File "SL-paper2.html"
Path: /IB QUESTIONBANKS/4 Fourth Edition - PAPER/HTML/Chemistry/Topic 5/SL-paper2html
File size: 437.13 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-746ec5d03ead8d9e8b3bb7d32173f2b4e2e22a05f0c5278e086ab55b3c9c238e.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-3c91afd8a2942c18d21ed2700e1bdec14ada97f1d3788ae229315e1276d81453.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../index.html">Home</a>
</li>
<li class="active dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Questionbanks
<b class="caret"></b>
</a><ul class="dropdown-menu">
<li>
<a href="../../geography.html" target="_blank">DP Geography</a>
</li>
<li>
<a href="../../physics.html" target="_blank">DP Physics</a>
</li>
<li>
<a href="../../chemistry.html" target="_blank">DP Chemistry</a>
</li>
<li>
<a href="../../biology.html" target="_blank">DP Biology</a>
</li>
<li>
<a href="../../furtherMath.html" target="_blank">DP Further Mathematics HL</a>
</li>
<li>
<a href="../../mathHL.html" target="_blank">DP Mathematics HL</a>
</li>
<li>
<a href="../../mathSL.html" target="_blank">DP Mathematics SL</a>
</li>
<li>
<a href="../../mathStudies.html" target="_blank">DP Mathematical Studies</a>
</li>
</ul></li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="images/logo.jpg" alt="Ib qb 46 logo">
</div>
</div>
</div><h2>SL Paper 2</h2><div class="specification">
<p class="p1">The following equation represents a combustion reaction of propane, \({{\text{C}}_{\text{3}}}{{\text{H}}_{\text{8}}}{\text{(g)}}\) when the oxygen supply is limited.</p>
<p class="p1">\[{{\text{C}}_3}{{\text{H}}_8}{\text{(g)}} + {\text{3}}\frac{1}{2}{{\text{O}}_2}{\text{(g)}} \to {\text{3CO(g)}} + {\text{4}}{{\text{H}}_2}{\text{O(g)}}\]</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Define the term <em>average bond enthalpy</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>Determine \(\Delta H\), the enthalpy change of the reaction, in \({\text{kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\), using average bond enthalpy data from Table 10 of the Data Booklet. The bond enthalpy for the carbon-oxygen bond in carbon monoxide, CO, is \({\text{1072 kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\).</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>The CO molecule has dative covalent bonding. Identify a nitrogen-containing positive ion which also has this type of bonding.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Ethanol is used as a component in fuel for some vehicles. One fuel mixture contains 10% by mass of ethanol in unleaded petrol (gasoline). This mixture is often referred to as Gasohol E10.</p>
</div>
<div class="specification">
<p class="p1">Assume that the other 90% by mass of Gasohol E10 is octane. 1.00 kg of this fuel mixture was burned.</p>
<p class="p1">\[\begin{array}{*{20}{l}} {{\text{C}}{{\text{H}}_3}{\text{C}}{{\text{H}}_2}{\text{OH(l)}} + {\text{3}}{{\text{O}}_2}{\text{(g)}} \to {\text{2C}}{{\text{O}}_2}{\text{(g)}} + {\text{3}}{{\text{H}}_2}{\text{O(l)}}}&{\Delta {H^\Theta } = - 1367{\text{ kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}} \\ {{{\text{C}}_8}{{\text{H}}_{18}}{\text{(l)}} + {\text{12}}\frac{1}{2}{{\text{O}}_2}{\text{(g)}} \to {\text{8C}}{{\text{O}}_2}{\text{(g)}} + {\text{9}}{{\text{H}}_2}{\text{O(l)}}}&{\Delta {H^\Theta } = - 5470{\text{ kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}} \end{array}\]</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the mass, in g, of ethanol and octane in 1.00 kg of the fuel mixture.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the amount, in mol, of ethanol and octane in 1.00 kg of the fuel mixture.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the total amount of energy, in kJ, released when 1.00 kg of the fuel mixture is completely burned.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">If the fuel blend was vaporized before combustion, predict whether the amount of energy released would be greater, less or the same. Explain your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Ammonia, \({\text{N}}{{\text{H}}_{\text{3}}}\), is a base according to both the Brønsted–Lowry and the Lewis theories of acids and bases.</p>
</div>
<div class="specification">
<p class="p1">The equation for the reaction between sodium hydroxide, NaOH, and nitric acid, \({\text{HN}}{{\text{O}}_{\text{3}}}\), is shown below.</p>
<p class="p1">\[\begin{array}{*{20}{l}} {{\text{NaOH(aq)}} + {\text{HN}}{{\text{O}}_3}{\text{(aq)}} \to {\text{NaN}}{{\text{O}}_3}{\text{(aq)}} + {{\text{H}}_2}{\text{O(l)}}}&{{\text{ }}\Delta H = - 57.6{\text{ kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}} \end{array}\]</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Distinguish between the terms <em>strong base </em>and <em>weak base</em>, and state one example of each.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the equation for the reaction of ammonia with water.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain why ammonia can act as a Brønsted–Lowry base.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain why ammonia can also act as a Lewis base.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>When ammonium chloride, \({\text{N}}{{\text{H}}_{\text{4}}}{\text{Cl(aq)}}\), is added to excess solid sodium carbonate, \({\text{N}}{{\text{a}}_{\text{2}}}{\text{C}}{{\text{O}}_{\text{3}}}{\text{(s)}}\), an acid–base reaction occurs. Bubbles of gas are produced and the solid sodium carbonate decreases in mass. State <strong>one </strong>difference which would be observed if nitric acid, \({\text{HN}}{{\text{O}}_{\text{3}}}{\text{(aq)}}\), was used instead of ammonium chloride.</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>Deduce the Lewis structures of the ammonium ion, \({\text{NH}}_4^ + \), and the carbonate ion, \({\text{CO}}_3^{2 - }\).</p>
<p class="p1" style="text-align: center;">Ammonium ion\(\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \)Carbonate ion</p>
<p class="p1">(iii) <span class="Apple-converted-space"> </span>Predict the shapes of \({\text{NH}}_4^ + \) and \({\text{CO}}_3^{2 - }\).</p>
<p class="p1">\({\text{NH}}_4^ + \):</p>
<p class="p1">\({\text{CO}}_3^{2 - }\):</p>
<div class="marks">[5]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>Sketch and label an enthalpy level diagram for this reaction.</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>Deduce whether the reactants or the products are more energetically stable, stating your reasoning.</p>
<p class="p1">(iii) <span class="Apple-converted-space"> </span>Calculate the change in heat energy, in kJ, when \({\text{50.0 c}}{{\text{m}}^{\text{3}}}\) of \({\text{2.50 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) sodium hydroxide solution is added to excess nitric acid.</p>
<div class="marks">[6]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">When 5.35 g ammonium chloride, \({\text{N}}{{\text{H}}_{\text{4}}}{\text{Cl(s)}}\), is added to \({\text{100.0 c}}{{\text{m}}^{\text{3}}}\) of water, the temperature of the water decreases from 19.30 °C to 15.80 °C. Determine the enthalpy change, in \({\text{kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\), for the dissolving of ammonium chloride in water.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Two students were asked to use information from the Data Booklet to calculate a value for the enthalpy of hydrogenation of ethene to form ethane.</p>
<p class="p1">\[{{\text{C}}_2}{{\text{H}}_4}{\text{(g)}} + {{\text{H}}_2}{\text{(g)}} \to {{\text{C}}_2}{{\text{H}}_6}{\text{(g)}}\]</p>
<p class="p1">John used the average bond enthalpies from Table 10. Marit used the values of enthalpies of combustion from Table 12.</p>
</div>
<div class="specification">
<p class="p1">John then decided to determine the enthalpy of hydrogenation of cyclohexene to produce cyclohexane.</p>
<p class="p1">\[{{\text{C}}_{\text{6}}}{{\text{H}}_{{\text{10}}}}{\text{(l)}} + {{\text{H}}_{\text{2}}}{\text{(g)}} \to {{\text{C}}_{\text{6}}}{{\text{H}}_{{\text{12}}}}{\text{(l)}}\]</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the value for the enthalpy of hydrogenation of ethene obtained using the average bond enthalpies given in Table 10.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Marit arranged the values she found in Table 12 into an energy cycle.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-10-16_om_08.37.35.png" alt="M09/4/CHEMI/SP2/ENG/TZ1/02.b"></p>
<p class="p1">Calculate the value for the enthalpy of hydrogenation of ethene from the energy cycle.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Suggest <strong>one </strong>reason why John’s answer is slightly less accurate than Marit’s answer.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Use the average bond enthalpies to deduce a value for the enthalpy of hydrogenation of cyclohexene.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The percentage difference between these two methods (average bond enthalpies and enthalpies of combustion) is greater for cyclohexene than it was for ethene. John’s hypothesis was that it would be the same. Determine why the use of average bond enthalpies is less accurate for the cyclohexene equation shown above, than it was for ethene. Deduce what extra information is needed to provide a more accurate answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Define the term <em>average bond enthalpy</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce the balanced chemical equation for the complete combustion of butan-1-ol.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine the standard enthalpy change, in \({\text{kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\), for the complete combustion of butan-1-ol, using the information from Table 10 of the Data Booklet.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Based on the types of intermolecular force present, explain why butan-1-ol has a higher boiling point than butanal.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">An example of a homogeneous reversible reaction is the reaction between hydrogen and iodine.</p>
<p class="p1">\[{{\text{H}}_{\text{2}}}{\text{(g)}} + {{\text{I}}_{\text{2}}}{\text{(g)}} \rightleftharpoons {\text{2HI(g)}}\]</p>
</div>
<div class="specification">
<p class="p1">Propane can be formed by the hydrogenation of propene.</p>
<p class="p2">\[{\text{C}}{{\text{H}}_3}{\text{CH=C}}{{\text{H}}_2}{\text{(g)}} + {{\text{H}}_2}{\text{(g)}} \to {\text{C}}{{\text{H}}_3}{\text{C}}{{\text{H}}_2}{\text{C}}{{\text{H}}_3}{\text{(g)}}\]</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Outline the characteristics of a homogeneous chemical system that is in a state of equilibrium.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce the expression for the equilibrium constant, \({K_{\text{c}}}\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Predict what would happen to the position of equilibrium and the value of \({K_{\text{c}}}\) if the pressure is increased from 1 atm to 2 atm.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The value of \({K_{\text{c}}}\) at 500 K is 160 and the value of \({K_{\text{c}}}\) at 700 K is 54. Deduce what this information tells us about the enthalpy change of the forward reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The reaction can be catalysed by adding platinum metal. State and explain what effect the addition of platinum would have on the value of the equilibrium constant.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.v.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the conditions necessary for the hydrogenation reaction to occur.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Enthalpy changes can be determined using average bond enthalpies. Define the term <em>average bond enthalpy</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine a value for the hydrogenation of propene using information from Table 10 of the Data Booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain why the enthalpy of hydrogenation of propene is an exothermic process.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Describe a chemical test that could be used to distinguish between propane and propene. In <strong>each </strong>case state the result of the test.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Under certain conditions propene can polymerize to form poly(propene). State the type of polymerization taking place and draw a section of the polymer to represent the repeating unit.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Other than polymerization, state <strong>one </strong>reaction of alkenes which is of economic importance.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>Enthalpy changes depend on the number and type of bonds broken and formed.</p>
</div>
<div class="specification">
<p>The table lists the standard enthalpies of formation, \(\Delta H_{\text{f}}^\Theta \), for some of the species in the reaction above.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-10_om_08.21.04.png" alt="M18/4/CHEMI/SP2/ENG/TZ2/04.b"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hydrogen gas can be formed industrially by the reaction of natural gas with steam.</p>
<p> CH<sub>4</sub>(g) + H<sub>2</sub>O(g) → 3H<sub>2</sub>(g) + CO(g)</p>
<p>Determine the enthalpy change, Δ<em>H, </em>for the reaction, in kJ, using section 11 of the data booklet.</p>
<p>Bond enthalpy for C≡O: 1077 kJ mol<sup>−1</sup></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why no value is listed for H<sub>2</sub>(g).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the value of Δ<em>H</em><sup>Θ</sup>, in kJ, for the reaction using the values in the table.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why the value of enthalpy of reaction calculated from bond enthalpies is less accurate.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>Ethane-1,2-diol, HOCH<sub>2</sub>CH<sub>2</sub>OH, has a wide variety of uses including the removal of ice from aircraft and heat transfer in a solar cell.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Ethane-1,2-diol can be formed according to the following reaction.</p>
<p style="text-align: center;">2CO (g) + 3H<sub>2 </sub>(g) \( \rightleftharpoons \) HOCH<sub>2</sub>CH<sub>2</sub>OH (g)</p>
<p>(i) Deduce the equilibrium constant expression, <em>K</em><sub>c</sub>, for this reaction.</p>
<p> </p>
<p>(ii) State how increasing the pressure of the reaction mixture at constant temperature will affect the position of equilibrium and the value of <em>K</em><sub>c</sub>.</p>
<p style="padding-left: 30px;">Position of equilibrium:</p>
<p style="padding-left: 30px;"><em>K</em><sub>c</sub>:</p>
<p style="padding-left: 30px;"> </p>
<p>(iii) Calculate the enthalpy change, Δ<em>H</em><sup>θ</sup>, in kJ, for this reaction using section 11 of the data booklet. The bond enthalpy of the carbon–oxygen bond in CO (g) is 1077kJmol<sup>-1</sup>.</p>
<p> </p>
<p>(iv) The enthalpy change, ΔH<sup>θ</sup>, for the following similar reaction is –233.8 kJ.</p>
<p style="text-align: center;">2CO(g) + 3H<sub>2</sub>(g) \( \rightleftharpoons \) HOCH<sub>2</sub>CH<sub>2</sub>OH (l)</p>
<p>Deduce why this value differs from your answer to (a)(iii).</p>
<div class="marks">[7]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the average oxidation state of carbon in ethene and in ethane-1,2-diol.</p>
<p style="padding-left: 30px;">Ethene:</p>
<p style="padding-left: 30px;">Ethane-1,2-diol:</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the boiling point of ethane-1,2-diol is significantly greater than that of ethene.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Ethane-1,2-diol can be oxidized first to ethanedioic acid, (COOH)<sub>2</sub>, and then to carbon dioxide and water. Suggest the reagents to oxidize ethane-1,2-diol.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">If white anhydrous copper(II) sulfate powder is left in the atmosphere it slowly absorbs water vapour giving the blue pentahydrated solid.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-10-30_om_04.56.53.png" alt="M11/4/CHEMI/SP2/ENG/TZ2/01_1"></p>
<p class="p1">It is difficult to measure the enthalpy change for this reaction directly. However, it is possible to measure the heat changes directly when both anhydrous and pentahydrated copper(II) sulfate are separately dissolved in water, and then use an energy cycle to determine the required enthalpy change value, <span class="s1">\(\Delta {H_{\text{x}}}\)</span>, indirectly.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-10-30_om_04.57.32.png" alt="M11/4/CHEMI/SP2/ENG/TZ2/01_2"></p>
</div>
<div class="specification">
<p class="p1">To determine \(\Delta {H_1}\) a student placed 50.0 g of water in a cup made of expanded polystyrene and used a data logger to measure the temperature. After two minutes she dissolved 3.99 g of anhydrous copper(II) sulfate in the water and continued to record the temperature while continuously stirring. She obtained the following results.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-10-30_om_05.00.06.png" alt="M11/4/CHEMI/SP2/ENG/TZ2/01.a"></p>
</div>
<div class="specification">
<p class="p1">To determine \(\Delta {H_2}\), 6.24 g of pentahydrated copper(II) sulfate was dissolved in 47.75 g of water. It was observed that the temperature of the solution decreased by 1.10 °C.</p>
</div>
<div class="specification">
<p class="p1">The magnitude (the value without the \( + \) or \( - \) sign) found in a data book for \(\Delta {H_{\text{x}}}\) is \({\text{78.0 kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the amount, in mol, of anhydrous copper(II) sulfate dissolved in the 50.0 g of water.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine what the temperature rise would have been, in °C, if no heat had been lost to the surroundings.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the heat change, in kJ, when 3.99 g of anhydrous copper(II) sulfate is dissolved in the water.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine the value of \(\Delta {H_1}{\text{ in kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the amount, in mol, of water in 6.24 g of pentahydrated copper(II) sulfate.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine the value of \(\Delta {H_2}\) in \({\text{kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Using the values obtained for \(\Delta {H_1}\) in (a) (iv) and \(\Delta {H_2}\) in (b) (ii), determine the value for \(\Delta {H_{\text{x}}}\) in \({\text{kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the percentage error obtained in this experiment. (If you did not obtain an answer for the experimental value of \(\Delta {H_{\text{x}}}\) then use the value \({\text{70.0 kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\), but this is <strong>not </strong>the true value.)</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The student recorded in her qualitative data that the anhydrous copper(II) sulfate she used was pale blue rather than completely white. Suggest a reason why it might have had this pale blue colour and deduce how this would have affected the value she obtained for \(\Delta {H_{\text{x}}}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Consider the following equilibrium:</p>
<p class="p1">\[\begin{array}{*{20}{l}} {{\text{4N}}{{\text{H}}_3}{\text{(g)}} + {\text{5}}{{\text{O}}_2}{\text{(g)}} \rightleftharpoons {\text{4NO(g)}} + {\text{6}}{{\text{H}}_2}{\text{O(g)}}}&{\Delta {H^\Theta } = - 909{\text{ kJ}}} \end{array}\]</p>
</div>
<div class="specification">
<p class="p1">Nitrogen reacts with hydrogen to form ammonia in the Haber process, according to the following equilibrium.</p>
<p class="p1">\[\begin{array}{*{20}{l}} {{{\text{N}}_{\text{2}}}{\text{(g)}} + {\text{3}}{{\text{H}}_{\text{2}}}{\text{(g)}} \rightleftharpoons {\text{2N}}{{\text{H}}_{\text{3}}}{\text{(g)}}}&{\Delta {H^\Theta } = - 92.6{\text{ kJ}}} \end{array}\]</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce the equilibrium constant expression, \({K_{\text{c}}}\), for the reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Predict the direction in which the equilibrium will shift when the following changes occur.</p>
<p class="p1">The volume increases.</p>
<p class="p1">The temperature decreases.</p>
<p class="p1">\({{\text{H}}_{\text{2}}}{\text{O(g)}}\) is removed from the system.</p>
<p class="p1">A catalyst is added to the reaction mixture.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Define the term <em>activation energy</em>, \({E_{\text{a}}}\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Nitrogen monoxide, NO, is involved in the decomposition of ozone according to the following mechanism.</p>
<p class="p2">\[\begin{array}{*{20}{l}} {}&{{{\text{O}}_{\text{3}}} \to {{\text{O}}_{\text{2}}} + {\text{O}} \bullet } \\ {}&{{{\text{O}}_3} + {\text{NO}} \to {\text{N}}{{\text{O}}_2} + {{\text{O}}_2}} \\ {}&{{\text{N}}{{\text{O}}_2} + {\text{O}} \bullet \to {\text{NO}} + {{\text{O}}_2}} \\ {{\text{Overall:}}}&{{\text{2}}{{\text{O}}_3} \to {\text{3}}{{\text{O}}_2}} \end{array}\]</p>
<p class="p1">State and explain whether or not NO is acting as a catalyst.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Define the term <em>endothermic reaction</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Sketch the Maxwell-Boltzmann energy distribution curve for a reaction with and without a catalyst, and label both axes.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Define the term <em>rate of reaction</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Iron, used as the catalyst in the Haber process, has a specific heat capacity of \({\text{0.4490 J}}\,{{\text{g}}^{ - 1}}{{\text{K}}^{ - 1}}\). If 245.0 kJ of heat is supplied to 8.500 kg of iron, initially at a temperature of 15.25 °C, determine its final temperature in K.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>This question is about ethene, C<sub>2</sub>H<sub>4</sub>, and ethyne, C<sub>2</sub>H<sub>2</sub>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Ethyne, like ethene, undergoes hydrogenation to form ethane. State the conditions required.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline the formation of polyethene from ethene by drawing three repeating units of the polymer.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Under certain conditions, ethyne can be converted to benzene.</p>
<p>Determine the standard enthalpy change, Δ<em>H</em><sup>ϴ</sup><em>, </em>for the reaction stated, using section 11 of the data booklet.</p>
<p> 3C<sub>2</sub>H<sub>2</sub>(g) → C<sub>6</sub>H<sub>6</sub>(g)</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the standard enthalpy change, Δ<em>H</em><sup>Θ</sup><em>, </em>for the following similar reaction, using Δ<em>H</em><sub>f</sub> values in section 12 of the data booklet.</p>
<p>3C<sub>2</sub>H<sub>2</sub>(g) → C<sub>6</sub>H<sub>6</sub>(l)</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain, giving two reasons, the difference in the values for (b)(i) and (ii). If you did not obtain answers, use −475 kJ for (i) and −600 kJ for (ii).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>One possible Lewis structure for benzene is shown.</p>
<p> <img src="images/Schermafbeelding_2018-08-09_om_15.01.32.png" alt="M18/4/CHEMI/SP2/ENG/TZ1/03.c"></p>
<p>State one piece of physical evidence that this structure is <strong>incorrect</strong>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the characteristic reaction mechanism of benzene.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Methanol is made in large quantities as it is used in the production of polymers and in fuels. The enthalpy of combustion of methanol can be determined theoretically or experimentally.</p>
<p class="p1">\[{\text{C}}{{\text{H}}_3}{\text{OH(l)}} + {\text{1}}\frac{1}{2}{{\text{O}}_2}{\text{(g)}} \to {\text{C}}{{\text{O}}_2}{\text{(g)}} + {\text{2}}{{\text{H}}_2}{\text{O(g)}}\]</p>
</div>
<div class="specification">
<p class="p1">The enthalpy of combustion of methanol can also be determined experimentally in a school laboratory. A burner containing methanol was weighed and used to heat water in a test tube as illustrated below.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-10-25_om_06.34.49.png" alt="M11/4/CHEMI/SP2/ENG/TZ1/01.b_1"></p>
<p class="p1">The following data were collected.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-10-25_om_06.36.09.png" alt="M11/4/CHEMI/SP2/ENG/TZ1/01.b.2"></p>
</div>
<div class="specification">
<p class="p1">The Data Booklet value for the enthalpy of combustion of methanol is \( - {\text{726 kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\). Suggest why this value differs from the values calculated in parts (a) and (b).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Using the information from Table 10 of the Data Booklet, determine the theoretical enthalpy of combustion of methanol.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the amount, in mol, of methanol burned.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the heat absorbed, in kJ, by the water.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine the enthalpy change, in \({\text{kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\), for the combustion of 1 mole of methanol.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Part (a)</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Part (b)</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">In December 2010, researchers in Sweden announced the synthesis of N,N–dinitronitramide, \({\text{N(N}}{{\text{O}}_{\text{2}}}{{\text{)}}_{\text{3}}}\). They speculated that this compound, more commonly called trinitramide, may have significant potential as an environmentally friendly rocket fuel oxidant.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Methanol reacts with trinitramide to form nitrogen, carbon dioxide and water. Deduce the coefficients required to balance the equation for this reaction.</p>
<p class="p1" style="text-align: center;">___ \({\text{N(N}}{{\text{O}}_2}{{\text{)}}_3}{\text{(g)}} + \) ___ \({\text{C}}{{\text{H}}_3}{\text{OH(l)}} \to \) ___ \({{\text{N}}_2}{\text{(g)}} + \) ___ \({\text{C}}{{\text{O}}_2}{\text{(g)}} + \) ___ \({{\text{H}}_2}{\text{O(l)}}\)</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the enthalpy change, in \({\text{kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\), when one mole of trinitramide decomposes to its elements, using bond enthalpy data from Table 10 of the Data Booklet. Assume that all the N–O bonds in this molecule have a bond enthalpy of \({\text{305 kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Outline how the length of the N–N bond in trinitramide compares with the N–N bond in nitrogen gas, \({{\text{N}}_{\text{2}}}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce the N–N–N bond angle in trinitramide and explain your reasoning.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Predict, with an explanation, the polarity of the trinitramide molecule.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Methanol can also be burnt as a fuel. Describe an experiment that would allow the molar enthalpy change of combustion to be calculated from the results.</p>
<div class="marks">[3]</div>
<div class="question_part_label">g.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain how the results of this experiment could be used to calculate the molar enthalpy change of combustion of methanol.</p>
<div class="marks">[3]</div>
<div class="question_part_label">g.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Predict, with an explanation, how the result obtained would compare with the value in Table 12 of the Data Booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.iii.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">In some countries, ethanol is mixed with gasoline (petrol) to produce a fuel for cars called gasohol.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Define the term <em>average bond enthalpy</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Use the information from Table 10 of the Data Booklet to determine the standard enthalpy change for the complete combustion of ethanol.</p>
<p class="p1">\[{\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{OH(g)}} + {\text{3}}{{\text{O}}_{\text{2}}}{\text{(g)}} \to {\text{2C}}{{\text{O}}_{\text{2}}}{\text{(g)}} + {\text{3}}{{\text{H}}_{\text{2}}}{\text{O(g)}}\]</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The standard enthalpy change for the complete combustion of octane, \({{\text{C}}_{\text{8}}}{{\text{H}}_{{\text{18}}}}\), is \( - 5471{\text{ kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\). Calculate the amount of energy produced in kJ when 1 g of ethanol and 1 g of octane is burned completely in air.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Ethanol can be oxidized using acidified potassium dichromate, \({{\text{K}}_{\text{2}}}{\text{C}}{{\text{r}}_{\text{2}}}{{\text{O}}_{\text{7}}}\), to form two different organic products.</p>
<p class="p1" style="text-align: center;">\({\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{OH}}\xrightarrow[{{{\text{H}}^ + }}]{{{\text{C}}{{\text{r}}_{\text{2}}}{\text{O}}_7^{2 - }}}\) <strong>A</strong> \(\xrightarrow[{{{\text{H}}^ + }}]{{{\text{C}}{{\text{r}}_{\text{2}}}{\text{O}}_7^{2 - }}}\) <strong>B</strong></p>
<p class="p1">State the structural formulas of the organic products <strong>A </strong>and <strong>B </strong>and describe the conditions required to obtain a high yield of each of them.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce and explain whether ethanol or <strong>A </strong>has the higher boiling point.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.v.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Ethene can be converted into ethanol by direct hydration in the presence of a catalyst according to the following equation.</p>
<p class="p1">\[{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{4}}}{\text{(g)}} + {{\text{H}}_{\text{2}}}{\text{O(g)}} \rightleftharpoons {\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{OH(g)}}\]</p>
<p class="p1">For this reaction identify the catalyst used and state <strong>one </strong>use of the ethanol formed other than as a fuel.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.vi.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the name of <strong>one </strong>structural isomer of pentane.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">To determine the enthalpy change of combustion of methanol, \({\text{C}}{{\text{H}}_{\text{3}}}{\text{OH}}\), 0.230 g of methanol was combusted in a spirit burner. The heat released increased the temperature of \({\text{50.0 c}}{{\text{m}}^{\text{3}}}\) of water from 24.5 °<span class="s2">C </span>to 45.8 °<span class="s2">C</span>.</p>
</div>
<div class="specification">
<p class="p1">The manufacture of gaseous methanol from CO and \({{\text{H}}_{\text{2}}}\) involves an equilibrium reaction.</p>
<p class="p2">\[{\text{CO(g)}} + {\text{2}}{{\text{H}}_2}{\text{(g)}} \rightleftharpoons {\text{C}}{{\text{H}}_3}{\text{OH(g)}}\,\,\,\,\,\Delta {H^\Theta } < 0\]</p>
</div>
<div class="specification">
<p class="p1">State and explain the effect of the following changes on the equilibrium position of the reaction in part (c).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the enthalpy change of combustion of methanol.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Using the theoretical value in Table 12 of the Data Booklet, discuss the experimental results, including <strong>one </strong>improvement that could be made.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Methanol can be produced according to the following equation.</p>
<p>\[{\text{CO(g)}} + {\text{2}}{{\text{H}}_2}{\text{(g)}} \to {\text{C}}{{\text{H}}_3}{\text{OH(l)}}\]</p>
<p>Calculate the standard enthalpy change of this reaction using the following data:</p>
<p>\[\begin{array}{*{20}{l}} {{\text{I: 2C}}{{\text{H}}_3}{\text{OH(l)}} + {\text{3}}{{\text{O}}_2}{\text{(g)}} \to {\text{2C}}{{\text{O}}_2}{\text{(g)}} + {\text{4}}{{\text{H}}_{\text{2}}}{\text{O(l)}}}&{\Delta {H^\Theta } = - 1452{\text{ kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}} \\ {{\text{II: 2CO(g)}} + {{\text{O}}_2}{\text{(g)}} \to {\text{2C}}{{\text{O}}_2}{\text{(g)}}}&{\Delta {H^\Theta } = - 566{\text{ kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}} \\ {{\text{III: 2}}{{\text{H}}_2}{\text{(g)}} + {{\text{O}}_2}{\text{(g)}} \to {\text{2}}{{\text{H}}_2}{\text{O(l)}}}&{\Delta {H^\Theta } = - 572{\text{ kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}} \end{array}\]</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Outline the characteristics of a chemical equilibrium.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce the equilibrium constant expression, \({K_{\text{c}}}\), for this reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Increase in temperature.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Increase in pressure.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Addition of a catalyst.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.iii.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Define the term <em>activation energy</em>, \({E_{\text{a}}}\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State <strong>two </strong>conditions necessary for a reaction to take place between two reactant particles.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Sketch an enthalpy level diagram to describe the effect of a catalyst on an <em>exothermic </em>reaction.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Alkenes, such as <strong>A</strong> (shown below), are important intermediates in the petrochemical industry because they undergo addition reactions to produce a wide variety of products, such as the conversion shown below.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-17_om_17.00.19.png" alt="M14/4/CHEMI/SP2/ENG/TZ2/06"></p>
</div>
<div class="specification">
<p>Another way to make <strong>B</strong> is the reaction shown below.</p>
<p><img src="images/Schermafbeelding_2016-08-17_om_17.11.56.png" alt="M14/4/CHEMI/SP2/ENG/TZ2/06.c"></p>
</div>
<div class="specification">
<p><strong>B </strong>can be converted into <strong>C</strong>.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-17_om_17.16.54.png" alt="M14/4/CHEMI/SP2/ENG/TZ2/06.d"></p>
</div>
<div class="specification">
<p>In the gas phase, <strong>A</strong> reacts with hydrogen to form <strong>D</strong>.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-17_om_17.41.44.png" alt="M14/4/CHEMI/SP2/ENG/TZ2/06.g"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Applying IUPAC rules, state the name of <strong>A</strong>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the reagent required to convert <strong>A</strong> into <strong>B</strong>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) State the conditions required for this reaction to occur.</p>
<p> </p>
<p>(ii) Outline why it would give a poor yield of the desired product.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) State the reagent required.</p>
<p> </p>
<p>(ii) Explain the mechanism of this reaction, using curly arrows to represent the movement of electron pairs.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><strong>A </strong>can also be converted into <strong>C </strong>without going via <strong>B</strong>. State the reagent and conditions required.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) State why <strong>C </strong>is <strong>not </strong>readily oxidized by acidified potassium dichromate(VI).</p>
<p> </p>
<p> </p>
<p>(ii) Deduce the structural formula of an isomer of <strong>C </strong>that could be oxidized to a carboxylic acid by this reagent.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the conditions required for this reaction to occur.</p>
<div class="marks">[1]</div>
<div class="question_part_label">g.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the homologous series to which <strong>D</strong> belongs.</p>
<div class="marks">[1]</div>
<div class="question_part_label">g.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the enthalpy change, in \({\text{kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\), for the reaction of <strong>A</strong> with hydrogen, using Table 10 of the Data Booklet, and state whether the reaction is exothermic or endothermic.</p>
<div class="marks">[4]</div>
<div class="question_part_label">g.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The standard enthalpy change of combustion of <strong>A</strong> is \( - 4000{\text{ kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\). Calculate the amount of <strong>A</strong>, in mol, that would have to be burned to raise the temperature of \({\text{1 d}}{{\text{m}}^{\text{3}}}\) of water from 20 °C to 100 °C.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.iv.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Two groups of students (Group A and Group B) carried out a project* on the chemistry of some group 7 elements (the halogens) and their compounds.</p>
<p class="p1"> </p>
<p class="p1"><span class="s1"><em>* </em></span><em>Adapted from J Derek Woollins, (2009), Inorganic Experiments and Open University, (2008), Exploring the Molecular World.</em></p>
</div>
<div class="specification">
<p class="p1">In the first part of the project, the two groups had a sample of iodine monochloride (a corrosive brown liquid) prepared for them by their teacher using the following reaction.</p>
<p class="p1">\[{{\text{I}}_{\text{2}}}{\text{(s)}} + {\text{C}}{{\text{l}}_{\text{2}}}{\text{(g)}} \to {\text{2ICl(l)}}\]</p>
<p class="p1">The following data were recorded.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-23_om_06.15.25.png" alt="N12/4/CHEMI/SP2/ENG/TZ0/01.a"></p>
</div>
<div class="specification">
<p class="p1">The students reacted ICl(l) with CsBr(s) to form a yellow solid, \({\text{CsIC}}{{\text{l}}_{\text{2}}}{\text{(s)}}\), as one of the products. \({\text{CsIC}}{{\text{l}}_{\text{2}}}{\text{(s)}}\) has been found to produce very pure CsCl(s) which is used in cancer treatment.</p>
<p class="p1">To confirm the composition of the yellow solid, Group A determined the amount of iodine in 0.2015 g of \({\text{CsIC}}{{\text{l}}_{\text{2}}}{\text{(s)}}\) by titrating it with \({\text{0.0500 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}{\text{ N}}{{\text{a}}_{\text{2}}}{{\text{S}}_{\text{2}}}{{\text{O}}_{\text{3}}}{\text{(aq)}}\). The following data were recorded for the titration.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-23_om_06.22.04.png" alt="N12/4/CHEMI/SP2/ENG/TZ0/01.c"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>State the number of significant figures for the masses of \({{\text{I}}_{\text{2}}}{\text{(s)}}\) and ICl(l).</p>
<p class="p2"> </p>
<p class="p1">\({{\text{I}}_{\text{2}}}{\text{(s)}}\):</p>
<p class="p2"> </p>
<p class="p1">ICl (l):</p>
<p class="p2"> </p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>The iodine used in the reaction was in excess. Determine the theoretical yield, in g, of ICl(l).</p>
<p class="p1">(iii) <span class="Apple-converted-space"> </span>Calculate the percentage yield of ICl(l).</p>
<p class="p1">(iv) <span class="Apple-converted-space"> </span>Using a digital thermometer, the students discovered that the reaction was exothermic. State the sign of the enthalpy change of the reaction, \(\Delta H\).</p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Although the molar masses of ICl and <span class="s1">\({\rm{B}}{{\rm{r}}_2}\) </span>are very similar, the boiling point of ICl is 97.4 °C and that of <span class="s1">\({\rm{B}}{{\rm{r}}_2}\) </span>is 58.8 °C. Explain the difference in these boiling points in terms of the intermolecular forces present in each liquid.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>Calculate the percentage of iodine by mass in \({\text{CsIC}}{{\text{l}}_{\text{2}}}{\text{(s)}}\), correct to <strong>three</strong> significant figures.</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>State the volume, in \({\text{c}}{{\text{m}}^{\text{3}}}\), of \({\text{0.0500 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}{\text{ N}}{{\text{a}}_{\text{2}}}{{\text{S}}_{\text{2}}}{{\text{O}}_{\text{3}}}{\text{(aq)}}\) used in the titration.</p>
<p class="p1">(iii) <span class="Apple-converted-space"> </span>Determine the amount, in mol, of \({\text{0.0500 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}{\text{ N}}{{\text{a}}_{\text{2}}}{{\text{S}}_{\text{2}}}{{\text{O}}_{\text{3}}}{\text{(aq)}}\) added in the titration.</p>
<p class="p1">(iv) <span class="Apple-converted-space"> </span>The overall reaction taking place during the titration is:</p>
<p class="p1">\[{\text{CsICl(s)}} + {\text{2N}}{{\text{a}}_2}{{\text{S}}_2}{{\text{O}}_3}{\text{(aq)}} \to {\text{NaCl(aq)}} + {\text{N}}{{\text{a}}_2}{{\text{S}}_4}{{\text{O}}_6}{\text{(aq)}} + {\text{CsCl(aq)}} + {\text{NaI(aq)}}\]</p>
<p class="p1">Calculate the amount, in mol, of iodine atoms, I, present in the sample of \({\text{CsIC}}{{\text{l}}_{\text{2}}}{\text{(s)}}\).</p>
<p class="p1">(v) <span class="Apple-converted-space"> </span>Calculate the mass of iodine, in g, present in the sample of \({\text{CsIC}}{{\text{l}}_{\text{2}}}\)</p>
<p class="p1">(vi) <span class="Apple-converted-space"> </span>Determine the percentage by mass of iodine in the sample of \({\text{CsIC}}{{\text{l}}_{\text{2}}}{\text{(s)}}\), correct to <strong>three </strong>significant figures, using your answer from (v).</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Chlorine occurs in Group 7, the halogens.</p>
</div>
<div class="specification">
<p class="p1">Two stable isotopes of chlorine are \(^{{\text{35}}}{\text{Cl}}\) and \(^{{\text{37}}}{\text{Cl}}\) with mass numbers 35 and 37 respectively.</p>
</div>
<div class="specification">
<p class="p1">Chlorine has an electronegativity value of 3.2 on the Pauling scale.</p>
</div>
<div class="specification">
<p class="p1">Chloroethene, H<sub><span class="s1">2</span></sub>C=CHCl, the monomer used in the polymerization reaction in the manufacture of the polymer poly(chloroethene), PVC, can be synthesized in the following two-stage reaction pathway.</p>
<p class="p1">\[\begin{array}{*{20}{l}} {{\text{Stage 1:}}}&{{{\text{C}}_2}{{\text{H}}_4}{\text{(g)}} + {\text{C}}{{\text{l}}_2}{\text{(g)}} \to {\text{ClC}}{{\text{H}}_2}{\text{C}}{{\text{H}}_2}{\text{Cl(g)}}} \\ {{\text{Stage 2:}}}&{{\text{ClC}}{{\text{H}}_2}{\text{C}}{{\text{H}}_2}{\text{Cl(g)}} + {\text{HC=CHCl(g)}} + {\text{HCl(g)}}} \end{array}\]</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Define the term <em>isotopes of an element</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the number of protons, neutrons and electrons in the isotopes <sup><span class="s1">35</span></sup>Cl and <sup><span class="s1">37</span></sup>Cl.</p>
<p class="p1"><img src="images/Schermafbeelding_2016-09-19_om_06.41.13.png" alt="M13/4/CHEMI/SP2/ENG/TZ2/06.a.ii"></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Using the mass numbers of the two isotopes and the relative atomic mass of chlorine from Table 5 of the Data Booklet, determine the percentage abundance of each isotope.</p>
<p class="p2"> </p>
<p class="p2"> </p>
<p class="p2"> </p>
<p class="p2"> </p>
<p class="p1">Percentage abundance <sup><span class="s1">35</span></sup>Cl:</p>
<p class="p2"> </p>
<p class="p1">Percentage abundance <sup><span class="s1">37</span></sup>Cl:</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Define the term <em>electronegativity</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Using Table 7 of the Data Booklet, explain the trends in electronegativity values of the Group 7 elements from F to I.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the balanced chemical equation for the reaction of potassium bromide, KBr(aq), with chlorine, Cl<sub><span class="s1">2</span></sub>(aq).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Describe the colour change likely to be observed in this reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine the enthalpy change, \(\Delta H\), in \({\text{kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\), for stage 1 using average bond enthalpy data from Table 10 of the Data Booklet.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State whether the reaction given in stage 1 is exothermic or endothermic.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Draw the structure of poly(chloroethene) showing <strong>two </strong>repeating units.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Suggest why monomers are often gases or volatile liquids whereas polymers are solids.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.v.</div>
</div>
<br><hr><br><div class="specification">
<p>Consider the following list of organic compounds.</p>
<p> Compound 1: \({\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{CH(OH)C}}{{\text{H}}_{\text{3}}}\)</p>
<p> Compound 2: \({\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{COC}}{{\text{H}}_{\text{3}}}\)</p>
<p> Compound 3: \({\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{OH}}\)</p>
<p> Compound 4: \({\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{CHO}}\)</p>
</div>
<div class="specification">
<p>Hydrochloric acid neutralizes sodium hydroxide, forming sodium chloride and water.</p>
<p style="text-align: center;">\({\text{NaOH(aq)}} + {\text{HCl(aq)}} \to {\text{NaCl(aq)}} + {{\text{H}}_{\text{2}}}{\text{O(l)}}\) \(\Delta {H^\Theta } = -57.9{\text{ kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\)</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Apply IUPAC rules to state the name of compound 1.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Define the term <em>structural isomers</em>.</p>
<p> </p>
<p> </p>
<p>(ii) Identify the two compounds in the list that are structural isomers of each other.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the organic product formed when each of the compounds is heated under reflux with excess acidified potassium dichromate(VI). If no reaction occurs write NO REACTION in the table.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-23_om_08.41.32.png" alt="N14/4/CHEMI/SP2/ENG/TZ0/07.c"></p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain the mechanism for the substitution reaction of bromoethane with sodium hydroxide. Use curly arrows to represent the movement of electron pairs.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Define the term <em>standard enthalpy change of reaction</em>, \(\Delta {H^\Theta }\).</p>
<p> </p>
<p> </p>
<p> </p>
<p>(ii) Determine the amount of energy released, in kJ, when \({\text{50.0 c}}{{\text{m}}^{\text{3}}}\) of \({\text{1.00 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) sodium hydroxide solution reacts with \({\text{50.0 c}}{{\text{m}}^{\text{3}}}\) of \({\text{1.00 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) hydrochloric acid solution.</p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p>(iii) In an experiment, 2.50 g of solid sodium hydroxide was dissolved in \({\text{50.0 c}}{{\text{m}}^{\text{3}}}\) of water. The temperature rose by 13.3 °C. Calculate the standard enthalpy change, in \({\text{kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\), for dissolving one mole of solid sodium hydroxide in water.</p>
<p>\[{\text{NaOH(s)}} \to {\text{NaOH(aq)}}\]</p>
<p>(iv) Using relevant data from previous question parts, determine \(\Delta {H^\Theta }\), in \({\text{kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\), for the reaction of solid sodium hydroxide with hydrochloric acid.</p>
<p>\[{\text{NaOH(s)}} + {\text{HCl(aq)}} \to {\text{NaCl(aq)}} + {{\text{H}}_{\text{2}}}{\text{O(l)}}\]</p>
<div class="marks">[9]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>0.100 g of magnesium ribbon is added to \({\text{50.0 c}}{{\text{m}}^{\text{3}}}\) of \({\text{1.00 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) sulfuric acid to produce hydrogen gas and magnesium sulfate.</p>
<p>\[{\text{Mg(s)}} + {{\text{H}}_2}{\text{S}}{{\text{O}}_4}{\text{(aq)}} \to {{\text{H}}_2}{\text{(g)}} + {\text{MgS}}{{\text{O}}_4}{\text{(aq)}}\]</p>
</div>
<div class="specification">
<p>Magnesium sulfate can exist in either the hydrated form or in the anhydrous form. Two students wished to determine the enthalpy of hydration of anhydrous magnesium sulfate. They measured the initial and the highest temperature reached when anhydrous magnesium sulfate, \({\text{MgS}}{{\text{O}}_{\text{4}}}{\text{(s)}}\), was dissolved in water. They presented their results in the following table.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-16_om_10.27.16.png" alt="M14/4/CHEMI/SP2/ENG/TZ1/01.0b"></p>
</div>
<div class="specification">
<p>The students repeated the experiment using 6.16 g of solid hydrated magnesium sulfate, \({\text{MgS}}{{\text{O}}_{\text{4}}} \bullet {\text{7}}{{\text{H}}_{\text{2}}}{\text{O(s)}}\), and \({\text{50.0 c}}{{\text{m}}^{\text{3}}}\) of water. They found the enthalpy change, \(\Delta {H_2}\), to be \( + 18{\text{ kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\).</p>
<p>The enthalpy of hydration of solid anhydrous magnesium sulfate is difficult to determine experimentally, but can be determined using the diagram below.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-16_om_11.08.23.png" alt="M14/4/CHEMI/SP2/ENG/TZ1/01.c"></p>
</div>
<div class="specification">
<p>Magnesium sulfate is one of the products formed when acid rain reacts with dolomitic limestone. This limestone is a mixture of magnesium carbonate and calcium carbonate.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) The graph shows the volume of hydrogen produced against time under these experimental conditions.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-16_om_10.18.50.png" alt="M14/4/CHEMI/SP2/ENG/TZ1/01.a"></p>
<p>Sketch two curves, labelled <strong>I</strong> and <strong>II</strong>, to show how the volume of hydrogen produced (under the same temperature and pressure) changes with time when:</p>
<p>I. using the same mass of magnesium powder instead of a piece of magnesium ribbon;</p>
<p>II. 0.100 g of magnesium ribbon is added to \({\text{50 c}}{{\text{m}}^{\text{3}}}\) of \({\text{0.500 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) sulfuric acid.</p>
<p>(ii) Outline why it is better to measure the volume of hydrogen produced against time rather than the loss of mass of reactants against time.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Calculate the amount, in mol, of anhydrous magnesium sulfate.</p>
<p> </p>
<p> </p>
<p>(ii) Calculate the enthalpy change, \(\Delta {H_1}\), for anhydrous magnesium sulfate dissolving in water, in \({\text{kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\). State your answer to the correct number of significant figures.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Determine the enthalpy change, \(\Delta H\), in \({\text{kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\), for the hydration of solid anhydrous magnesium sulfate, \({\text{MgS}}{{\text{O}}_{\text{4}}}\).</p>
<p> </p>
<p> </p>
<p>(ii) The literature value for the enthalpy of hydration of anhydrous magnesium sulfate is \( - 103{\text{ kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\). Calculate the percentage difference between the literature value and the value determined from experimental results, giving your answer to <strong>one</strong> decimal place. (If you did not obtain an answer for the experimental value in (c)(i) then use the value of \( - 100{\text{ kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\), but this is <strong>not</strong> the correct value.)</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Another group of students experimentally determined an enthalpy of hydration of \( - 95{\text{ kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\). Outline two reasons which may explain the variation between the experimental and literature values.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) State the equation for the reaction of sulfuric acid with magnesium carbonate.</p>
<p> </p>
<p> </p>
<p>(ii) Deduce the Lewis (electron dot) structure of the carbonate ion, giving the shape and the oxygen-carbon-oxygen bond angle.</p>
<p> </p>
<p>Lewis (electron dot) structure:</p>
<p> </p>
<p>Shape:</p>
<p> </p>
<p>Bond angle:</p>
<div class="marks">[[N/A]]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>Ethanol has many industrial uses.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) State an equation for the formation of ethanol from ethene and the necessary reaction conditions.</p>
<p> </p>
<p>Equation:</p>
<p> </p>
<p>Conditions:</p>
<p> </p>
<p> </p>
<p>(ii) Deduce the volume of ethanol, in dm<sup>3</sup>, produced from \({\text{1.5 d}}{{\text{m}}^{\text{3}}}\) of ethene, assuming both are gaseous and at the same temperature and pressure.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Define the term <em>average bond enthalpy</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Ethanol can be used as a fuel. Determine the enthalpy of combustion of ethanol at 298 K, in \({\text{kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\), using the values in table 10 of the data booklet, assuming all reactants and products are gaseous.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why the value of the enthalpy of combustion of ethanol quoted in table 12 of the data booklet is different to that calculated using bond enthalpies.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the reaction is exothermic in terms of the bonds involved.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the homologous series to which ethanol belongs and state <strong>two </strong>features of a homologous series.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Ethene, C<sub><span class="s1">2</span></sub>H<sub><span class="s1">4</span></sub>, and hydrazine, N<sub><span class="s1">2</span></sub>H<sub><span class="s1">4</span></sub>, are hydrides of adjacent elements in the periodic table.</p>
</div>
<div class="specification">
<p class="p1">The polarity of a molecule can be explained in terms of electronegativity.</p>
</div>
<div class="specification">
<p class="p1">The reaction between N<sub><span class="s1">2</span></sub>H<sub><span class="s1">4</span></sub>(aq) and HCl (aq) can be represented by the following equation.</p>
<p class="p1">\[{{\text{N}}_2}{{\text{H}}_4}({\text{aq)}} + 2{\text{HCl(aq)}} \to {{\text{N}}_2}{\text{H}}_6^{2 + }({\text{aq)}} + 2{\text{C}}{{\text{l}}^ - }({\text{aq)}}\]</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>Draw Lewis (electron dot) structures for \({{\text{C}}_{\text{2}}}{{\text{H}}_{\text{4}}}\) and \({{\text{N}}_{\text{2}}}{{\text{H}}_{\text{4}}}\) showing all valence electrons.</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>State and explain the H–C–H bond angle in ethene and the H–N–H bond angle in hydrazine.</p>
<div class="marks">[7]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>Define the term <em>electronegativity</em>.</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>Compare the relative polarities of the C–H bond in ethene and the N–H bond in hydrazine.</p>
<p class="p1">(iii) <span class="Apple-converted-space"> </span>Hydrazine is a polar molecule and ethene is non-polar. Explain why ethene is non-polar.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The boiling point of hydrazine is much higher than that of ethene. Explain this difference in terms of the intermolecular forces in each compound.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Hydrazine is a valuable rocket fuel.</p>
<p class="p1">The equation for the reaction between hydrazine and oxygen is given below.</p>
<p class="p2">\[{{\text{N}}_2}{{\text{H}}_4}({\text{g)}} + {{\text{O}}_2}({\text{g)}} \to {{\text{N}}_2}({\text{g)}} + 2{{\text{H}}_2}{\text{O(g)}}\]</p>
<p class="p1">Use the bond enthalpy values from Table 10 of the Data Booklet to determine the enthalpy change for this reaction.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the name of the product and identify the type of reaction which occurs between ethene and hydrogen chloride.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>Identify the type of reaction that occurs.</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>Predict the value of the H–N–H bond angle in \({{\text{N}}_{\text{2}}}{\text{H}}_6^{2 + }\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">In an experiment to measure the enthalpy change of combustion of ethanol, a student heated a copper calorimeter containing 100 cm<sup><span class="s1">3 </span></sup>of water with a spirit lamp and collected the following data.</p>
<p class="p1">\[\begin{array}{*{20}{l}} {{\text{Initial temperature of water:}}}&{{\text{20.0 }}^\circ {\text{C}}} \\ {{\text{Final temperature of water:}}}&{{\text{55.0 }}^\circ {\text{C}}} \\ {{\text{Mass of ethanol burned:}}}&{{\text{1.78 g}}} \\ {{\text{Density of water:}}}&{{\text{1.00 g}}\,{\text{c}}{{\text{m}}^{ - 3}}} \end{array}\]</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) Use the data to calculate the heat evolved when the ethanol was combusted.</p>
<p class="p1">(ii) Calculate the enthalpy change of combustion per mole of ethanol.</p>
<p class="p1">(iii) Suggest two reasons why the result is not the same as the value in the Data Booklet.</p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Ethanol is part of the homologous series of alcohols. Describe <strong>two </strong>features of a homologous series.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) Below are <strong>four structural </strong>isomers of alcohols with molecular formula \({{\text{C}}_{\text{4}}}{{\text{H}}_{{\text{10}}}}{\text{O}}\). State the name of each of the isomers <strong>a</strong>, <strong>b</strong>, <strong>c </strong>and <strong>D</strong>.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-10-07_om_09.52.00.png" alt="M10/4/CHEMI/SP2/ENG/TZ1/06.d"></p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>Determine the isomer that cannot be oxidized by acidifi ed potassium dichromate(VI), \({{\text{K}}_{\text{2}}}{\text{C}}{{\text{r}}_{\text{2}}}{{\text{O}}_{\text{7}}}\).</p>
<p class="p1">(iii) <span class="Apple-converted-space"> </span>Determine the isomer which can be oxidized to butanal.</p>
<p class="p1">(iv) <span class="Apple-converted-space"> </span>Determine the isomer which can be oxidized to butanone.</p>
<p class="p1">(v) <span class="Apple-converted-space"> </span>Suggest the structural formula of another isomer of \({{\text{C}}_{\text{4}}}{{\text{H}}_{{\text{10}}}}{\text{O}}\).</p>
<div class="marks">[8]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-10-07_om_09.52.00.png" alt="M10/4/CHEMI/SP2/ENG/TZ1/06.d"></p>
<p class="p1">(i) Isomer <strong>a </strong>is formed by reacting 1-bromobutane with aqueous sodium hydroxide. State whether the reaction would proceed via an S<sub><span class="s1">N</span></sub>1 or S<sub><span class="s1">N</span></sub>2 mechanism.</p>
<p class="p1">(ii) Explain the mechanism named in part (d) (i) using curly arrows to represent the movement of electron pairs.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Some reactions of but-2-ene are given below.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-10_om_09.21.33.png" alt="M15/4/CHEMI/SP2/ENG/TZ2/07"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the full structural formula of compound <strong>A</strong>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Apply IUPAC rules to name compound <strong>A</strong>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the colour change observed when excess but-2-ene reacts with bromine to form compound <strong>A</strong>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the names of the reagents <strong>D </strong>and <strong>E</strong>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Outline <strong>two </strong>reasons why the polymerization of alkenes is of economic importance.</p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p>(ii) Identify the structure of the repeating unit of poly(but-2-ene).</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Compound <strong>C</strong>, \({{\text{C}}_{\text{4}}}{{\text{H}}_{\text{9}}}{\text{OH}}\), can also be formed directly from compound <strong>B</strong>, \({\text{C}}{{\text{H}}_{\text{3}}}{\text{CHBrC}}{{\text{H}}_{\text{2}}}{\text{C}}{{\text{H}}_{\text{3}}}\).</p>
<p>(i) State the reagent and the conditions required for this reaction.</p>
<p> </p>
<p> </p>
<p>(ii) State the name of the type of reaction occurring in this conversion.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Compound <strong>C </strong>can be oxidized by acidified potassium dichromate(VI) to form compound <strong>F</strong>.</p>
<p>(i) State the name of the functional group present in compound <strong>F</strong>.</p>
<p> </p>
<p>(ii) Deduce the structural formula of an alcohol which is a structural isomer of compound <strong>C </strong>and <strong>cannot </strong>be oxidized by acidified potassium dichromate(VI).</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why but-2-ene is more volatile than compound <strong>C</strong>, \({{\text{C}}_{\text{4}}}{{\text{H}}_{\text{9}}}{\text{OH}}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Define the term <em>average bond enthalpy</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the equation for the complete combustion of compound <strong>C</strong>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">g.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the enthalpy change, \(\Delta H\), in \({\text{kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\), for the complete combustion of compound <strong>C </strong>when all reactants and products are in the gaseous state, using table 10 of the data booklet.</p>
<div class="marks">[3]</div>
<div class="question_part_label">g.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>A student carried out an experiment to determine the concentration of a hydrochloric acid solution and the enthalpy change of the reaction between aqueous sodium hydroxide and this acid by thermometric titration.</p>
<p>She added \({\text{5.0 c}}{{\text{m}}^{\text{3}}}\) portions of hydrochloric acid to \({\text{25.0 c}}{{\text{m}}^{\text{3}}}\) of \({\text{1.00 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) sodium hydroxide solution in a glass beaker until the total volume of acid added was \({\text{50.0 c}}{{\text{m}}^{\text{3}}}\), measuring the temperature of the mixture each time. Her results are plotted in the graph below.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-09_om_18.48.41_1.png" alt="M15/4/CHEMI/SP2/ENG/TZ2/01"></p>
<p>The initial temperature of both solutions was the same.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By drawing appropriate lines, determine the volume of hydrochloric acid required to completely neutralize the \({\text{25.0 c}}{{\text{m}}^{\text{3}}}\) of sodium hydroxide solution.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the concentration of the hydrochloric acid, including units.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the change in temperature, \(\Delta T\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the enthalpy change, in \({\text{kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\), for the reaction of hydrochloric acid and sodium hydroxide solution.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The accepted theoretical value from the literature of this enthalpy change is \( - 58{\text{ kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\). Calculate the percentage error correct to <strong>two </strong>significant figures.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest the major source of error in the experimental procedure <strong>and </strong>an improvement that could be made to reduce it.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.iv.</div>
</div>
<br><hr><br><div class="question">
<p class="p1">The standard enthalpy change of three combustion reactions is given below in kJ.</p>
<p class="p2">\[\begin{array}{*{20}{l}} {{\text{2}}{{\text{C}}_{\text{2}}}{{\text{H}}_{\text{6}}}{\text{(g)}} + {\text{7}}{{\text{O}}_{\text{2}}}{\text{(g)}} \to {\text{4C}}{{\text{O}}_{\text{2}}}{\text{(g)}} + {\text{6}}{{\text{H}}_{\text{2}}}{\text{O(l)}}}&{\Delta {H^\Theta } = - 3120} \\ {{\text{2}}{{\text{H}}_2}({\text{g)}} + {{\text{O}}_2}{\text{(g)}} \to {\text{2}}{{\text{H}}_2}{\text{O(l)}}}&{\Delta {H^\Theta } = - 572} \\ {{{\text{C}}_2}{{\text{H}}_4}({\text{g)}} + {\text{3}}{{\text{O}}_2}{\text{(g)}} \to {\text{2C}}{{\text{O}}_2}{\text{(g)}} + 2{{\text{H}}_2}{\text{O(l)}}}&{\Delta {H^\Theta } = - 1411} \end{array}\]</p>
<p class="p1">Based on the above information, calculate the standard change in enthalpy, \({\Delta {H^\Theta }}\), for the following reaction.</p>
<p class="p1">\[{{\text{C}}_2}{{\text{H}}_6}({\text{g)}} \to {{\text{C}}_2}{{\text{H}}_4}({\text{g)}} + {{\text{H}}_2}{\text{(g)}}\]</p>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The standard enthalpy change of three combustion reactions are given below.</p>
<p>\[\begin{array}{*{20}{l}} {{{\text{H}}_2}{\text{(g)}} + \frac{1}{2}{{\text{O}}_2}{\text{(g)}} \to {{\text{H}}_2}{\text{O(l)}}}&{\Delta H = - 286{\text{ kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}} \\ {{{\text{C}}_3}{{\text{H}}_8}{\text{(g)}} + {\text{5}}{{\text{O}}_2}{\text{(g)}} \to {\text{3C}}{{\text{O}}_2}{\text{(g)}} + {\text{4}}{{\text{H}}_2}{\text{O(l)}}}&{\Delta H = - 2219{\text{ kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}} \\ {{\text{C(s)}} + {{\text{O}}_2}{\text{(g)}} \to {\text{C}}{{\text{O}}_2}{\text{(g)}}}&{\Delta H = - 394{\text{ kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}} \end{array}\]</p>
<p>Determine the change in enthalpy, \(\Delta H\), in \({\text{kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\), for the formation of propane in the following reaction.</p>
<p>\({\text{3C(s)}} + {\text{4}}{{\text{H}}_2}{\text{(g)}} \to {{\text{C}}_3}{{\text{H}}_8}{\text{(g)}}\)</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">A catalyst provides an alternative pathway for a reaction, lowering the activation energy, \({E_{\text{a}}}\). Define the term <em>activation energy</em>, \({E_{\text{a}}}\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Sketch <strong>two </strong>Maxwell–Boltzmann energy distribution curves for a fixed amount of gas at two different temperatures, \({T_{\text{1}}}\) and \({T_2}{\text{ }}({T_2} > {T_1})\) and label <strong>both </strong>axes.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-19_om_05.17.47.png" alt="M13/4/CHEMI/SP2/ENG/TZ2/02.c"></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Two hydrides of nitrogen are ammonia and hydrazine, N<sub>2</sub>H<sub>4</sub>. One derivative of ammonia is methanamine whose molecular structure is shown below.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-09-22_om_18.03.06.png" alt="M17/4/CHEMI/SP2/ENG/TZ1/04"></p>
</div>
<div class="specification">
<p>Hydrazine is used to remove oxygen from water used to generate steam or hot water.</p>
<p style="text-align: center;">N<sub>2</sub>H<sub>4</sub>(aq) + O<sub>2</sub>(aq) → N<sub>2</sub>(g) + 2H<sub>2</sub>O(l)</p>
<p>The concentration of dissolved oxygen in a sample of water is 8.0 × 10<sup>−3</sup> g\(\,\)dm<sup>−3</sup>.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate the H−N−H bond angle in methanamine using VSEPR theory.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Ammonia reacts reversibly with water.</p>
<p style="text-align: center;">NH<sub>3</sub>(g) + H<sub>2</sub>O(l) \( \rightleftharpoons \) NH<sub>4</sub><sup>+</sup>(aq) + OH<sup>−</sup>(aq)</p>
<p>Explain the effect of adding H<sup>+</sup>(aq) ions on the position of the equilibrium.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hydrazine reacts with water in a similar way to ammonia. Deduce an equation for the reaction of hydrazine with water.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline, using an ionic equation, what is observed when magnesium powder is added to a solution of ammonium chloride.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hydrazine has been used as a rocket fuel. The propulsion reaction occurs in several stages but the overall reaction is:</p>
<p style="text-align: center;">N<sub>2</sub>H<sub>4</sub>(l) → N<sub>2</sub>(g) + 2H<sub>2</sub>(g)</p>
<p>Suggest why this fuel is suitable for use at high altitudes.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the enthalpy change of reaction, Δ<em>H</em>, in kJ, when 1.00 mol of gaseous hydrazine decomposes to its elements. Use bond enthalpy values in section 11 of the data booklet.</p>
<p style="text-align: center;">N<sub>2</sub>H<sub>4</sub>(g) → N<sub>2</sub>(g) + 2H<sub>2</sub>(g)</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The standard enthalpy of formation of N<sub>2</sub>H<sub>4</sub>(l) is +50.6 kJ\(\,\)mol<sup>−1</sup>. Calculate the enthalpy of vaporization, Δ<em>H</em><sub>vap</sub>, of hydrazine in kJ\(\,\)mol<sup>−1</sup>.</p>
<p style="text-align: center;">N<sub>2</sub>H<sub>4</sub>(l) → N<sub>2</sub>H<sub>4</sub>(g)</p>
<p>(If you did not get an answer to (f), use −85 kJ but this is not the correct answer.)</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate, showing your working, the mass of hydrazine needed to remove all the dissolved oxygen from 1000 dm<sup>3</sup> of the sample.</p>
<div class="marks">[3]</div>
<div class="question_part_label">h.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the volume, in dm<sup>3</sup>, of nitrogen formed under SATP conditions. (The volume of 1 mol of gas = 24.8 dm<sup>3</sup> at SATP.)</p>
<div class="marks">[1]</div>
<div class="question_part_label">h.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Impurities cause phosphine to ignite spontaneously in air to form an oxide of phosphorus and water.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) 200.0 g of air was heated by the energy from the complete combustion of 1.00 mol phosphine. Calculate the temperature rise using section 1 of the data booklet and the data below.</p>
<p>Standard enthalpy of combustion of phosphine, <img src="" alt><br>Specific heat capacity of air = 1.00Jg<sup>−1</sup>K<sup>−1</sup> = 1.00 kJkg<sup>−1</sup>K<sup>−1</sup></p>
<p>(ii) The oxide formed in the reaction with air contains 43.6 % phosphorus by mass. Determine the empirical formula of the oxide, showing your method.</p>
<p>(iii) The molar mass of the oxide is approximately 285gmol<sup>−1</sup>. Determine the molecular formula of the oxide.</p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) State the equation for the reaction of this oxide of phosphorus with water.</p>
<p>(ii) Predict how dissolving an oxide of phosphorus would affect the pH and electrical conductivity of water.</p>
<p>pH:</p>
<p>Electrical conductivity:</p>
<p>(iii) Suggest why oxides of phosphorus are not major contributors to acid deposition.</p>
<p>(iv) The levels of sulfur dioxide, a major contributor to acid deposition, can be minimized by either pre-combustion and post-combustion methods. Outline <strong>one</strong> technique of each method.</p>
<p>Pre-combustion:</p>
<p>Post-combustion:</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The Bombardier beetle sprays a mixture of hydroquinone and hydrogen peroxide to fight off predators. The reaction equation to produce the spray can be written as:</p>
<table style="width: 388.667px; margin-left: 120px;">
<tbody>
<tr>
<td style="width: 211px;">C<sub>6</sub>H<sub>4</sub>(OH)<sub>2</sub>(aq) + H<sub>2</sub>O<sub>2</sub>(aq)</td>
<td style="width: 18px;">→</td>
<td style="width: 195.667px;">C<sub>6</sub>H<sub>4</sub>O<sub>2</sub>(aq) + 2H<sub>2</sub>O(l)</td>
</tr>
<tr>
<td style="width: 211px;">hydroquinone</td>
<td style="width: 18px;"> </td>
<td style="width: 195.667px;">quinone</td>
</tr>
</tbody>
</table>
<p style="text-align: center; padding-left: 120px;"><br> </p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the enthalpy change, in kJ, for the spray reaction, using the data below.</p>
<p>\(\begin{array}{*{20}{l}} {{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{4}}}{{{\text{(OH)}}}_{\text{2}}}{\text{(aq)}} \to {{\text{C}}_{\text{6}}}{{\text{H}}_{\text{4}}}{{\text{O}}_{\text{2}}}{\text{(aq)}} + {{\text{H}}_{\text{2}}}{\text{(g)}}}&{\Delta {H^\theta } = + {\text{177.0 kJ}}} \\ {{\text{2}}{{\text{H}}_{\text{2}}}{\text{O(l)}} + {{\text{O}}_{\text{2}}}{\text{(g)}} \to {\text{2}}{{\text{H}}_{\text{2}}}{{\text{O}}_{\text{2}}}{\text{(aq)}}}&{\Delta {H^\theta } = + {\text{189.2 kJ}}} \\ {{{\text{H}}_{\text{2}}}{\text{O(l)}} \to {{\text{H}}_{\text{2}}}{\text{(g)}} + \frac{{\text{1}}}{{\text{2}}}{{\text{O}}_{\text{2}}}{\text{(g)}}}&{\Delta {H^\theta } = + {\text{285.5 kJ}}} \end{array}\)</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The energy released by the reaction of one mole of hydrogen peroxide with hydroquinone is used to heat 850 cm<sup>3</sup> of water initially at 21.8°C. Determine the highest temperature reached by the water.</p>
<p>Specific heat capacity of water = 4.18 kJ\(\,\)kg<sup>−1</sup>\(\,\)K<sup>−1</sup>.</p>
<p>(If you did not obtain an answer to part (i), use a value of 200.0 kJ for the energy released, although this is not the correct answer.)</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the species responsible for the peak at <em>m/z</em> = 110 in the mass spectrum of hydroquinone.</p>
<p style="text-align: left;"><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the highest <em>m/z</em> value in the mass spectrum of quinone.</p>
<p style="text-align: left;"><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Magnesium reacts with sulfuric acid:</p>
<p style="text-align: center;">Mg(s) + H<sub>2</sub>SO<sub>4</sub>(aq) → MgSO<sub>4</sub>(aq) + H<sub>2</sub>(g)</p>
<p>The graph shows the results of an experiment using excess magnesium ribbon and dilute sulfuric acid.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-09-25_om_09.45.43.png" alt="M17/4/CHEMI/SP2/ENG/TZ2/05.a.i"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why the rate of the reaction decreases with time.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch, on the same graph, the expected results if the experiment were repeated using powdered magnesium, keeping its mass and all other variables unchanged.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Nitrogen dioxide and carbon monoxide react according to the following equation:</p>
<p style="text-align: center;">NO<sub>2</sub>(g) + CO(g) \( \rightleftharpoons \) NO(g) + CO<sub>2</sub>(g) Δ<em>H</em> = –226 kJ</p>
<p style="text-align: center;"><img src=""></p>
<p style="text-align: left;">Calculate the activation energy for the reverse reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the equation for the reaction of NO<sub>2</sub> in the atmosphere to produce acid deposition.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Trends in physical and chemical properties are useful to chemists.</p>
</div>
<div class="specification">
<p>The Activity series lists the metal in order of reactivity.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain the general increasing trend in the first ionization energies of the period 3 elements, Na to Ar.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the melting points of the group 1 metals (Li → Cs) decrease down the group.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State an equation for the reaction of phosphorus (V) oxide, P<sub>4</sub>O<sub>10</sub> (s), with water.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the emission spectrum of hydrogen.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify the strongest reducing agent in the given list.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A voltaic cell is made up of a Mn<sup>2+</sup>/Mn half-cell and a Ni<sup>2+</sup>/Ni half-cell.</p>
<p>Deduce the equation for the cell reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The voltaic cell stated in part (ii) is partially shown below.</p>
<p>Draw and label the connections needed to show the direction of electron movement and ion flow between the two half-cells.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>Phosgene, COCl<sub>2</sub>, is usually produced by the reaction between carbon monoxide and chlorine according to the equation:</p>
<p><img src="" alt></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Deduce the equilibrium constant expression, <em>K</em><sub>c</sub>, for this reaction.</p>
<p>(ii) State the effect of an increase in the total pressure on the equilibrium constant, <em>K</em><sub>c</sub>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Sketch the potential energy profile for the synthesis of phosgene, using the axes given, indicating both the enthalpy of reaction and activation energy.</p>
<p><img src="" alt></p>
<p>(ii) This reaction is normally carried out using a catalyst. Draw a dotted line labelled “Catalysed” on the diagram above to indicate the effect of the catalyst.</p>
<p>(iii) Sketch and label a second Maxwell–Boltzmann energy distribution curve representing the same system but at a higher temperature, T<sub>higher</sub>.</p>
<p><img src="" alt></p>
<p>(iv) Explain why an increase in temperature increases the rate of this reaction.</p>
<div class="marks">[6]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>A student titrated an ethanoic acid solution, CH<sub>3</sub>COOH (aq), against 50.0 cm<sup>3</sup> of 0.995 mol dm<sup>–3</sup> sodium hydroxide, NaOH (aq), to determine its concentration.</p>
<p>The temperature of the reaction mixture was measured after each acid addition and plotted against the volume of acid.</p>
<p><img src=""></p>
</div>
<div class="specification">
<p>Curves <strong>X</strong> and <strong>Y</strong> were obtained when a metal carbonate reacted with the same volume of ethanoic acid under two different conditions.</p>
<p style="text-align: center;"><img src=""></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using the graph, estimate the initial temperature of the solution.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the maximum temperature reached in the experiment by analysing the graph.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the concentration of ethanoic acid, CH<sub>3</sub>COOH, in mol dm<sup>–3</sup>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine the heat change, <em>q</em>, in kJ, for the neutralization reaction between ethanoic acid and sodium hydroxide.</p>
<p>Assume the specific heat capacities of the solutions and their densities are those of water.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the enthalpy change, Δ<em>H</em>, in kJ mol<sup>–1</sup>, for the reaction between ethanoic acid and sodium hydroxide.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain the shape of curve <strong>X</strong> in terms of the collision theory.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest <strong>one</strong> possible reason for the differences between curves <strong>X</strong> and <strong>Y</strong>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.ii.</div>
</div>
<br><hr><br>