumably not realising that the pH would be dominated by the HCl catalyst. Most students could however carry out the more routine tasks of writing an equilibrium constant expression and determining its value from the data given. Many candidates were aware of Le Chatelier effects on the position of equilibrium, but a significant number failed to use this information to answer the question actually asked and the unusual approach to the effect of temperature disconcerted many. Whilst most students managed to identify the ester as the component of the mixture that was insoluble in water, the reasons given were usually couched in terms of the polarity of the molecule (many quite polar molecules, halogenoalkanes for example, are insoluble in water) rather than its inability to form strong hydrogen bonds to water, which is the critical factor. Quite a number of students came up with a valid reason why water would not be a suitable solvent, though some students appeared to have overlooked the fact the question stated &ldquo;other reason&rdquo;.</p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Generally candidates found this question quite challenging and some left quite a number of parts unanswered. The tradition is that the first question on the paper is a data response question, which often addresses many aspects of the syllabus, and unfortunately candidates, especially those of average or below average ability, seem to have difficulty in tackling questions of this nature. One other issue with data response questions is that, of necessity, the data appears at the beginning of the question whilst, mainly because of the space left for candidates to answer, the later parts of the question referring to these data may not appear until a number of pages into the paper.</p>
<p>Part (a) concerning density, volume and amount of substance was generally reasonably well answered, but the following parts, concerning uncertainties, were rarely answered correctly and a number confused precision (uncertainty, either absolute or as a percentage) and accuracy (percentage error in the value obtained). Many candidates also seemed to lack experimental common sense, simply taking an average that included an initial titre that was much larger than the concordant second and third titres, rather than excluding it. This lack of experimental &ldquo;know how&rdquo; was also evident in responses to (c) (iii) where it was unusual for the approach to the question to indicate the candidate had realised that the alkali was neutralising two different acids (HCl and \({\text{C}}{{\text{H}}_{\text{3}}}{\text{COOH}}\)) and again in part (d) where it was rare for the response to outline a practical solution to the problem, though quite a number of candidates suggested that the pH would become constant, presumably not realising that the pH would be dominated by the HCl catalyst. Most students could however carry out the more routine tasks of writing an equilibrium constant expression and determining its value from the data given. Many candidates were aware of Le Chatelier effects on the position of equilibrium, but a significant number failed to use this information to answer the question actually asked and the unusual approach to the effect of temperature disconcerted many. Whilst most students managed to identify the ester as the component of the mixture that was insoluble in water, the reasons given were usually couched in terms of the polarity of the molecule (many quite polar molecules, halogenoalkanes for example, are insoluble in water) rather than its inability to form strong hydrogen bonds to water, which is the critical factor. Quite a number of students came up with a valid reason why water would not be a suitable solvent, though some students appeared to have overlooked the fact the question stated &ldquo;other reason&rdquo;.</p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Generally candidates found this question quite challenging and some left quite a number of parts unanswered. The tradition is that the first question on the paper is a data response question, which often addresses many aspects of the syllabus, and unfortunately candidates, especially those of average or below average ability, seem to have difficulty in tackling questions of this nature. One other issue with data response questions is that, of necessity, the data appears at the beginning of the question whilst, mainly because of the space left for candidates to answer, the later parts of the question referring to these data may not appear until a number of pages into the paper.</p>
<p>Part (a) concerning density, volume and amount of substance was generally reasonably well answered, but the following parts, concerning uncertainties, were rarely answered correctly and a number confused precision (uncertainty, either absolute or as a percentage) and accuracy (percentage error in the value obtained). Many candidates also seemed to lack experimental common sense, simply taking an average that included an initial titre that was much larger than the concordant second and third titres, rather than excluding it. This lack of experimental &ldquo;know how&rdquo; was also evident in responses to (c) (iii) where it was unusual for the approach to the question to indicate the candidate had realised that the alkali was neutralising two different acids (HCl and \({\text{C}}{{\text{H}}_{\text{3}}}{\text{COOH}}\)) and again in part (d) where it was rare for the response to outline a practical solution to the problem, though quite a number of candidates suggested that the pH would become constant, presumably not realising that the pH would be dominated by the HCl catalyst. Most students could however carry out the more routine tasks of writing an equilibrium constant expression and determining its value from the data given. Many candidates were aware of Le Chatelier effects on the position of equilibrium, but a significant number failed to use this information to answer the question actually asked and the unusual approach to the effect of temperature disconcerted many. Whilst most students managed to identify the ester as the component of the mixture that was insoluble in water, the reasons given were usually couched in terms of the polarity of the molecule (many quite polar molecules, halogenoalkanes for example, are insoluble in water) rather than its inability to form strong hydrogen bonds to water, which is the critical factor. Quite a number of students came up with a valid reason why water would not be a suitable solvent, though some students appeared to have overlooked the fact the question stated &ldquo;other reason&rdquo;.</p>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Generally candidates found this question quite challenging and some left quite a number of parts unanswered. The tradition is that the first question on the paper is a data response question, which often addresses many aspects of the syllabus, and unfortunately candidates, especially those of average or below average ability, seem to have difficulty in tackling questions of this nature. One other issue with data response questions is that, of necessity, the data appears at the beginning of the question whilst, mainly because of the space left for candidates to answer, the later parts of the question referring to these data may not appear until a number of pages into the paper.</p>
<p>Part (a) concerning density, volume and amount of substance was generally reasonably well answered, but the following parts, concerning uncertainties, were rarely answered correctly and a number confused precision (uncertainty, either absolute or as a percentage) and accuracy (percentage error in the value obtained). Many candidates also seemed to lack experimental common sense, simply taking an average that included an initial titre that was much larger than the concordant second and third titres, rather than excluding it. This lack of experimental &ldquo;know how&rdquo; was also evident in responses to (c) (iii) where it was unusual for the approach to the question to indicate the candidate had realised that the alkali was neutralising two different acids (HCl and \({\text{C}}{{\text{H}}_{\text{3}}}{\text{COOH}}\)) and again in part (d) where it was rare for the response to outline a practical solution to the problem, though quite a number of candidates suggested that the pH would become constant, presumably not realising that the pH would be dominated by the HCl catalyst. Most students could however carry out the more routine tasks of writing an equilibrium constant expression and determining its value from the data given. Many candidates were aware of Le Chatelier effects on the position of equilibrium, but a significant number failed to use this information to answer the question actually asked and the unusual approach to the effect of temperature disconcerted many. Whilst most students managed to identify the ester as the component of the mixture that was insoluble in water, the reasons given were usually couched in terms of the polarity of the molecule (many quite polar molecules, halogenoalkanes for example, are insoluble in water) rather than its inability to form strong hydrogen bonds to water, which is the critical factor. Quite a number of students came up with a valid reason why water would not be a suitable solvent, though some students appeared to have overlooked the fact the question stated &ldquo;other reason&rdquo;.</p>
<div class="question_part_label">c.iv.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Generally candidates found this question quite challenging and some left quite a number of parts unanswered. The tradition is that the first question on the paper is a data response question, which often addresses many aspects of the syllabus, and unfortunately candidates, especially those of average or below average ability, seem to have difficulty in tackling questions of this nature. One other issue with data response questions is that, of necessity, the data appears at the beginning of the question whilst, mainly because of the space left for candidates to answer, the later parts of the question referring to these data may not appear until a number of pages into the paper.</p>
<p>Part (a) concerning density, volume and amount of substance was generally reasonably well answered, but the following parts, concerning uncertainties, were rarely answered correctly and a number confused precision (uncertainty, either absolute or as a percentage) and accuracy (percentage error in the value obtained). Many candidates also seemed to lack experimental common sense, simply taking an average that included an initial titre that was much larger than the concordant second and third titres, rather than excluding it. This lack of experimental &ldquo;know how&rdquo; was also evident in responses to (c) (iii) where it was unusual for the approach to the question to indicate the candidate had realised that the alkali was neutralising two different acids (HCl and \({\text{C}}{{\text{H}}_{\text{3}}}{\text{COOH}}\)) and again in part (d) where it was rare for the response to outline a practical solution to the problem, though quite a number of candidates suggested that the pH would become constant, presumably not realising that the pH would be dominated by the HCl catalyst. Most students could however carry out the more routine tasks of writing an equilibrium constant expression and determining its value from the data given. Many candidates were aware of Le Chatelier effects on the position of equilibrium, but a significant number failed to use this information to answer the question actually asked and the unusual approach to the effect of temperature disconcerted many. Whilst most students managed to identify the ester as the component of the mixture that was insoluble in water, the reasons given were usually couched in terms of the polarity of the molecule (many quite polar molecules, halogenoalkanes for example, are insoluble in water) rather than its inability to form strong hydrogen bonds to water, which is the critical factor. Quite a number of students came up with a valid reason why water would not be a suitable solvent, though some students appeared to have overlooked the fact the question stated &ldquo;other reason&rdquo;.</p>
<div class="question_part_label">c.v.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Generally candidates found this question quite challenging and some left quite a number of parts unanswered. The tradition is that the first question on the paper is a data response question, which often addresses many aspects of the syllabus, and unfortunately candidates, especially those of average or below average ability, seem to have difficulty in tackling questions of this nature. One other issue with data response questions is that, of necessity, the data appears at the beginning of the question whilst, mainly because of the space left for candidates to answer, the later parts of the question referring to these data may not appear until a number of pages into the paper.</p>
<p>Part (a) concerning density, volume and amount of substance was generally reasonably well answered, but the following parts, concerning uncertainties, were rarely answered correctly and a number confused precision (uncertainty, either absolute or as a percentage) and accuracy (percentage error in the value obtained). Many candidates also seemed to lack experimental common sense, simply taking an average that included an initial titre that was much larger than the concordant second and third titres, rather than excluding it. This lack of experimental &ldquo;know how&rdquo; was also evident in responses to (c) (iii) where it was unusual for the approach to the question to indicate the candidate had realised that the alkali was neutralising two different acids (HCl and \({\text{C}}{{\text{H}}_{\text{3}}}{\text{COOH}}\)) and again in part (d) where it was rare for the response to outline a practical solution to the problem, though quite a number of candidates suggested that the pH would become constant, presumably not realising that the pH would be dominated by the HCl catalyst. Most students could however carry out the more routine tasks of writing an equilibrium constant expression and determining its value from the data given. Many candidates were aware of Le Chatelier effects on the position of equilibrium, but a significant number failed to use this information to answer the question actually asked and the unusual approach to the effect of temperature disconcerted many. Whilst most students managed to identify the ester as the component of the mixture that was insoluble in water, the reasons given were usually couched in terms of the polarity of the molecule (many quite polar molecules, halogenoalkanes for example, are insoluble in water) rather than its inability to form strong hydrogen bonds to water, which is the critical factor. Quite a number of students came up with a valid reason why water would not be a suitable solvent, though some students appeared to have overlooked the fact the question stated &ldquo;other reason&rdquo;.</p>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Generally candidates found this question quite challenging and some left quite a number of parts unanswered. The tradition is that the first question on the paper is a data response question, which often addresses many aspects of the syllabus, and unfortunately candidates, especially those of average or below average ability, seem to have difficulty in tackling questions of this nature. One other issue with data response questions is that, of necessity, the data appears at the beginning of the question whilst, mainly because of the space left for candidates to answer, the later parts of the question referring to these data may not appear until a number of pages into the paper.</p>
<p>Part (a) concerning density, volume and amount of substance was generally reasonably well answered, but the following parts, concerning uncertainties, were rarely answered correctly and a number confused precision (uncertainty, either absolute or as a percentage) and accuracy (percentage error in the value obtained). Many candidates also seemed to lack experimental common sense, simply taking an average that included an initial titre that was much larger than the concordant second and third titres, rather than excluding it. This lack of experimental &ldquo;know how&rdquo; was also evident in responses to (c) (iii) where it was unusual for the approach to the question to indicate the candidate had realised that the alkali was neutralising two different acids (HCl and \({\text{C}}{{\text{H}}_{\text{3}}}{\text{COOH}}\)) and again in part (d) where it was rare for the response to outline a practical solution to the problem, though quite a number of candidates suggested that the pH would become constant, presumably not realising that the pH would be dominated by the HCl catalyst. Most students could however carry out the more routine tasks of writing an equilibrium constant expression and determining its value from the data given. Many candidates were aware of Le Chatelier effects on the position of equilibrium, but a significant number failed to use this information to answer the question actually asked and the unusual approach to the effect of temperature disconcerted many. Whilst most students managed to identify the ester as the component of the mixture that was insoluble in water, the reasons given were usually couched in terms of the polarity of the molecule (many quite polar molecules, halogenoalkanes for example, are insoluble in water) rather than its inability to form strong hydrogen bonds to water, which is the critical factor. Quite a number of students came up with a valid reason why water would not be a suitable solvent, though some students appeared to have overlooked the fact the question stated &ldquo;other reason&rdquo;.</p>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Generally candidates found this question quite challenging and some left quite a number of parts unanswered. The tradition is that the first question on the paper is a data response question, which often addresses many aspects of the syllabus, and unfortunately candidates, especially those of average or below average ability, seem to have difficulty in tackling questions of this nature. One other issue with data response questions is that, of necessity, the data appears at the beginning of the question whilst, mainly because of the space left for candidates to answer, the later parts of the question referring to these data may not appear until a number of pages into the paper.</p>
<p>Part (a) concerning density, volume and amount of substance was generally reasonably well answered, but the following parts, concerning uncertainties, were rarely answered correctly and a number confused precision (uncertainty, either absolute or as a percentage) and accuracy (percentage error in the value obtained). Many candidates also seemed to lack experimental common sense, simply taking an average that included an initial titre that was much larger than the concordant second and third titres, rather than excluding it. This lack of experimental &ldquo;know how&rdquo; was also evident in responses to (c) (iii) where it was unusual for the approach to the question to indicate the candidate had realised that the alkali was neutralising two different acids (HCl and \({\text{C}}{{\text{H}}_{\text{3}}}{\text{COOH}}\)) and again in part (d) where it was rare for the response to outline a practical solution to the problem, though quite a number of candidates suggested that the pH would become constant, presumably not realising that the pH would be dominated by the HCl catalyst. Most students could however carry out the more routine tasks of writing an equilibrium constant expression and determining its value from the data given. Many candidates were aware of Le Chatelier effects on the position of equilibrium, but a significant number failed to use this information to answer the question actually asked and the unusual approach to the effect of temperature disconcerted many. Whilst most students managed to identify the ester as the component of the mixture that was insoluble in water, the reasons given were usually couched in terms of the polarity of the molecule (many quite polar molecules, halogenoalkanes for example, are insoluble in water) rather than its inability to form strong hydrogen bonds to water, which is the critical factor. Quite a number of students came up with a valid reason why water would not be a suitable solvent, though some students appeared to have overlooked the fact the question stated &ldquo;other reason&rdquo;.</p>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Generally candidates found this question quite challenging and some left quite a number of parts unanswered. The tradition is that the first question on the paper is a data response question, which often addresses many aspects of the syllabus, and unfortunately candidates, especially those of average or below average ability, seem to have difficulty in tackling questions of this nature. One other issue with data response questions is that, of necessity, the data appears at the beginning of the question whilst, mainly because of the space left for candidates to answer, the later parts of the question referring to these data may not appear until a number of pages into the paper.</p>
<p>Part (a) concerning density, volume and amount of substance was generally reasonably well answered, but the following parts, concerning uncertainties, were rarely answered correctly and a number confused precision (uncertainty, either absolute or as a percentage) and accuracy (percentage error in the value obtained). Many candidates also seemed to lack experimental common sense, simply taking an average that included an initial titre that was much larger than the concordant second and third titres, rather than excluding it. This lack of experimental &ldquo;know how&rdquo; was also evident in responses to (c) (iii) where it was unusual for the approach to the question to indicate the candidate had realised that the alkali was neutralising two different acids (HCl and \({\text{C}}{{\text{H}}_{\text{3}}}{\text{COOH}}\)) and again in part (d) where it was rare for the response to outline a practical solution to the problem, though quite a number of candidates suggested that the pH would become constant, presumably not realising that the pH would be dominated by the HCl catalyst. Most students could however carry out the more routine tasks of writing an equilibrium constant expression and determining its value from the data given. Many candidates were aware of Le Chatelier effects on the position of equilibrium, but a significant number failed to use this information to answer the question actually asked and the unusual approach to the effect of temperature disconcerted many. Whilst most students managed to identify the ester as the component of the mixture that was insoluble in water, the reasons given were usually couched in terms of the polarity of the molecule (many quite polar molecules, halogenoalkanes for example, are insoluble in water) rather than its inability to form strong hydrogen bonds to water, which is the critical factor. Quite a number of students came up with a valid reason why water would not be a suitable solvent, though some students appeared to have overlooked the fact the question stated &ldquo;other reason&rdquo;.</p>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>Generally candidates found this question quite challenging and some left quite a number of parts unanswered. The tradition is that the first question on the paper is a data response question, which often addresses many aspects of the syllabus, and unfortunately candidates, especially those of average or below average ability, seem to have difficulty in tackling questions of this nature. One other issue with data response questions is that, of necessity, the data appears at the beginning of the question whilst, mainly because of the space left for candidates to answer, the later parts of the question referring to these data may not appear until a number of pages into the paper.</p>
<p>Part (a) concerning density, volume and amount of substance was generally reasonably well answered, but the following parts, concerning uncertainties, were rarely answered correctly and a number confused precision (uncertainty, either absolute or as a percentage) and accuracy (percentage error in the value obtained). Many candidates also seemed to lack experimental common sense, simply taking an average that included an initial titre that was much larger than the concordant second and third titres, rather than excluding it. This lack of experimental &ldquo;know how&rdquo; was also evident in responses to (c) (iii) where it was unusual for the approach to the question to indicate the candidate had realised that the alkali was neutralising two different acids (HCl and \({\text{C}}{{\text{H}}_{\text{3}}}{\text{COOH}}\)) and again in part (d) where it was rare for the response to outline a practical solution to the problem, though quite a number of candidates suggested that the pH would become constant, presumably not realising that the pH would be dominated by the HCl catalyst. Most students could however carry out the more routine tasks of writing an equilibrium constant expression and determining its value from the data given. Many candidates were aware of Le Chatelier effects on the position of equilibrium, but a significant number failed to use this information to answer the question actually asked and the unusual approach to the effect of temperature disconcerted many. Whilst most students managed to identify the ester as the component of the mixture that was insoluble in water, the reasons given were usually couched in terms of the polarity of the molecule (many quite polar molecules, halogenoalkanes for example, are insoluble in water) rather than its inability to form strong hydrogen bonds to water, which is the critical factor. Quite a number of students came up with a valid reason why water would not be a suitable solvent, though some students appeared to have overlooked the fact the question stated &ldquo;other reason&rdquo;.</p>
<div class="question_part_label">h.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The rate of reaction is an important factor in industrial processes such as the Contact process to make sulfur trioxide, \({\text{S}}{{\text{O}}_{\text{3}}}{\text{(g)}}\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Define the term <em>rate of reaction</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Describe the collision theory.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The Contact process involves this homogeneous equilibrium:</p>
<p>\[{\text{2S}}{{\text{O}}_{\text{2}}}{\text{(g)}} + {{\text{O}}_{\text{2}}}{\text{(g)}} \rightleftharpoons {\text{2S}}{{\text{O}}_{\text{3}}}{\text{(g)}}\,\,\,\,\,\Delta H =&nbsp; - 198{\text{ kJ}}\]</p>
<p>State and explain how increasing the pressure of the reaction mixture affects the yield of \({\text{S}}{{\text{O}}_{\text{3}}}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The Contact process involves this homogeneous equilibrium:</p>
<p>\[{\text{2S}}{{\text{O}}_{\text{2}}}{\text{(g)}} + {{\text{O}}_{\text{2}}}{\text{(g)}} \rightleftharpoons {\text{2S}}{{\text{O}}_{\text{3}}}{\text{(g)}}\,\,\,\,\,\Delta H =&nbsp; - 198{\text{ kJ}}\]</p>
<p>2.00 mol of \({\text{S}}{{\text{O}}_{\text{2}}}{\text{(g)}}\) are mixed with 3.00 mol of \({{\text{O}}_{\text{2}}}{\text{(g)}}\) in a \({\text{1.00 d}}{{\text{m}}^{\text{3}}}\) container until equilibrium is reached. At equilibrium there are 0.80 mol of \({\text{S}}{{\text{O}}_{\text{3}}}{\text{(g)}}\).</p>
<p>Determine the equilibrium constant (\({K_{\text{c}}}\)) assuming all gases are at the same temperature and pressure.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The Contact process involves this homogeneous equilibrium:</p>
<p>\[{\text{2S}}{{\text{O}}_{\text{2}}}{\text{(g)}} + {{\text{O}}_{\text{2}}}{\text{(g)}} \rightleftharpoons {\text{2S}}{{\text{O}}_{\text{3}}}{\text{(g)}}\,\,\,\,\,\Delta H =&nbsp; - 198{\text{ kJ}}\]</p>
<p class="p1">State the effect of increasing temperature on the value of \({K_{\text{c}}}\) for this reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Outline the economic importance of using a catalyst in the Contact process.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">change in concentration of reactant/product with time / rate of change of concentration;</p>
<p class="p1"><em>Accept &ldquo;increase&rdquo; instead of &ldquo;change&rdquo; for product and &ldquo;decrease&rdquo; instead of&nbsp;</em><em>&ldquo;change&rdquo; for reactant.</em></p>
<p class="p1"><em>Accept &ldquo;mass/amount/volume&rdquo; instead of &ldquo;concentration&rdquo;.</em></p>
<p class="p1"><em>Do not accept substance.</em></p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">collision frequency;</p>
<p class="p1">two particles must collide;</p>
<p class="p1">particles must have sufficient energy to overcome the activation energy/\(E \geqslant {E_a}\);</p>
<p class="p1"><em>Concept of activation energy must be mentioned.</em></p>
<p class="p1">appropriate collision geometry/orientation;</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">increases yield;</p>
<p class="p1">(equilibrium shifts to the right/products as) more <span style="text-decoration: underline;">gaseous</span> moles in reactants/on left / fewer <span style="text-decoration: underline;">gaseous</span> moles in products/on right;</p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\({\text{Eqm[}}{{\text{O}}_2}{\text{]}} = {\text{2.6 (mol}}\,{\text{d}}{{\text{m}}^{ - 3}}{\text{)}}\);</p>
<p>\({\text{Eqm[S}}{{\text{O}}_2}{\text{]}} = {\text{1.2 (mol}}\,{\text{d}}{{\text{m}}^{ - 3}}{\text{)}}\);</p>
<p>\({K_{\text{c}}} =&nbsp;\frac{{{{{\text{[S}}{{\text{O}}_3}]}^2}}}{{{{{\text{[S}}{{\text{O}}_2}{\text{]}}}^2}{\text{[}}{{\text{O}}_2}{\text{]}}}}\);</p>
<p>\({K_{\text{c}}} = 0.17\);</p>
<p><em>Award </em><strong><em>[4] </em></strong><em>for correct final answer.</em></p>
<p><em>Ignore units.</em></p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>\({\text{(}}{K_{\text{c}}}{\text{)}}\) decreases;</p>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">catalyst increases rate of reaction / equilibrium reached faster / increases yield of product per unit time;</p>
<p class="p1">reduces costs / reduces energy needed;</p>
<p class="p1"><em>Do not accept just &ldquo;increases the yield&rdquo;.</em></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
<p class="p1">The definitions of rate of reaction in (a) were poor with many referring to a measure of time rather than a change in concentration. The collision theory was described successfully for the most part with &ldquo;frequency of collisions&rdquo; less frequently mentioned. In (c) (i) most realized that the number of moles of gases is important and thus gave a correct answer. Whilst the \({K_{\text{c}}}\) expression was often given correctly in (ii), the calculation of equilibrium mole concentrations was more testing, particularly that for \({\text{[}}{{\text{O}}_{\text{2}}}{\text{]}}\). Many were able to answer (iii) correctly. In part (d) many suggested that it is good to make more of something rather than relating this to a reduction in costs.</p>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">The definitions of rate of reaction in (a) were poor with many referring to a measure of time rather than a change in concentration. The collision theory was described successfully for the most part with &ldquo;frequency of collisions&rdquo; less frequently mentioned. In (c) (i) most realized that the number of moles of gases is important and thus gave a correct answer. Whilst the \({K_{\text{c}}}\) expression was often given correctly in (ii), the calculation of equilibrium mole concentrations was more testing, particularly that for \({\text{[}}{{\text{O}}_{\text{2}}}{\text{]}}\). Many were able to answer (iii) correctly. In part (d) many suggested that it is good to make more of something rather than relating this to a reduction in costs.</p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">The definitions of rate of reaction in (a) were poor with many referring to a measure of time rather than a change in concentration. The collision theory was described successfully for the most part with &ldquo;frequency of collisions&rdquo; less frequently mentioned. In (c) (i) most realized that the number of moles of gases is important and thus gave a correct answer. Whilst the \({K_{\text{c}}}\) expression was often given correctly in (ii), the calculation of equilibrium mole concentrations was more testing, particularly that for \({\text{[}}{{\text{O}}_{\text{2}}}{\text{]}}\). Many were able to answer (iii) correctly. In part (d) many suggested that it is good to make more of something rather than relating this to a reduction in costs.</p>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">The definitions of rate of reaction in (a) were poor with many referring to a measure of time rather than a change in concentration. The collision theory was described successfully for the most part with &ldquo;frequency of collisions&rdquo; less frequently mentioned. In (c) (i) most realized that the number of moles of gases is important and thus gave a correct answer. Whilst the \({K_{\text{c}}}\) expression was often given correctly in (ii), the calculation of equilibrium mole concentrations was more testing, particularly that for \({\text{[}}{{\text{O}}_{\text{2}}}{\text{]}}\). Many were able to answer (iii) correctly. In part (d) many suggested that it is good to make more of something rather than relating this to a reduction in costs.</p>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">The definitions of rate of reaction in (a) were poor with many referring to a measure of time rather than a change in concentration. The collision theory was described successfully for the most part with &ldquo;frequency of collisions&rdquo; less frequently mentioned. In (c) (i) most realized that the number of moles of gases is important and thus gave a correct answer. Whilst the \({K_{\text{c}}}\) expression was often given correctly in (ii), the calculation of equilibrium mole concentrations was more testing, particularly that for \({\text{[}}{{\text{O}}_{\text{2}}}{\text{]}}\). Many were able to answer (iii) correctly. In part (d) many suggested that it is good to make more of something rather than relating this to a reduction in costs.</p>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p class="p1">The definitions of rate of reaction in (a) were poor with many referring to a measure of time rather than a change in concentration. The collision theory was described successfully for the most part with &ldquo;frequency of collisions&rdquo; less frequently mentioned. In (c) (i) most realized that the number of moles of gases is important and thus gave a correct answer. Whilst the \({K_{\text{c}}}\) expression was often given correctly in (ii), the calculation of equilibrium mole concentrations was more testing, particularly that for \({\text{[}}{{\text{O}}_{\text{2}}}{\text{]}}\). Many were able to answer (iii) correctly. In part (d) many suggested that it is good to make more of something rather than relating this to a reduction in costs.</p>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The rate of the acid-catalysed iodination of propanone can be followed by measuring how the&nbsp;concentration of iodine changes with time.</p>
<p style="text-align: center;">I<sub>2</sub>(aq) + CH<sub>3</sub>COCH<sub>3</sub>(aq) &rarr; CH<sub>3</sub>COCH<sub>2</sub>I(aq) + H<sup>+</sup>(aq) + I<sup>&minus;</sup>(aq)</p>
<p style="text-align: left;">The general form of the rate equation is:</p>
<p style="text-align: center;">Rate = [H<sub>3</sub>CCOCH<sub>3</sub>(aq)]<sup>m</sup> &times; [I<sub>2</sub>(aq)]<sup>n</sup> &times; [H<sup>+</sup>(aq)]<sup>p</sup></p>
<p style="text-align: left;">The reaction is first order with respect to propanone.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest how the change of iodine concentration could be followed.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A student produced these results with \([{{\text{H}}^ + }] = 0.15{\text{ mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\). Propanone and acid were in excess and iodine was the limiting reagent. Determine the relative rate of reaction when \([{{\text{H}}^ + }] = 0.15{\text{ mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\).</p>
<p style="text-align: center;"><img style="float: left;" src="images/Schermafbeelding_2017-09-19_om_17.58.35.png" alt="M17/4/CHEMI/HP2/ENG/TZ1/01.a.ii"></p>
<p style="text-align: center;">&nbsp;</p>
<p style="text-align: center;">&nbsp;</p>
<p style="text-align: left;">&nbsp;</p>
<p style="text-align: left;">&nbsp;</p>
<p style="text-align: left;">&nbsp;</p>
<p style="text-align: left;">&nbsp;</p>
<p style="text-align: left;">&nbsp;</p>
<p style="text-align: left;">&nbsp;</p>
<p style="text-align: left;">&nbsp;</p>
<p style="text-align: left;">&nbsp;</p>
<p style="text-align: left;">&nbsp;</p>
<p style="text-align: left;">&nbsp;</p>
<p style="text-align: left;">&nbsp;</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The student then carried out the experiment at other acid concentrations with all other&nbsp;conditions remaining unchanged.</p>
<p style="text-align: center;"><img src=""></p>
<p>Determine the relationship between the rate of reaction and the concentration of acid&nbsp;and the order of reaction with respect to hydrogen ions.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>When the concentration of iodine is varied, while keeping the concentrations of acid&nbsp;and propanone constant, the following graphs are obtained.</p>
<p style="text-align: center;"><img src=""></p>
<p>Deduce, giving your reason, the order of reaction with respect to iodine.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>When the reaction is carried out in the absence of acid the following graph is obtained.</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">Discuss the shape of the graph between A and B.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>use a colorimeter/monitor the change in colour</p>
<p><strong><em>OR</em></strong></p>
<p>take samples <strong><em>AND </em></strong>quench <strong><em>AND </em></strong>titrate &laquo;with thiosulfate&raquo;</p>
<p>&nbsp;</p>
<p><em>Accept change in pH.</em></p>
<p><em>Accept change in conductivity.</em></p>
<p><em>Accept other suitable methods.</em></p>
<p><em>Method must imply &ldquo;change&rdquo;.</em></p>
<p><strong><em>[1 mark]</em></strong></p>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><img src="images/Schermafbeelding_2017-09-19_om_18.04.57.png" alt="M17/4/CHEMI/HP2/ENG/TZ1/01.a.ii/M"></p>
<p>best fit line</p>
<p>relative rate of reaction \( = \ll \frac{{ - \Delta y}}{{\Delta x}} = \frac{{ - (0.43 - 0.80)}}{{50}} = \gg {\text{ }}0.0074/7.4 \times {10^{ - 3}}\)</p>
<p>&nbsp;</p>
<p><em>Best fit line required for M1.</em></p>
<p>&nbsp;</p>
<p><em>M2 is independent of M1.</em></p>
<p><em>Accept range from 0.0070 to 0.0080.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p><em>Relationship:</em><br>rate of reaction is &laquo;directly&raquo; proportional to [H<sup>+</sup>]<br><em><strong>OR</strong></em><br>rate of reaction \(\alpha \)&nbsp;[H<sup>+</sup>]&nbsp;</p>
<p><em>Order of reaction with respect to [H<sup>+</sup>]:</em><br>first</p>
<p>&nbsp;</p>
<p><em>Accept "doubling the concentration&nbsp;doubles the rate".</em></p>
<p><em>Do <strong>not</strong> accept &ldquo;rate increases as&nbsp;concentration increases&rdquo;.</em></p>
<p><em><strong>[2 marks]</strong></em></p>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>zero order</p>
<p>rate of reaction is the same for all concentrations of iodine</p>
<p>&nbsp;</p>
<p><em>Accept &ldquo;all graphs have same/similar&nbsp;gradient&rdquo;.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>slow rate of reaction which gradually increases</p>
<p>as H<sup>+</sup> ions are produced &laquo;to catalyse the reaction&raquo;<br><em><strong>OR</strong></em><br>reaction is autocatalytic</p>
<p>&nbsp;</p>
<p><em>M1 should mention &ldquo;rate of reaction&rdquo;.</em></p>
<p><strong><em>[2 marks]</em></strong></p>
<div class="question_part_label">d.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The reaction between hydrogen and nitrogen monoxide is thought to proceed by the mechanism shown below.</p>
<p style="text-align: center;"><img src="" alt></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) State the equation for the overall reaction.</p>
<p>(ii) Deduce the rate expression consistent with this mechanism.</p>
<p>(iii) Explain how you would attempt to confirm this rate expression, giving the results you would expect.</p>
<p>(iv) State, giving your reason, whether confirmation of the rate expression would prove that the mechanism given is correct.</p>
<p>(v) Suggest how the rate of this reaction could be measured experimentally.</p>
<div class="marks">[7]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The enthalpy change for the reaction between nitrogen monoxide and hydrogen is &minus;664 kJ and its activation energy is 63 kJ.</p>
<p><img src="" alt></p>
<p>(i) Sketch the potential energy profile for the overall reaction, using the axes given, indicating both the enthalpy of reaction and activation energy.</p>
<p>(ii) This reaction is normally carried out using a catalyst. Draw a dotted line labelled &ldquo;Catalysed&rdquo; on the diagram above to indicate the effect of the catalyst.</p>
<p>(iii) Sketch and label a second Maxwell&ndash;Boltzmann energy distribution curve representing the same system but at a higher temperature, T<sub>higher</sub>.</p>
<p><img src="" alt></p>
<p>(iv) Explain why an increase in temperature increases the rate of this reaction.</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>One of the intermediates in the reaction between nitrogen monoxide and hydrogen is dinitrogen monoxide, N<sub>2</sub>O. This can be represented by the resonance structures below:</p>
<p><img src="" alt></p>
<p>(i) Analyse the bonding in dinitrogen monoxide in terms of &sigma;-bonds and &Delta;-bonds.</p>
<p>(ii) State what is meant by resonance.</p>
<p>&nbsp;</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question" style="padding-left: 20px;">
<p>(i)<br>2NO(g) + 2H<sub>2</sub>(g) &rarr; N<sub>2</sub>(g) + 2H<sub>2</sub>O(g)</p>
<p>(ii)<br>rate = k [NO]<sup>2</sup>[H<sub>2</sub>]</p>
<p>(iii)<br>test the effect &laquo;on the reaction rate&raquo; of varying each concentration &laquo;independently&raquo;<br><em><strong>OR</strong></em><br>test the effect of varying [NO] <strong>&laquo;</strong>on rate<strong>&raquo;</strong>, whilst keeping [H<sub>2</sub>] constant <em><strong>AND</strong></em> test effect of varying [H<sub>2</sub>] <strong>&laquo;</strong>on rate<strong>&raquo;</strong>, whilst keeping [NO] constant</p>
<p>rate proportional to [NO]<sup>2</sup><br><em><strong>OR</strong></em><br>doubling [NO] quadruples rate</p>
<p>rate proportional to [H<sub>2</sub>]<br><em><strong>OR</strong></em><br>doubling [H<sub>2</sub>] doubles rate</p>
<div class="page" title="Page 11">
<div class="section">
<div class="layoutArea">
<div class="column">
<p><em>Remember to refer back to a (ii) for <strong>ECF</strong>.</em></p>
</div>
</div>
<div class="layoutArea">
<div class="column">
<p><em>If only one species in rate expression, third mark can be awarded for zero order discussion.&nbsp;</em></p>
<p>(iv)<br>no <em><strong>AND</strong></em> different mechanisms could give the same rate expression <br><em><strong>OR</strong></em><br>no <em><strong>AND</strong></em> mechanisms can only be disproved<br><em><strong>OR</strong></em><br>no <em><strong>AND</strong></em> just suggest it is consistent with the mechanism given <br><em><strong>OR</strong></em><br>no <em><strong>AND</strong></em> does not give information about what occurs after RDS</p>
<p>(v)<br>change of pressure <strong>&laquo;</strong>at constant volume and temperature<strong>&raquo;</strong> with time<br><em><strong>OR</strong></em><br>change of volume <strong>&laquo;</strong>at constant pressure and temperature<strong>&raquo;</strong> with time</p>
<div class="page" title="Page 11">
<div class="section">
<div class="layoutArea">
<div class="column">
<p><em>Accept other methods where rate can be monitored with time</em></p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
<p>(i)</p>
<p><img src="" alt></p>
<div class="page" title="Page 12">
<div class="section">
<div class="layoutArea">
<div class="column">
<p>products lower than reactants <em><strong>AND</strong></em> enthalpy of reaction correctly marked &nbsp;and labelled with name or value<br>activation energy correctly marked and labelled with name or value&nbsp;</p>
<div class="page" title="Page 12">
<div class="section">
<div class="layoutArea">
<div class="column">
<p><em>Accept other clear ways of indicating energy/ enthalpy changes.</em></p>
<p>(ii)</p>
<p><img src="" alt></p>
<div class="page" title="Page 12">
<div class="section">
<div class="layoutArea">
<div class="column">
<p>lower dotted curve, between same reactants and products levels, labelled &ldquo;Catalysed&rdquo;</p>
<p>(iii)</p>
<p><img src="" alt></p>
<div class="page" title="Page 13">
<div class="section">
<div class="layoutArea">
<div class="column">
<p>second curve at a higher temperature is correctly drawn (maximum lower and to right of original)</p>
<p>(iv)</p>
<div class="page" title="Page 13">
<div class="section">
<div class="layoutArea">
<div class="column">
<p>greater proportion of molecules have E &ge; E<sub>a</sub> or E &gt; E<sub>a</sub> <br><em><strong>OR</strong></em><br> greater area under curve to the right of the&nbsp;E<sub>a</sub></p>
<p>greater frequency of collisions <strong>&laquo;</strong>between molecules<strong>&raquo;</strong><br><em><strong>OR</strong></em><br> more collisions per unit time/second</p>
<div class="page" title="Page 13">
<div class="section">
<div class="layoutArea">
<div class="column">
<p><em>Do <strong>not</strong> accept just particles have greater kinetic energy.</em><br><em>Do <strong>not</strong> accept just &ldquo;more collisions&rdquo;.</em></p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
<div class="page" title="Page 14">
<div class="section">
<div class="layoutArea">
<div class="column">
<p>(i)<strong><br>ALTERNATIVE 1:<br></strong>&sigma;-bond from N to N <em><strong>AND</strong></em> from N to O <br>&pi;-bond from N to N<br><span style="text-decoration: underline;">delocalized</span> &pi;-bond/&pi;-electrons <strong>&laquo;</strong>extending over the oxygen and both nitrogens<strong>&raquo;</strong>&nbsp;</p>
<p><strong>ALTERNATIVE 2:<br></strong>both have 2 &sigma;-bonds <strong>&laquo;</strong>from N to N and from N to O<strong>&raquo;</strong> <em><strong>AND</strong></em> &pi;-bond from N to N<br>one structure has second &pi;-bond from N to N and the other has &pi;-bond from N to O<br>delocalized &pi;-bond/&pi;-electrons</p>
<div class="page" title="Page 14">
<div class="section">
<div class="layoutArea">
<div class="column">
<p><em>Award <strong>[1 max]</strong> if candidate has identified both/either structure having 2 &sigma;-bonds and 2 &pi;-bonds</em></p>
<p>(ii)<br>more than one possible position for a multiple/&pi;-/pi- bond</p>
<div class="page" title="Page 14">
<div class="section">
<div class="layoutArea">
<div class="column">
<p><em>Accept &ldquo;more than one possible Lewis structure&rdquo;.</em><br><em> Accept reference to delocalisation if M3 not awarded in c (i).</em><br><em>Accept reference to fractional bond orders.</em></p>
<p>&nbsp;</p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<div class="question_part_label">c.</div>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px;">
[N/A]
<div class="question_part_label">c.</div>
</div>
<br><hr><br>