File "SL-paper1.html"

Path: /IB QUESTIONBANKS/4 Fourth Edition - PAPER/HTML/Chemistry/Topic 5/SL-paper1html
File size: 152.86 KB
MIME-type: text/x-tex
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-746ec5d03ead8d9e8b3bb7d32173f2b4e2e22a05f0c5278e086ab55b3c9c238e.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-3c91afd8a2942c18d21ed2700e1bdec14ada97f1d3788ae229315e1276d81453.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../index.html">Home</a>
</li>
<li class="active dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Questionbanks
<b class="caret"></b>
</a><ul class="dropdown-menu">
<li>
<a href="../../geography.html" target="_blank">DP Geography</a>
</li>
<li>
<a href="../../physics.html" target="_blank">DP Physics</a>
</li>
<li>
<a href="../../chemistry.html" target="_blank">DP Chemistry</a>
</li>
<li>
<a href="../../biology.html" target="_blank">DP Biology</a>
</li>
<li>
<a href="../../furtherMath.html" target="_blank">DP Further Mathematics HL</a>
</li>
<li>
<a href="../../mathHL.html" target="_blank">DP Mathematics HL</a>
</li>
<li>
<a href="../../mathSL.html" target="_blank">DP Mathematics SL</a>
</li>
<li>
<a href="../../mathStudies.html" target="_blank">DP Mathematical Studies</a>
</li>
</ul></li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">

<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">



</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="images/logo.jpg" alt="Ib qb 46 logo">
</div>
</div>
</div><h2>SL Paper 1</h2><div class="question">
<p>The enthalpy of combustion of ethanol is determined by heating a known mass of tap water in a glass beaker with a flame of burning ethanol.</p>
<p>Which will lead to the greatest error in the final result?</p>
<p>A.     Assuming the density of tap water is 1.0 g cm<sup>−3</sup></p>
<p>B.     Assuming all the energy from the combustion will heat the water</p>
<p>C.     Assuming the specific heat capacity of the tap water is 4.18 J g<sup>−1</sup> K<sup>−1</sup></p>
<p>D.     Assuming the specific heat capacity of the beaker is negligible</p>
</div>
<br><hr><br><div class="question">
<p>What is the enthalpy of combustion of butane in <strong>kJ mol</strong><sup>−<strong>1</strong></sup>?</p>
<p>2C<sub>4</sub>H<sub>10</sub>(g) + 13O<sub>2</sub>(g) → 8CO<sub>2</sub>(g) + 10H<sub>2</sub>O(l)</p>
<p style="text-align: center;">\[\begin{array}{*{20}{l}} {{\text{C(s)}} + {{\text{O}}_2}{\text{(g)}} \to {\text{C}}{{\text{O}}_2}{\text{(g)}}}&amp;{\Delta H = x{\text{ kJ}}} \\ {{{\text{H}}_2}{\text{(g)}} + \frac{{\text{1}}}{2}{{\text{O}}_2}{\text{(g)}} \to {{\text{H}}_2}{\text{O(l)}}}&amp;{\Delta H = y{\text{ kJ}}} \\ {4{\text{C(s)}} + {\text{5}}{{\text{H}}_2}{\text{(g)}} \to {{\text{C}}_4}{{\text{H}}_{{\text{10}}}}{\text{(g)}}}&amp;{\Delta H = z{\text{ kJ}}} \end{array}\]</p>
<p>A.     4<em>x </em>+ 5<em>y </em>− <em>z<span class="Apple-converted-space"> </span></em></p>
<p>B.     4<em>x </em>+ 5<em>y </em>+ <em>z<span class="Apple-converted-space"> </span></em></p>
<p>C.     8<em>x </em>+ 10<em>y </em>− 2<em>z<span class="Apple-converted-space"> </span></em></p>
<p>D.     8<em>x </em>+ 5<em>y </em>+ 2<em>z</em></p>
</div>
<br><hr><br><div class="question">
<p class="p1">A 5.00 g sample of a substance was heated from 25.0 &deg;C to 35.0 &deg;C using \(2.00 \times {10^2}{\text{ J}}\) of energy. What is the specific heat capacity of the substance in \({\text{J}}\,{{\text{g}}^{ - 1}}{{\text{K}}^{ - 1}}\)?</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(4.00 \times {10^{ - 3}}\)</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(2.50 \times {10^{ - 1}}\)</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>2.00</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>4.00</p>
</div>
<br><hr><br><div class="question">
<p>Which statement is correct for this reaction?</p>
<p style="padding-left: 90px;">Fe<sub>2</sub>O<sub>3</sub> (s) + 3CO (g) &rarr; 2Fe (s) + 3CO<sub>2</sub> (g)&nbsp; &nbsp; &nbsp; &nbsp;<em>&Delta;H</em> = &minus;26.6 kJ</p>
<p>A. 13.3 kJ are released for every mole of Fe produced.</p>
<p>B. 26.6 kJ are absorbed for every mole of Fe produced.</p>
<p>C. 53.2 kJ are released for every mole of Fe produced.</p>
<p>D. 26.6 kJ are released for every mole of Fe produced.</p>
</div>
<br><hr><br><div class="question">
<p>The enthalpy changes for two reactions are given.</p>
<p style="padding-left: 120px;">Br<sub>2</sub> (l) + F<sub>2</sub> (g) &rarr; 2BrF (g)&nbsp; &nbsp; &nbsp; &nbsp; &nbsp;<em>&Delta;H</em> = <em>x</em> kJ<br>Br<sub>2</sub> (l) + 3F<sub>2</sub> (g) &rarr; 2BrF<sub>3</sub>&nbsp;(g)&nbsp; &nbsp; &nbsp; <em>&Delta;H</em> = <em>y</em> kJ</p>
<p>What is the enthalpy change for the following reaction?</p>
<p style="padding-left: 120px;">BrF (g) + F<sub>2</sub> (g) &rarr; BrF<sub>3</sub> (g)</p>
<p>A.&nbsp;&nbsp;<em>x</em> &ndash; <em>y</em></p>
<p>B.&nbsp; &ndash;<em>x</em> + <em>y</em></p>
<p>C.&nbsp; \(\frac{1}{2}\)(&ndash;<em>x</em> + <em>y</em>)</p>
<p>D.&nbsp; \(\frac{1}{2}\)(<em>x</em>&nbsp;&ndash; <em>y</em>)</p>
</div>
<br><hr><br><div class="question">
<p class="p1">A student measured the temperature of a reaction mixture over time using a temperature probe. By considering the graph, which of the following deductions can be made?</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-11-03_om_13.22.39.png" alt="N11/4/CHEMI/SPM/ENG/TZ0/14"></p>
<p class="p1" style="padding-left: 30px;">I.&nbsp; &nbsp; &nbsp;The reaction is exothermic.</p>
<p class="p1" style="padding-left: 30px;">II.&nbsp; &nbsp; &nbsp;The products are more stable than the reactants.</p>
<p class="p1" style="padding-left: 30px;">III.&nbsp; &nbsp; &nbsp;The reactant bonds are stronger than the product bonds.</p>
<p class="p1">A.&nbsp; &nbsp; &nbsp;I and II only</p>
<p class="p1">B.&nbsp; &nbsp; &nbsp;I and III only</p>
<p class="p1">C.&nbsp; &nbsp; &nbsp;II and III only</p>
<p class="p1">D.&nbsp; &nbsp; &nbsp;I, II and III</p>
</div>
<br><hr><br><div class="question">
<p>What is the enthalpy change, in kJ, of the following reaction?</p>
<p style="text-align: center;">3H<sub>2</sub> (g) + N<sub>2</sub> (g) \( \rightleftharpoons \) 2NH<sub>3</sub> (g)</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src=""></p>
<p>A. (6 &times; 391) &minus; [(3 &times; 436) + 945]</p>
<p>B. (3 &times; 391) &minus; (436 + 945)</p>
<p>C. &minus;[(3 &times; 436) + 945] + (3 &times; 391)</p>
<p>D. &minus;(6 &times; 391) + [(3 &times; 436) + 945]</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Which process is endothermic?</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({\text{C}}{{\text{H}}_4}{\text{(g)}} + {\text{2}}{{\text{O}}_2}{\text{(g)}} \to {\text{C}}{{\text{O}}_2}{\text{(g)}} + {\text{2}}{{\text{H}}_2}{\text{O(g)}}\)</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({\text{HCl(aq)}} + {\text{NaOH(aq)}} \to {\text{NaCl(aq)}} + {{\text{H}}_2}{\text{O(l)}}\)</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({\text{CaC}}{{\text{O}}_3}{\text{(s)}} \to {\text{CaO(s)}} + {\text{C}}{{\text{O}}_2}{\text{(g)}}\)</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({{\text{H}}_2}{\text{O(g)}} \to {{\text{H}}_2}{\text{O(l)}}\)</p>
</div>
<br><hr><br><div class="question">
<p>Why is the value of the enthalpy change of this reaction calculated from bond enthalpy data less accurate than that calculated from standard enthalpies of formation?</p>
<p style="text-align: center;">2C<sub>2</sub>H<sub>6</sub>(g) + 7O<sub>2</sub>(g) &rarr; 4CO<sub>2</sub>(g) + 6H<sub>2</sub>O(g)</p>
<p>A. &nbsp; &nbsp; All the reactants and products are gases.</p>
<p>B. &nbsp; &nbsp; Bond enthalpy data are average values for many compounds.</p>
<p>C. &nbsp; &nbsp; Elements do not have standard enthalpy of formation.</p>
<p>D. &nbsp; &nbsp; Standard enthalpies of formation are per mole.</p>
</div>
<br><hr><br><div class="question">
<p>5.35g of solid ammonium chloride, NH<sub>4</sub>Cl(s), was added to water to form 25.0g of solution. The maximum decrease in temperature was 14 K. What is the enthalpy change, in kJmol<sup>-1</sup>, for this reaction? (Molar mass of NH<sub>4</sub>Cl = 53.5gmol<sup>-1</sup>; the specific heat capacity of the solution is 4.18 Jg<sup>-1</sup>K<sup>-1</sup>)</p>
<p>A. \(\Delta H =&nbsp; + \frac{{25.0 \times 4.18 \times \left( {14 + 273} \right)}}{{0.1 \times 1000}}\)</p>
<p>B. \(\Delta H =&nbsp; - \frac{{25.0 \times 4.18 \times 14}}{{0.1 \times 1000}}\)</p>
<p>C. \(\Delta H =&nbsp; + \frac{{25.0 \times 4.18 \times 14}}{{0.1 \times 1000}}\)</p>
<p>D. \(\Delta H =&nbsp; + \frac{{25.0 \times 4.18 \times 14}}{{1000}}\)</p>
</div>
<br><hr><br><div class="question">
<p class="p1">A simple calorimeter was set up to determine the enthalpy change occurring when one mole of ethanol is combusted. The experimental value was found to be \( - 867{\text{ kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\). The Data Booklet value is \( - 1367{\text{ kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\) (at 298 K and \(1.01 \times {10^5}{\text{ Pa}}\)).</p>
<p class="p1">During the experiment some black soot formed.</p>
<p class="p1">Which statements are correct?</p>
<p class="p1">I. <span class="Apple-converted-space">&nbsp; &nbsp; </span>The percentage error for the experiment can be calculated as follows:</p>
<p class="p1">\[(1367 - 867) \times 100\% \]</p>
<p class="p1">II. <span class="Apple-converted-space">&nbsp; &nbsp; </span>The difference between the two values may be due to heat loss to the surroundings.</p>
<p class="p1">III. <span class="Apple-converted-space">&nbsp; &nbsp; </span>The black soot suggests that incomplete combustion occurred.</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>I and II only</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>I and III only</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>II and III only</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>I, II and III</p>
</div>
<br><hr><br><div class="question">
<p>Which describes the reaction shown in the potential energy profile?</p>
<p><img style="margin-right:auto;margin-left:auto;display: block;" src="images/Schermafbeelding_2018-08-10_om_07.10.46.png" alt="M18/4/CHEMI/SPM/ENG/TZ2/13"></p>
<p>A.     The reaction is endothermic and the products have greater enthalpy than the reactants.</p>
<p>B.     The reaction is endothermic and the reactants have greater enthalpy than the products.</p>
<p>C.     The reaction is exothermic and the products have greater enthalpy than the reactants.</p>
<p>D.     The reaction is exothermic and the reactants have greater enthalpy than the products.</p>
</div>
<br><hr><br><div class="question">
<p>Which statement is correct?</p>
<p>A.     In an exothermic reaction, the products have more energy than the reactants.</p>
<p>B.     In an exothermic reversible reaction, the activation energy of the forward reaction is greater than that of the reverse reaction.</p>
<p>C.     In an endothermic reaction, the products are more stable than the reactants.</p>
<p>D.     In an endothermic reversible reaction, the activation energy of the forward reaction is greater than that of the reverse reaction.</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Consider the following reactions.</p>
<p class="p1">\[\begin{array}{*{20}{l}} {{\text{C}}{{\text{u}}_2}{\text{O(s)}} + \frac{1}{2}{{\text{O}}_2}{\text{(g)}} \to {\text{2CuO(s)}}}&amp;{\Delta {H^\Theta } = - 144{\text{ kJ}}} \\ {{\text{C}}{{\text{u}}_2}{\text{O(s)}} \to {\text{Cu(s)}} + {\text{CuO(s)}}}&amp;{\Delta {H^\Theta } = + 11{\text{ kJ}}} \end{array}\]</p>
<p class="p1">What is the value of \(\Delta {H^\Theta }\), in kJ, for this reaction?</p>
<p class="p1">\[{\text{Cu(s)}} + \frac{1}{2}{{\text{O}}_2}{\text{(g)}} \to {\text{CuO(s)}}\]</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\( - 144 + 11\)</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\( + 144 - 11\)</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\( - 144 - 11\)</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\( + 144 + 11\)</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Consider the following reactions.</p>
<p class="p1">\[\begin{array}{*{20}{l}} {{{\text{N}}_2}({\text{g)}} + {{\text{O}}_2}{\text{(g)}} \to {\text{2NO(g)}}}&amp;{\Delta {H^\Theta } = + 180{\text{ kJ}}} \\ {2{\text{N}}{{\text{O}}_2}({\text{g)}} \to {\text{2NO(g)}} + {{\text{O}}_2}{\text{(g)}}}&amp;{\Delta {H^\Theta } = + 112{\text{ kJ}}} \end{array}\]</p>
<p>What is the \({\Delta {H^\Theta }}\) value, in kJ, for the following reaction?</p>
<p>\[{{\text{N}}_2}({\text{g)}} + {\text{2}}{{\text{O}}_2}{\text{(g)}} \to {\text{2N}}{{\text{O}}_2}{\text{(g)}}\]</p>
<p>A. &nbsp; &nbsp; \( - 1 \times ( + 180) +&nbsp; - 1 \times ( + 112)\)</p>
<p>B. &nbsp; &nbsp; \( - 1 \times ( + 180) + 1 \times ( + 112)\)</p>
<p>C. &nbsp; &nbsp; \(1 \times ( + 180) +&nbsp; - 1 \times ( + 112)\)</p>
<p>D. &nbsp; &nbsp; \(1 \times ( + 180) + 1 \times ( + 112)\)</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Which combination is correct for the exothermic reaction that occurs between zinc and copper sulfate solution.</p>
<p class="p1"><img src="images/Schermafbeelding_2016-09-22_om_19.00.33.png" alt="N12/4/CHEMI/SPM/ENG/TZ0/14"></p>
</div>
<br><hr><br><div class="question">
<p class="p1">Some water is heated using the heat produced by the combustion of magnesium metal. Which values are needed to calculate the enthalpy change of reaction?</p>
<p class="p1" style="padding-left: 30px;">I.&nbsp; &nbsp; &nbsp;The mass of magnesium</p>
<p class="p1" style="padding-left: 30px;">II.&nbsp; &nbsp; &nbsp;The mass of the water</p>
<p class="p1" style="padding-left: 30px;">III.&nbsp; &nbsp; &nbsp;The change in temperature of the water</p>
<p class="p1">A.&nbsp; &nbsp; &nbsp;I and II only</p>
<p class="p1">B.&nbsp; &nbsp; &nbsp;I and III only</p>
<p class="p1">C.&nbsp; &nbsp; &nbsp;II and III only</p>
<p class="p1">D.&nbsp; &nbsp; &nbsp;I, II and III</p>
</div>
<br><hr><br><div class="question">
<p>What can be deduced from this reaction profile?</p>
<p style="text-align: center;"><img src=""></p>
<p>A. &nbsp; &nbsp; The reactants are less stable than the products and the reaction is exothermic.</p>
<p>B. &nbsp; &nbsp; The reactants are less stable than the products and the reaction is endothermic.</p>
<p>C. &nbsp; &nbsp; The reactants are more stable than the products and the reaction is exothermic.</p>
<p>D. &nbsp; &nbsp; The reactants are more stable than the products and the reaction is endothermic.</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Identical pieces of magnesium are added to two beakers, A and B, containing hydrochloric acid. Both acids have the same initial temperature but their volumes and concentrations differ.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-27_om_06.45.17.png" alt="N10/4/CHEMI/SPM/ENG/TZ0/15"></p>
<p class="p1">Which statement is correct?</p>
<p class="p1">A.&nbsp; &nbsp; &nbsp;The maximum temperature in A will be higher than in B.</p>
<p class="p1">B.&nbsp; &nbsp; &nbsp;The maximum temperature in A and B will be equal.</p>
<p class="p1">C.&nbsp; &nbsp; &nbsp;It is not possible to predict whether A or B will have the higher maximum temperature.</p>
<p class="p1">D.&nbsp; &nbsp; &nbsp;The temperature in A and B will increase at the same rate.</p>
</div>
<br><hr><br><div class="question">
<p>Hydrazine reacts with oxygen.</p>
<p style="text-align: center;">N<sub>2</sub>H<sub>4</sub>(l) + O<sub>2</sub>(g) &rarr; N<sub>2</sub>(g) + 2H<sub>2</sub>O(l) &nbsp; &nbsp; &nbsp;&Delta;<em>H</em><sup>&theta;</sup>&nbsp;= -623 kJ</p>
<p>What is the standard enthalpy of formation of N<sub>2</sub>H<sub>4</sub>(l) in kJ? The standard enthalpy of formation of H<sub>2</sub>O(l) is -286 kJ.</p>
<p>A. -623 - 286<br>B. -623 + 572<br>C. -572 + 623<br>D. -286 + 623</p>
</div>
<br><hr><br><div class="question">
<p>Two 100 cm<sup>3</sup> aqueous solutions, one containing 0.010 mol NaOH and the other 0.010 mol HCl, are at the same temperature.</p>
<p>When the two solutions are mixed the temperature rises by <em>y °</em>C.</p>
<p>Assume the density of the final solution is 1.00 g cm<sup>−3</sup>.</p>
<p>Specific heat capacity of water = 4.18 J g<sup>−1</sup> K<sup>−1</sup></p>
<p>What is the enthalpy change of neutralization in kJ mol<sup>−1</sup>?</p>
<p>A.     \(\frac{{200 \times 4.18 \times y}}{{1000 \times 0.020}}\)</p>
<p>B.     \(\frac{{200 \times 4.18 \times y}}{{1000 \times 0.010}}\)</p>
<p>C.     \(\frac{{100 \times 4.18 \times y}}{{1000 \times 0.010}}\)</p>
<p>D.     \(\frac{{200 \times 4.18 \times (y + 273)}}{{1000 \times 0.010}}\)</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Which processes are exothermic?</p>
<p class="p1">I.&nbsp; &nbsp; &nbsp;Ice melting</p>
<p class="p1">II.&nbsp; &nbsp; &nbsp;Neutralization</p>
<p class="p1">III.&nbsp; &nbsp; &nbsp;Combustion</p>
<p class="p1">&nbsp;</p>
<p class="p1">A.&nbsp; &nbsp; &nbsp;I and II only</p>
<p class="p1">B.&nbsp; &nbsp; &nbsp;I and III only</p>
<p class="p1">C.&nbsp; &nbsp; &nbsp;II and III only</p>
<p class="p1">D.&nbsp; &nbsp; &nbsp;I, II and III</p>
</div>
<br><hr><br><div class="question">
<p>What can be deduced from the facts that ozone absorbs UV radiation in the region of 340 nm and&nbsp;molecular oxygen in the region of 242 nm?</p>
<p>A. &nbsp; &nbsp; The bond between atoms in molecular oxygen is a double bond.</p>
<p>B. &nbsp; &nbsp; The bonds in ozone are delocalized.</p>
<p>C. &nbsp; &nbsp; The bonds between atoms in ozone are stronger than those in molecular oxygen.</p>
<p>D. &nbsp; &nbsp; The bonds between atoms in molecular oxygen need more energy to break.</p>
</div>
<br><hr><br><div class="question">
<p class="p1">The reaction between methane and oxygen is exothermic.</p>
<p class="p2">\({\text{C}}{{\text{H}}_4}({\text{g)}} + {\text{2}}{{\text{O}}_2}({\text{g)}} \to {\text{C}}{{\text{O}}_2}({\text{g)}} + {\text{2}}{{\text{H}}_2}{\text{O}}({\text{g)}}\)</p>
<p class="p2">Which statement is correct?</p>
<p class="p1">A.&nbsp; &nbsp; &nbsp;The total bond enthalpies of the reactants are less than the total bond enthalpies of the products.</p>
<p class="p1">B.&nbsp; &nbsp; &nbsp;The total bond enthalpies of the reactants are greater than the total bond enthalpies of the products.</p>
<p class="p1">C.&nbsp; &nbsp; &nbsp;The total energy released during bond formation is less than the total energy absorbed during bond breaking.</p>
<p class="p1">D.&nbsp; &nbsp; &nbsp;The activation energy is the difference between the total bond enthalpies of the products and the total bond enthalpies of the reactants.</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Which statement about bonding is correct?</p>
<p class="p1">A.&nbsp; &nbsp; &nbsp;Bond breaking is endothermic and requires energy.</p>
<p class="p1">B.&nbsp; &nbsp; &nbsp;Bond breaking is endothermic and releases energy.</p>
<p class="p1">C.&nbsp; &nbsp; &nbsp;Bond making is exothermic and requires energy.</p>
<p class="p1">D.&nbsp; &nbsp; &nbsp;Bond making is endothermic and releases energy.</p>
</div>
<br><hr><br><div class="question">
<p class="p1">The specific heat of iron is \({\text{0.450 J}}\,{{\text{g}}^{ - 1}}{{\text{K}}^{ - 1}}\). What is the energy, in J, needed to increase the temperature of 50.0 g of iron by 20.0 K?</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>9.00</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>22.5</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>45.0</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>450</p>
</div>
<br><hr><br><div class="question">
<p>What is the value of \(\Delta H\) for the exothermic reaction represented by the diagram below?</p>
<p style="text-align: right;"><img style="display: block; margin-left: auto; margin-right: auto;" src="images/Schermafbeelding_2016-08-16_om_09.12.05.png" alt="M14/4/CHEMI/SPM/ENG/TZ2/15"></p>
<p>A. &nbsp; &nbsp; \(y - z\)</p>
<p>B. &nbsp; &nbsp; \(z - y\)</p>
<p>C. &nbsp; &nbsp; \(x - z\)</p>
<p>D. &nbsp; &nbsp; \(z - x\)</p>
</div>
<br><hr><br><div class="question">
<p class="p1">In a reaction that occurs in 50 g of aqueous solution, the temperature of the reaction mixture increases by 20 &deg;C. If 0.10 mol of the limiting reagent is consumed, what is the enthalpy change (in \({\text{kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\)) for the reaction? Assume the specific heat capacity of the solution \( = 4.2{\rm{k}}{{\rm{J}}^{ - 1}}{{\rm{K}}^{ - 1}}\).</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\( - 0.10 \times 50 \times 4.2 \times 20\)</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\( - 0.10 \times 0.050 \times 4.2 \times 20\)</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(\frac{{ - 50 \times 4{\text{.}}2 \times 20}}{{0{\text{.}}10}}\)</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(\frac{{ - 0{\text{.}}050 \times 4{\text{.}}2 \times 20}}{{0{\text{.}}10}}\)</p>
</div>
<br><hr><br><div class="question">
<p>What is the temperature rise when 2100 J of energy is supplied to 100 g of water? (Specific heat capacity of water \( = 4.2{\text{ J}}\,{{\text{g}}^{ - 1}}{{\text{K}}^{ - 1}}\).)</p>
<p>A. &nbsp; &nbsp; 5 &deg;C</p>
<p>B. &nbsp; &nbsp; 278 K</p>
<p>C. &nbsp; &nbsp; 0.2 &deg;C</p>
<p>D. &nbsp; &nbsp; 20 &deg;C</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Which statement is correct given the enthalpy level diagram below?</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-27_om_06.42.53.png" alt="N10/4/CHEMI/SPM/ENG/TZ0/14"></p>
<p class="p1">A.&nbsp; &nbsp; &nbsp;The reaction is endothermic and the products are more thermodynamically stable than the reactants.</p>
<p class="p1">B.&nbsp; &nbsp; &nbsp;The reaction is exothermic and the products are more thermodynamically stable than the reactants.</p>
<p class="p1">C.&nbsp; &nbsp; &nbsp;The reaction is endothermic and the reactants are more thermodynamically stable than the products.</p>
<p class="p1">D.&nbsp; &nbsp; &nbsp;The reaction is exothermic and the reactants are more thermodynamically stable than the products.</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Which of the following reactions are exothermic?</p>
<p class="p2">I. &nbsp; &nbsp; \({{\text{C}}{{\text{H}}_{\text{4}}} + {\text{2}}{{\text{O}}_{\text{2}}} \to {\text{C}}{{\text{O}}_{\text{2}}} + {\text{2}}{{\text{H}}_{\text{2}}}{\text{O}}}\)</p>
<p class="p2">II. &nbsp; &nbsp;\({{\text{NaOH}} + {\text{HCl}} \to {\text{NaCl}} + {{\text{H}}_2}{\text{O}}}\)</p>
<p class="p2">III. &nbsp; &nbsp;&nbsp;\({{\text{B}}{{\text{r}}_2} \to 2{\text{Br}}}\)</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>I and II only</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>I and III only</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>II and III only</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>I, II and III</p>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The specific heat capacities of two substances are given in the table below.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-15_om_18.00.11.png" alt="M14/4/CHEMI/SPM/ENG/TZ1/15"></p>
<p>Which statement is correct?</p>
<p>A.&nbsp; &nbsp; &nbsp;More heat is needed to increase the temperature of 50 g of water by 50 &deg;C than 50 g of ethanol by 50 &deg;C.</p>
<p>B.&nbsp; &nbsp; &nbsp;If the same heat is supplied to equal masses of ethanol and water, the temperature of the water increases more.</p>
<p>C.&nbsp; &nbsp; &nbsp;If equal masses of water at 20 &deg;C and ethanol at 50 &deg;C are mixed, the final temperature is 35 &deg;C .</p>
<p>D.&nbsp; &nbsp; &nbsp;If equal masses of water and ethanol at 50 &deg;C cool down to room temperature, ethanol liberates more heat.</p>
<div class="marks">[1]</div>
<div class="question_part_label">.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The enthalpy changes of three reactions are given below.</p>
<p>&nbsp;&nbsp; &nbsp; \({\text{2HCOOH(l)}} + {{\text{O}}_2}{\text{(g)}} \to {\text{2C}}{{\text{O}}_2}{\text{(g)}} + {\text{2}}{{\text{H}}_2}{\text{O(l)}}\) &nbsp; &nbsp; \(\Delta H = a\)</p>
<p>&nbsp;&nbsp; &nbsp; \({{\text{C}}_2}{{\text{H}}_5}{\text{OH(l)}} + {\text{3}}{{\text{O}}_2}{\text{(g)}} \to {\text{2C}}{{\text{O}}_2}{\text{(g)}} + {\text{3}}{{\text{H}}_2}{\text{O(l)}}\) &nbsp; &nbsp; \(\Delta H = b\)</p>
<p>&nbsp;&nbsp; &nbsp; \({\text{2HCOO}}{{\text{C}}_2}{{\text{H}}_5}{\text{(l)}} + {\text{7}}{{\text{O}}_2}{\text{(g)}} \to {\text{6C}}{{\text{O}}_2}{\text{(g)}} + {\text{6}}{{\text{H}}_2}{\text{O(l)}}\) &nbsp; &nbsp; \(\Delta H = c\)</p>
<p>What is the enthalpy change for the following reaction?</p>
<p>\[{\text{HCOOH(l)}} + {{\text{C}}_2}{{\text{H}}_5}{\text{OH(l)}} \to {\text{HCOO}}{{\text{C}}_2}{{\text{H}}_5}{\text{(l)}} + {{\text{H}}_2}{\text{O(l)}}\]</p>
<p>A. &nbsp; &nbsp; \(a + b + c\)</p>
<p>B. &nbsp; &nbsp; \(a + 2b - c\)</p>
<p>C. &nbsp; &nbsp; \(\frac{1}{2}a + b + \frac{1}{2}c\)</p>
<p>D. &nbsp; &nbsp; \(\frac{1}{2}a + b - \frac{1}{2}c\)</p>
<div class="marks">[1]</div>
<div class="question_part_label">.</div>
</div>
<br><hr><br><div class="question">
<p>What is the enthalpy change of combustion of urea, (NH<sub>2</sub>)<sub>2</sub>CO, in kJ mol<sup>−1</sup>?</p>
<p style="text-align: center;">2(NH<sub>2</sub>)<sub>2</sub>CO(s) + 3O<sub>2</sub>(g) → 2CO<sub>2</sub>(g) + 2N<sub>2</sub>(g) + 4H<sub>2</sub>O(l)</p>
<p><img style="margin-right:auto;margin-left:auto;display: block;" src="images/Schermafbeelding_2018-08-10_om_07.13.07.png" alt="M18/4/CHEMI/SPM/ENG/TZ2/14"></p>
<p>A.     2 × (−333) −2 × (−394) −4 × (−286)</p>
<p>B.     \(\frac{1}{2}\)[2 × (−394) + 4 × (−286) −2 × (−333)]</p>
<p>C.     2 × (−394) + 4 × (−286) −2 × (−333)</p>
<p>D.     \(\frac{1}{2}\)[2 × (−333) −2 × (−394) −4 × (−286)]</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Which is correct about energy changes during bond breaking and bond formation?</p>
<p class="p1"><img src="images/Schermafbeelding_2016-10-12_om_10.42.34.png" alt="M10/4/CHEMI/SPM/ENG/TZ2/16"></p>
</div>
<br><hr><br><div class="question">
<p>In which order does the oxygen&ndash;oxygen bond enthalpy increase?</p>
<p>A. &nbsp; &nbsp; H<sub>2</sub>O<sub>2</sub> &lt; O<sub>2</sub> &lt; O<sub>3</sub></p>
<p>B. &nbsp; &nbsp; H<sub>2</sub>O<sub>2</sub> &lt; O<sub>3</sub> &lt; O<sub>2</sub></p>
<p>C. &nbsp; &nbsp; O<sub>2</sub> &lt; O<sub>3</sub> &lt; H<sub>2</sub>O<sub>2</sub></p>
<p>D. &nbsp; &nbsp; O<sub>3</sub>&nbsp;&lt; H<sub>2</sub>O<sub>2</sub> &lt; O<sub>2</sub></p>
</div>
<br><hr><br><div class="question">
<p>Which change of state is exothermic?&nbsp;</p>
<p>A. CO<sub>2</sub>(s) &rarr; CO<sub>2</sub>(g)<br>B. H<sub>2</sub>O(l) &rarr; H<sub>2</sub>O(g)&nbsp;<br>C. NH<sub>3</sub>(g) &rarr; NH<sub>3</sub>(l)&nbsp;<br>D. Fe(s) &rarr; Fe(l)</p>
<p>&nbsp;</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Which process represents the C&ndash;Cl bond enthalpy in tetrachloromethane?</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({\text{CC}}{{\text{l}}_{\text{4}}}{\text{(g)}} \to {\text{C(g)}} + {\text{4Cl(g)}}\)</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({\text{CC}}{{\text{l}}_4}({\text{g)}} \to {\text{CC}}{{\text{l}}_3}({\text{g)}} + {\text{Cl(g)}}\)</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({\text{CC}}{{\text{l}}_4}({\text{l)}} \to {\text{C(g)}} + 4{\text{Cl(g)}}\)</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({\text{CC}}{{\text{l}}_4}({\text{l)}} \to {\text{C(s)}} + 2{\text{C}}{{\text{l}}_2}({\text{g)}}\)</p>
</div>
<br><hr><br><div class="question">
<p>When 25.0cm<sup>3</sup> 0.100moldm<sup>&minus;3</sup> NaOH(aq) is mixed with 25.0cm<sup>3</sup> 0.100moldm<sup>&minus;3</sup> HCl(aq) at the same temperature, a temperature rise, <em>∆T</em>, is recorded. What is the expression, in kJ mol<sup>&minus;1</sup>, for the enthalpy of neutralisation? (Assume the density of the mixture = 1.00 g cm<sup>&minus;3</sup> and its specific heat capacity=4.18kJkg<sup>&minus;1</sup>K<sup>&minus;1</sup> =4.18Jg<sup>&minus;1</sup>K<sup>&minus;1</sup>)</p>
<p>A. \( - \frac{{25.0 \times 4.18 \times \Delta T}}{{50.0 \times 0.100}}\)</p>
<p>B. \( - \frac{{25.0 \times 4.18 \times \Delta T}}{{25.0 \times 0.100}}\)</p>
<p>C. \( - \frac{{50.0 \times 4.18 \times \Delta T}}{{50.0 \times 0.100}}\)</p>
<p>D. \( - \frac{{50.0 \times 4.18 \times \Delta T}}{{25.0 \times 0.100}}\)</p>
</div>
<br><hr><br><div class="question">
<p>Which expression gives the mass, in g, of ethanol required to produce 683.5 kJ of heat upon&nbsp;complete combustion?</p>
<p style="text-align: center;">(<em>M</em><sub>r</sub> for ethanol = 46.0, \(\Delta H_c^\theta &nbsp;= &nbsp;- 1367{\text{ kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\))</p>
<p style="text-align: left;">A. &nbsp; &nbsp; \(\frac{{683.5}}{{1367 \times 46.0}}\)</p>
<p style="text-align: left;">B. &nbsp; &nbsp; \(\frac{{1367}}{{683.5 \times 46.0}}\)</p>
<p style="text-align: left;">C. &nbsp; &nbsp; \(\frac{{683.5 \times 46.0}}{{1367}}\)</p>
<p style="text-align: left;">D. &nbsp; &nbsp; \(\frac{{1367 \times 46.0}}{{683.5}}\)</p>
</div>
<br><hr><br><div class="question">
<p>Using the equations below:</p>
<p>\[\begin{array}{*{20}{l}} {{\text{C(s)}} + {{\text{O}}_{\text{2}}}{\text{(g)}} \to {\text{C}}{{\text{O}}_{\text{2}}}{\text{(g)}}}&amp;{\Delta {H^\Theta } =&nbsp; - 390{\text{ kJ}}} \\ {{{\text{H}}_2}{\text{(g)}} + \frac{1}{2}{{\text{O}}_2}{\text{(g)}} \to {{\text{H}}_2}{\text{O(l)}}}&amp;{\Delta {H^\Theta } =&nbsp; - 286{\text{ kJ}}} \\ {{\text{C}}{{\text{H}}_4}{\text{(g)}} + {\text{2}}{{\text{O}}_2}{\text{(g)}} \to {\text{C}}{{\text{O}}_2}{\text{(g)}} + {\text{2}}{{\text{H}}_2}{\text{O(l)}}}&amp;{\Delta {H^\Theta } =&nbsp; - 890{\text{ kJ}}} \end{array}\]</p>
<p>what is \({\Delta {H^\Theta }}\), in kJ, for the following reaction?</p>
<p>\[{\text{ C(s)}} + {\text{2}}{{\text{H}}_2}{\text{(g)}} \to {\text{C}}{{\text{H}}_4}{\text{(g)}}\]</p>
<p>A. &nbsp; &nbsp; &ndash;214</p>
<p>B. &nbsp; &nbsp; &ndash;72</p>
<p>C. &nbsp; &nbsp; +72</p>
<p>D. &nbsp; &nbsp; +214</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Consider the following enthalpy of combustion data.</p>
<p class="p2">\[\begin{array}{*{20}{l}} {{\text{C(s)}} + {{\text{O}}_{\text{2}}}{\text{(g)}} \to {\text{C}}{{\text{O}}_{\text{2}}}{\text{(g)}}}&amp;{\Delta {H^\Theta } = - x{\text{ kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}} \\ {{{\text{H}}_2}{\text{(g) + }}\frac{1}{2}{{\text{O}}_2}{\text{(g)}} \to {{\text{H}}_2}{\text{O(l)}}}&amp;{\Delta {H^\Theta } = - y{\text{ kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}} \\ {{{\text{C}}_2}{{\text{H}}_6}{\text{(g)}} + {\text{3}}\frac{1}{2}{{\text{O}}_2}{\text{(g)}} \to {\text{2C}}{{\text{O}}_2}{\text{(g) + 3}}{{\text{H}}_2}{\text{O(l)}}}&amp;{\Delta {H^\Theta } = - z{\text{ kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}} \end{array}\]</p>
<p class="p1">What is the enthalpy of formation of ethane in \({\text{kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\)?</p>
<p class="p1">\[{\text{2C(s)}} + {\text{3}}{{\text{H}}_2}{\text{(g)}} \to {{\text{C}}_2}{{\text{H}}_6}{\text{(g)}}\]</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(\left[ {( - x) + ( - y)} \right] - ( - z)\)</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(( - z) - \left[ {( - x) + ( - y)} \right]\)</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(\left[ {( - 2x) + ( - 3y)} \right] - ( - z)\)</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(( - z) - \left[ {( - 2x) + ( - 3y)} \right]\)</p>
</div>
<br><hr><br><div class="question">
<div class="page" title="Page 3">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 3">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 3">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 3">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 4">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 7">
<div class="layoutArea">
<div class="column">Which equation represents the average bond enthalpy of the Si&minus;H bond in SiH<sub>4</sub>?</div>
<div class="column">&nbsp;</div>
<div class="column">A. &nbsp;SiH<sub>4</sub>(g)&rarr;SiH<sub>3</sub>(g)+H(g)<br>B. &nbsp;\(\frac{1}{4}\) SiH<sub>4</sub> (g) &rarr;&nbsp; \(\frac{1}{4}\) Si(g) + H(g)<br>C. &nbsp;SiH<sub>4</sub>(g) &rarr; SiH<sub>3</sub>(g) + \(\frac{1}{2}\) H<sub>2</sub>(g)<br>D. &nbsp;SiH<sub>4</sub> (g) &rarr; Si(g) + 4H(g)</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<br><hr><br><div class="question">
<p>In which reaction do the reactants have a lower potential energy than the products?&nbsp;</p>
<p>A. CH<sub>4</sub>(g) + 2O<sub>2</sub>(g) &rarr; CO<sub>2</sub>(g) + 2H<sub>2</sub>O(g)<br>B. HBr(g) &rarr; H(g) + Br(g)&nbsp;<br>C. Na<sup>+</sup>(g) + Cl<sup>-</sup>(g) &rarr; NaCl(s)&nbsp;<br>D. NaOH(aq) + HCl(aq) &rarr; NaCl(aq) + H<sub>2</sub>O(l)</p>
</div>
<br><hr><br><div class="question">
<p class="p1">What is the energy, in kJ, released when 1.00 mol of carbon monoxide is burned according to the following equation?</p>
<p class="p2">\[\begin{array}{*{20}{l}} {{\text{2CO(g)}} + {{\text{O}}_{\text{2}}}{\text{(g)}} \to {\text{2C}}{{\text{O}}_{\text{2}}}{\text{(g)}}}&amp;{\Delta {H^\Theta } = - 564{\text{ kJ}}} \end{array}\]</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>141</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>282</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>564</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>1128</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Which statements are correct for an exothermic reaction?</p>
<p class="p1">I.&nbsp; &nbsp; &nbsp;The products are more stable than the reactants.</p>
<p class="p1">II.&nbsp; &nbsp; &nbsp;The enthalpy change, \(\Delta H\), is negative.</p>
<p class="p1">III.&nbsp; &nbsp; &nbsp;The temperature of the surroundings increases.</p>
<p class="p1">A.&nbsp; &nbsp; &nbsp;I and II only</p>
<p class="p1">B.&nbsp; &nbsp; &nbsp;I and III only</p>
<p class="p1">C.&nbsp; &nbsp; &nbsp;II and III only</p>
<p class="p1">D.&nbsp; &nbsp; &nbsp;I, II and III</p>
</div>
<br><hr><br><div class="question">
<p class="p1">When \({\text{100 c}}{{\text{m}}^{\text{3}}}\) of \({\text{1.0 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) HCl is mixed with \({\text{100 c}}{{\text{m}}^{\text{3}}}\) of \({\text{1.0 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) NaOH, the temperature of the resulting solution increases by 5.0 &deg;C. What will be the temperature change, in &deg;C, when \({\text{50 c}}{{\text{m}}^{\text{3}}}\) of these two solutions are mixed?</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>2.5</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>5.0</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>10</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>20</p>
</div>
<br><hr><br><div class="question">
<p>Consider the following two equations.</p>
<p>\({\text{2Ca(s)}} + {{\text{O}}_2}{\text{(g)}} \to {\text{2CaO(s)}}\) &nbsp; &nbsp; \(\Delta {H^\Theta } =&nbsp; + x{\text{ kJ}}\)</p>
<p>\({\text{Ca(s)}} + {\text{0.5}}{{\text{O}}_2}{\text{(g)}} + {\text{C}}{{\text{O}}_2}{\text{(g)}} \to {\text{CaC}}{{\text{O}}_3}{\text{(s)}}\) &nbsp; &nbsp; \(\Delta {H^\Theta } =&nbsp; + y{\text{ kJ}}\)</p>
<p>What is \(\Delta {H^\Theta }\), in kJ, for the following reaction?</p>
<p>\[{\text{CaO(s)}} + {\text{C}}{{\text{O}}_2}{\text{(g)}} \to {\text{CaC}}{{\text{O}}_3}{\text{(s)}}\]</p>
<p>A. &nbsp; &nbsp; \(y - 0.5x\)</p>
<p>B. &nbsp; &nbsp; \(y - x\)</p>
<p>C. &nbsp; &nbsp; \(0.5 - y\)</p>
<p>D. &nbsp; &nbsp; \(x - y\)</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Which processes have a negative enthalpy change?</p>
<p class="p1">I. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(2{\text{C}}{{\text{H}}_3}{\text{OH(l)}} + 3{{\text{O}}_2}({\text{g)}} \to {\text{2C}}{{\text{O}}_2}({\text{g)}} + 4{{\text{H}}_2}{\text{O(l)}}\)</p>
<p class="p1">II. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({\text{HCl(aq)}} + {\text{NaOH(aq)}} \to {\text{NaCl(aq)}} + {{\text{H}}_2}{\text{O(l)}}\)</p>
<p class="p1">III. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({{\text{H}}_2}{\text{O(g)}} \to {{\text{H}}_2}{\text{O(l)}}\)</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>I and II only</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>I and III only</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>II and III only</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>I, II and III</p>
</div>
<br><hr><br><div class="question">
<p class="p1">When some solid barium hydroxide and solid ammonium thiosulfate were reacted together, the temperature of the surroundings was observed to decrease from 15 &deg;C to &ndash;4 &deg;C. What can be deduced from this observation?</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>The reaction is exothermic and \(\Delta H\) is negative.</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>The reaction is exothermic and \(\Delta H\) is positive.</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>The reaction is endothermic and \(\Delta H\) is negative.</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>The reaction is endothermic and \(\Delta H\) is positive.</p>
</div>
<br><hr><br><div class="question">
<p class="p1">At <span class="s1">25 &deg;C</span>, \({\text{200 c}}{{\text{m}}^{\text{3}}}\) of \({\text{1.0 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) nitric acid is added to 5.0 g of magnesium powder. If the experiment is repeated using the same mass of magnesium powder, which conditions will result in the same initial reaction rate?</p>
<p class="p1"><img src="images/Schermafbeelding_2016-10-29_om_17.47.23.png" alt="M11/4/CHEMI/SPM/ENG/TZ2/17"></p>
</div>
<br><hr><br><div class="question">
<p>When four moles of aluminium and four moles of iron combine with oxygen to form their oxides, the enthalpy changes are &ndash;3338 kJ and &ndash;1644 kJ respectively.</p>
<p>&nbsp;&nbsp; &nbsp; \({\text{4Al(s)}} + {\text{3}}{{\text{O}}_{\text{2}}}{\text{(g)}} \to {\text{2A}}{{\text{l}}_{\text{2}}}{{\text{O}}_{\text{3}}}{\text{(s)}}\) &nbsp; &nbsp; \(\Delta H =&nbsp; - 3338{\text{ kJ}}\)</p>
<p>&nbsp;&nbsp; &nbsp; \({\text{4Fe(s)}} + {\text{3}}{{\text{O}}_{\text{2}}}{\text{(g)}} \to {\text{2F}}{{\text{e}}_{\text{2}}}{{\text{O}}_{\text{3}}}{\text{(s)}}\) &nbsp; &nbsp; \(\Delta H =&nbsp; - 1644{\text{ kJ}}\)</p>
<p>What is the enthalpy change, in kJ, for the reduction of one mole of iron(III) oxide by aluminium?</p>
<p>\[{\text{F}}{{\text{e}}_{\text{2}}}{{\text{O}}_{\text{3}}}{\text{(s)}} + {\text{2Al(s)}} \to {\text{2Fe(s)}} + {\text{A}}{{\text{l}}_{\text{2}}}{{\text{O}}_{\text{3}}}{\text{(s)}}\]</p>
<p>A. &nbsp; &nbsp; \( + 1694\)</p>
<p>B. &nbsp; &nbsp; \( + 847\)</p>
<p>C. &nbsp; &nbsp; \( - 847\)</p>
<p>D. &nbsp; &nbsp; \( - 1694\)</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Which processes are exothermic?</p>
<p class="p1">I. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({\text{C}}{{\text{H}}_3}{\text{C}}{{\text{H}}_2}{\text{C}}{{\text{H}}_3}{\text{(g)}} + {\text{5}}{{\text{O}}_2}{\text{(g)}} \to {\text{3C}}{{\text{O}}_2}{\text{(g)}} + {\text{4}}{{\text{H}}_2}{\text{O(g)}}\)</p>
<p class="p1">II. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({\text{C}}{{\text{l}}_2}{\text{(g)}} \to {\text{2Cl(g)}}\)</p>
<p class="p1">III. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({\text{C}}{{\text{H}}_3}{\text{C}}{{\text{H}}_2}{\text{COOH(aq)}} + {\text{NaOH(aq)}} \to {\text{C}}{{\text{H}}_3}{\text{C}}{{\text{H}}_2}{\text{COONa(aq)}} + {{\text{H}}_2}{\text{O(l)}}\)</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>I and II only</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>I and III only</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>II and III only</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>I, II and III</p>
</div>
<br><hr><br><div class="question">
<p>Which combination is correct for the standard enthalpy change of neutralization?</p>
<p><img src="images/Schermafbeelding_2016-08-09_om_09.21.33.png" alt="M15/4/CHEMI/SPM/ENG/TZ2/14"></p>
</div>
<br><hr><br><div class="question">
<p>The table shows information about temperature increases when an acid and an alkali are mixed.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-16_om_09.08.30.png" alt="M14/4/CHEMI/SPM/ENG/TZ2/14"></p>
<p>What is the value of \(y\)?</p>
<p>A. &nbsp; &nbsp; \(\frac{1}{2}x\)</p>
<p>B. &nbsp; &nbsp; \(x\)</p>
<p>C. &nbsp; &nbsp; \(2x\)</p>
<p>D. &nbsp; &nbsp; \(4x\)</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Which processes are exothermic?</p>
<p class="p1">I. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({\text{C}}{{\text{H}}_{\text{3}}}{\text{COOH(aq)}} + {\text{NaOH(aq)}} \to {\text{C}}{{\text{H}}_{\text{3}}}{\text{COONa(aq)}} + {{\text{H}}_{\text{2}}}{\text{O(l)}}\)</p>
<p class="p2">II. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({\text{2C(s)}} + {{\text{O}}_{\text{2}}}{\text{(g)}} \to {\text{2CO(g)}}\)</p>
<p class="p2">III. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({\text{C(s)}} + {{\text{O}}_{\text{2}}}{\text{(g)}} \to {\text{C}}{{\text{O}}_{\text{2}}}{\text{(g)}}\)</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>I and II only</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>I and III only</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>II and III only</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>I, II and III</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Which equation best represents the bond enthalpy of HCl?</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({\text{HCl(g)}} \to {{\text{H}}^ + }{\text{(g)}} + {\text{C}}{{\text{l}}^ - }{\text{(g)}}\)</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({\text{HCl(g)}} \to {\text{H(g)}} + {\text{Cl(g)}}\)</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({\text{HCl(g)}} \to \frac{{\text{1}}}{2}{{\text{H}}_2}({\text{g)}} + \frac{1}{2}{\text{C}}{{\text{l}}_2}({\text{g)}}\)</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({\text{2HCl(g)}} \to {{\text{H}}_2}({\text{g)}} + {\text{C}}{{\text{l}}_2}({\text{g)}}\)</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Which combination is correct about the energy changes during bond breaking and bond formation?</p>
<p class="p1"><img src="images/Schermafbeelding_2016-09-14_om_14.35.30.png" alt="M13/4/CHEMI/SPM/ENG/TZ1/16"></p>
</div>
<br><hr><br><div class="question">
<p class="p1">The specific heat capacity of aluminium is \({\text{0.900 J}}\,{{\text{g}}^{ - 1}}{{\text{K}}^{ - 1}}\). What is the heat energy change, in J, when 10.0 g of aluminium is heated and its temperature increases from <span class="s2">15.0 &deg;C</span><span class="s3">&nbsp;</span>to <span class="s2">35.0 &deg;C</span>?</p>
<p class="p1">A.&nbsp; &nbsp; &nbsp;+180</p>
<p class="p1">B.&nbsp; &nbsp; &nbsp;+315</p>
<p class="p1">C.&nbsp; &nbsp; &nbsp;+1800</p>
<p class="p1">D.&nbsp; &nbsp; &nbsp;+2637</p>
</div>
<br><hr><br><div class="question">
<p class="p1">The standard enthalpy changes for the combustion of carbon and carbon monoxide are shown below.</p>
<p class="p2">\[\begin{array}{*{20}{l}} {{\text{C(s)}} + {{\text{O}}_{\text{2}}}{\text{(g)}} \to {\text{C}}{{\text{O}}_{\text{2}}}{\text{(g)}}}&amp;{\Delta H_{\text{c}}^\Theta = - 394{\text{ kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}} \\ {{\text{CO(g)}} + \frac{1}{2}{{\text{O}}_2}{\text{(g)}} \to {\text{C}}{{\text{O}}_2}{\text{(g)}}}&amp;{\Delta H_{\text{c}}^\Theta = - 283{\text{ kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}} \end{array}\]</p>
<p class="p1">What is the standard enthalpy change, in kJ, for the following reaction?</p>
<p class="p1">\[{\text{C(s)}} + \frac{1}{2}{{\text{O}}_2}{\text{(g)}} \to {\text{CO(g)}}\]</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>&ndash;677</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>&ndash;111</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>+111</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>+677</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Which is true for a chemical reaction in which the products have a higher enthalpy than the reactants?</p>
<p class="p1"><img src="images/Schermafbeelding_2016-10-04_om_08.18.37.png" alt="N09/4/CHEMI/SPM/ENG/TZ0/15"></p>
</div>
<br><hr><br><div class="question">
<p class="p1">Which statement is correct for the enthalpy level diagram shown?</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-14_om_14.33.33.png" alt="M13/4/CHEMI/SPM/ENG/TZ1/15"></p>
<p class="p1">A.&nbsp; &nbsp; &nbsp;The reaction is exothermic and the products are more stable than the reactants.</p>
<p class="p1">B.&nbsp; &nbsp; &nbsp;The reaction is exothermic and the sign of the enthalpy change is positive.</p>
<p class="p1">C.&nbsp; &nbsp; &nbsp;The reaction is endothermic and the sign of the enthalpy change is negative.</p>
<p class="p1">D.&nbsp; &nbsp; &nbsp;The reaction is endothermic and the products are more stable than the reactants.</p>
</div>
<br><hr><br><div class="question">
<p>Which statement is correct for the reaction with this enthalpy level diagram?</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-15_om_17.58.30.png" alt="M14/4/CHEMI/SPM/ENG/TZ1/14"></p>
<p>A.&nbsp; &nbsp; &nbsp;Heat energy is released during the reaction and the reactants are more stable than the products.</p>
<p>B.&nbsp; &nbsp; &nbsp;Heat energy is absorbed during the reaction and the reactants are more stable than the products.</p>
<p>C.&nbsp; &nbsp; &nbsp;Heat energy is released during the reaction and the products are more stable than the reactants.</p>
<p>D.&nbsp; &nbsp; &nbsp;Heat energy is absorbed during the reaction and the products are more stable than the reactants.</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Which equation corresponds to the bond enthalpy of the H&ndash;I bond?</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({\text{HI(g)}} \to \frac{1}{2}{{\text{H}}_{\text{2}}}{\text{(g)}} + \frac{1}{2}{{\text{I}}_{\text{2}}}{\text{(g)}}\)</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({\text{HI(g)}} \to \frac{1}{2}{{\text{H}}_{\text{2}}}{\text{(g)}} + \frac{1}{2}{{\text{I}}_{\text{2}}}{\text{(s)}}\)</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({\text{HI(g)}} \to {{\text{H}}^ + }{\text{(g)}} + {{\text{I}}^ - }{\text{(g)}}\)</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({\text{HI(g)}} \to {\text{H(g)}} + {\text{I(g)}}\)</p>
</div>
<br><hr><br><div class="question">
<p>Consider the following equations.</p>
<p>&nbsp;&nbsp; &nbsp; \({\text{2Fe(s)}} + {\text{1}}\frac{1}{2}{{\text{O}}_{\text{2}}}{\text{(g)}} \to {\text{F}}{{\text{e}}_{\text{2}}}{{\text{O}}_{\text{3}}}{\text{(s) }}\) &nbsp; &nbsp; \(\Delta {{\text{H}}^\Theta } = x\)</p>
<p>&nbsp;&nbsp; &nbsp; \({\text{CO(g)}} + \frac{1}{2}{{\text{O}}_{\text{2}}}{\text{(g)}} \to {\text{C}}{{\text{O}}_{\text{2}}}{\text{(g)}}\) &nbsp; &nbsp; \(\Delta {{\text{H}}^\Theta } = y\)</p>
<p>What is the enthalpy change of the reaction below?</p>
<p>\[{\text{F}}{{\text{e}}_{\text{2}}}{{\text{O}}_{\text{3}}}{\text{(s)}} + {\text{3CO(g)}} \to {\text{3C}}{{\text{O}}_{\text{2}}}{\text{(g)}} + {\text{2Fe(s)}}\]</p>
<p>A. &nbsp; &nbsp; \(3y - x\)</p>
<p>B. &nbsp; &nbsp; \(3y + x\)</p>
<p>C. &nbsp; &nbsp; \( - 3y - x\)</p>
<p>D. &nbsp; &nbsp; \( - 3y + x\)</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Use the average bond enthalpies below to calculate the enthalpy change, in kJ, for the following reaction.</p>
<p class="p1">\[{{\text{H}}_2}{\text{(g)}} + {{\text{I}}_2}{\text{(g)}} \to {\text{2HI(g)}}\]</p>
<p class="p2" style="text-align: center;"><img src="images/Schermafbeelding_2016-10-04_om_08.30.14.png" alt="N09/4/CHEMI/SPM/ENG/TZ0/17"></p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>+290</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>+10</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>&ndash;10</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>&ndash;290</p>
</div>
<br><hr><br><div class="question">
<p>The enthalpy change for the reaction between zinc metal and copper(II) sulfate solution is \(-217{\text{ kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\). Which statement about this reaction is correct?</p>
<p>A. &nbsp; &nbsp; The reaction is endothermic and the temperature of the reaction mixture initially rises.</p>
<p>B. &nbsp; &nbsp; The reaction is endothermic and the temperature of the reaction mixture initially drops.</p>
<p>C. &nbsp; &nbsp; The reaction is exothermic and the temperature of the reaction mixture initially rises.</p>
<p>D. &nbsp; &nbsp; The reaction is exothermic and the temperature of the reaction mixture initially drops.</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Consider the equations:</p>
<p class="p1">\[\begin{array}{*{20}{l}} {{{\text{N}}_{\text{2}}}{\text{(g)}} + {\text{2}}{{\text{H}}_{\text{2}}}{\text{(g)}} \to {{\text{N}}_{\text{2}}}{{\text{H}}_{\text{4}}}{\text{(l)}}}&amp;{\Delta {H^\Theta } = + 50.6{\text{ kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}} \\ {{{\text{N}}_2}{{\text{H}}_4}({\text{l)}} \to {{\text{N}}_2}{{\text{H}}_4}({\text{g)}}}&amp;{\Delta {H^\Theta } = + 44.8{\text{ kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}} \end{array}\]</p>
<p class="p1">What is \({\Delta {H^\Theta }}\), in kJ, for the following reaction?</p>
<p class="p1">\[{{\text{N}}_2}({\text{g)}} + 2{{\text{H}}_2}({\text{g)}} \to {{\text{N}}_2}{{\text{H}}_4}({\text{g)}}\]</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\( - 95.4\)</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\( - 5.80\)</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\( + 5.80\)</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\( + 95.4\)</p>
</div>
<br><hr><br><div class="question">
<p>Which expression gives the enthalpy change, &Delta;<em>H</em>, for the thermal decomposition of&nbsp;calcium carbonate?</p>
<p style="text-align: center;"><img src=""></p>
<p>A. &nbsp; &nbsp; &Delta;<em>H</em> = &Delta;<em>H</em><sub>1</sub> &minus; &Delta;<em>H</em><sub>2</sub></p>
<p>B. &nbsp; &nbsp; &Delta;<em>H</em> = 2&Delta;<em>H</em><sub>1</sub> &minus; &Delta;<em>H</em><sub>2</sub></p>
<p>C. &nbsp; &nbsp; &Delta;<em>H</em> = &Delta;<em>H</em><sub>1</sub> &minus; 2&Delta;<em>H</em><sub>2</sub></p>
<p>D. &nbsp; &nbsp; &Delta;<em>H</em> = &Delta;<em>H</em><sub>1</sub> + &Delta;<em>H</em><sub>2</sub></p>
</div>
<br><hr><br><div class="question">
<p>Which enthalpy changes can be calculated using <strong>only </strong>bond enthalpy data?</p>
<p>I. &nbsp; &nbsp; \({{\text{N}}_{\text{2}}}{\text{(g)}} + {\text{3}}{{\text{H}}_{\text{2}}}{\text{(g)}} \to {\text{2N}}{{\text{H}}_{\text{3}}}{\text{(g)}}\)</p>
<p>II. &nbsp; &nbsp; \({{\text{C}}_{\text{2}}}{{\text{H}}_{\text{5}}}{\text{OH(l)}} + {\text{3}}{{\text{O}}_{\text{2}}}{\text{(g)}} \to {\text{2C}}{{\text{O}}_{\text{2}}}{\text{(g)}} + {\text{3}}{{\text{H}}_{\text{2}}}{\text{O(g)}}\)</p>
<p>III. &nbsp; &nbsp; \({\text{C}}{{\text{H}}_{\text{4}}}{\text{(g)}} + {\text{C}}{{\text{l}}_{\text{2}}}{\text{(g)}} \to {\text{C}}{{\text{H}}_{\text{3}}}{\text{Cl(g)}} + {\text{HCl(g)}}\)</p>
<p>A. &nbsp; &nbsp; I and II only</p>
<p>B. &nbsp; &nbsp; I and III only</p>
<p>C. &nbsp; &nbsp; II and III only</p>
<p>D. &nbsp; &nbsp; I, II and III</p>
</div>
<br><hr><br><div class="question">
<div class="page" title="Page 3">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 3">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 3">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 3">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 4">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">What is the enthalpy of formation of ethyne, in kJmol<sup>&minus;1</sup>, represented by the arrow <strong>Y</strong> on the diagram?</div>
<div class="column"><img style="display: block; margin-left: auto; margin-right: auto;" src="" alt></div>
<div class="column">&nbsp;</div>
<div class="column">A. &nbsp;&minus;788&minus;286+1301<br>B. &nbsp;&minus;788&minus;286&minus;1301<br>C. &nbsp;+788+286&minus;1301<br>D. &nbsp;+788+286+1301</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<br><hr><br><div class="question">
<p>The C=N bond has a bond length of 130 pm and an average bond enthalpy of 615kJmol<sup>-1</sup>. Which values would be most likely for the C-N bond?</p>
<p><img src="" alt></p>
</div>
<br><hr><br>