File "HL-paper1.html"
Path: /IB QUESTIONBANKS/4 Fourth Edition - PAPER/HTML/Chemistry/Topic 18/HL-paper1html
File size: 153.57 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-746ec5d03ead8d9e8b3bb7d32173f2b4e2e22a05f0c5278e086ab55b3c9c238e.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-3c91afd8a2942c18d21ed2700e1bdec14ada97f1d3788ae229315e1276d81453.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../index.html">Home</a>
</li>
<li class="active dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Questionbanks
<b class="caret"></b>
</a><ul class="dropdown-menu">
<li>
<a href="../../geography.html" target="_blank">DP Geography</a>
</li>
<li>
<a href="../../physics.html" target="_blank">DP Physics</a>
</li>
<li>
<a href="../../chemistry.html" target="_blank">DP Chemistry</a>
</li>
<li>
<a href="../../biology.html" target="_blank">DP Biology</a>
</li>
<li>
<a href="../../furtherMath.html" target="_blank">DP Further Mathematics HL</a>
</li>
<li>
<a href="../../mathHL.html" target="_blank">DP Mathematics HL</a>
</li>
<li>
<a href="../../mathSL.html" target="_blank">DP Mathematics SL</a>
</li>
<li>
<a href="../../mathStudies.html" target="_blank">DP Mathematical Studies</a>
</li>
</ul></li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="images/logo.jpg" alt="Ib qb 46 logo">
</div>
</div>
</div><h2>HL Paper 1</h2><div class="question">
<p>Which type of bond is formed when a Lewis acid reacts with a Lewis base?</p>
<p>A. Covalent</p>
<p>B. Dipole-dipole</p>
<p>C. Double</p>
<p>D. Hydrogen</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Which compounds can be mixed together as solutions of equal volume and concentration to form a buffer solution?</p>
<p class="p1">A. Nitric acid and potassium hydroxide</p>
<p class="p1">B. Nitric acid and potassium nitrate</p>
<p class="p1">C. Propanoic acid and potassium hydroxide</p>
<p class="p1">D. Propanoic acid and potassium propanoate</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Which salt solution has the highest pH?</p>
<p class="p1">A. NH<sub><span class="s1">4</span></sub>C<span class="s2">l </span></p>
<p class="p1">B. Ca(NO<sub><span class="s1">3</span></sub>)<sub><span class="s1">2 </span></sub></p>
<p class="p1">C. Na<sub><span class="s1">2</span></sub>CO<sub><span class="s1">3 </span></sub></p>
<p class="p1">D. K<sub><span class="s1">2</span></sub>SO<sub><span class="s1">4 </span></sub></p>
</div>
<br><hr><br><div class="question">
<p class="p1">The graph below shows the titration curve of \({\text{25 c}}{{\text{m}}^{\text{3}}}\) of \({\text{0.100 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) of hydrochloric acid with sodium hydroxide, of \({\text{0.100 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) concentration. The indicator methyl orange was used to determine the equivalence point. Methyl orange has a pH range of 3.2– 4.4.</p>
<p class="p2" style="text-align: center;"><img src="images/Schermafbeelding_2016-10-26_om_16.28.27.png" alt="M11/4/CHEMI/HPM/ENG/TZ2/29"></p>
<p class="p1">If the hydrochloric acid was replaced by ethanoic acid of the same volume and concentration, which property of the titration would remain the same?</p>
<p class="p1">A. <span class="Apple-converted-space"> </span>The initial pH</p>
<p class="p1">B. <span class="Apple-converted-space"> </span>The pH at the equivalence point</p>
<p class="p1">C. <span class="Apple-converted-space"> </span>The volume of strong base, NaOH, needed to reach the equivalence point</p>
<p class="p1">D. <span class="Apple-converted-space"> </span>The colour of the titration mixture just before the equivalence point is reached</p>
</div>
<br><hr><br><div class="question">
<p>For which equilibrium can an expression for a base dissociation constant, \({K_{\text{b}}}\), for the forward reaction be written?</p>
<p>A. \({\text{N}}{{\text{H}}_3} + {{\text{H}}_3}{{\text{O}}^ + } \rightleftharpoons {\text{NH}}_4^ + + {{\text{H}}_2}{\text{O}}\)</p>
<p>B. \({{\text{F}}^ - } + {{\text{H}}_2}{\text{O}} \rightleftharpoons {\text{HF}} + {\text{O}}{{\text{H}}^ - }\)</p>
<p>C. \({\text{NH}}_4^ + + {\text{O}}{{\text{H}}^ - } \rightleftharpoons {\text{N}}{{\text{H}}_3} + {{\text{H}}_2}{\text{O}}\)</p>
<p>D. \({\text{HF}} + {\text{O}}{{\text{H}}^ - } \rightleftharpoons {{\text{H}}_2}{\text{O}} + {{\text{F}}^ - }\)</p>
</div>
<br><hr><br><div class="question">
<p>Which statements are correct?</p>
<p> I. Lewis bases can act as nucleophiles.</p>
<p> II. Electrophiles are Lewis acids.</p>
<p> III. Lewis acids are electron pair acceptors.</p>
<p>A. I and II only</p>
<p>B. I and III only</p>
<p>C. II and III only</p>
<p>D. I, II and III</p>
</div>
<br><hr><br><div class="question">
<p>Which combination of acid and base is most likely to have a pH of 8.5 at the equivalence point in a titration?</p>
<p>A. Hydrochloric acid and sodium hydroxide</p>
<p>B. Hydrochloric acid and ammonia</p>
<p>C. Nitric acid and ammonia</p>
<p>D. Methanoic acid and sodium hydroxide</p>
</div>
<br><hr><br><div class="question">
<p>Which definition of a base is correct?</p>
<p>A. A Lewis base accepts a proton.</p>
<p>B. A Brønsted-Lowry base accepts an electron pair.</p>
<p>C. A Brønsted-Lowry base donates an electron pair.</p>
<p>D. A Lewis base donates an electron pair.</p>
</div>
<br><hr><br><div class="question">
<p class="p1">The \({K_{\text{b}}}\) value for a base is \(5.0 \times {10^{ - 2}}{\text{ mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) at 298 K. What is the \({K_{\text{a}}}\) value for its conjugate acid at this temperature?</p>
<p class="p1">A. <span class="Apple-converted-space"> </span>\(5.0 \times {10^{ - 2}}\)</p>
<p class="p1">B. <span class="Apple-converted-space"> </span>\(2.0 \times {10^{ - 6}}\)</p>
<p class="p1">C. <span class="Apple-converted-space"> </span>\(2.0 \times {10^{ - 12}}\)</p>
<p class="p1">D. <span class="Apple-converted-space"> </span>\(2.0 \times {10^{ - 13}}\)</p>
</div>
<br><hr><br><div class="question">
<p class="p1">The colours of three indicators are shown in the table below.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-12_om_13.55.11.png" alt="M13/4/CHEMI/HPM/ENG/TZ1/29"></p>
<p class="p1">Equal volumes of these three indicators were mixed and the mixture was added to a solution of \({\text{pH}} = 5.0\). What colour would be seen?</p>
<p class="p1">A. Yellow</p>
<p class="p1">B. Orange</p>
<p class="p1">C. Green</p>
<p class="p1">D. Blue</p>
</div>
<br><hr><br><div class="question">
<p>What is the expression for the ionic product constant of water, \({K_{\text{w}}}\)?</p>
<p>A. \({K_{\text{w}}} = {K_{\text{a}}} \times {K_{\text{b}}}\)</p>
<p>B. \({K_{\text{w}}} = {K_{\text{a}}} + {K_{\text{b}}}\)</p>
<p>C. \({K_{\text{w}}} = \frac{{{K_{\text{a}}}}}{{{K_{\text{b}}}}}\)</p>
<p>D. \({K_{\text{w}}} = {K_{\text{a}}} - {K_{\text{b}}}\)</p>
<p> </p>
</div>
<br><hr><br><div class="question">
<p class="p1">The indicator, HIn is used in a titration between an acid and base. Which statement about the dissociation of the indicator, HIn is correct?</p>
<p class="p1">\[{\text{HIn(aq)}} \rightleftharpoons {{\text{H}}^ + }{\text{(aq)}} + {\text{I}}{{\text{n}}^ - }{\text{(aq)}}\]</p>
<p class="p1" style="text-align: center;">colour A <span class="Apple-converted-space"> </span>colour B</p>
<p class="p1">A. <span class="Apple-converted-space"> </span>In a strongly alkaline solution, colour B would be observed.</p>
<p class="p1">B. <span class="Apple-converted-space"> </span>In a strongly acidic solution, colour B would be observed.</p>
<p class="p1">C. <span class="Apple-converted-space"> </span>\({\text{[I}}{{\text{n}}^ - }{\text{]}}\) is greater than [HIn] at the equivalence point.</p>
<p class="p1">D. <span class="Apple-converted-space"> </span>In a weakly acidic solution colour B would be observed.</p>
</div>
<br><hr><br><div class="question">
<p class="p1">The \({K_{\text{a}}}\) values of four weak acids W, X, Y and Z are listed below.</p>
<p class="p1">W <span class="Apple-converted-space"> </span>\({K_{\text{a}}} = 1.35 \times {10^{ - 3}}\)</p>
<p class="p1">X <span class="Apple-converted-space"> </span>\({K_{\text{a}}} = 4.47 \times {10^{ - 2}}\)</p>
<p class="p1">Y <span class="Apple-converted-space"> </span>\({K_{\text{a}}} = 9.33 \times {10^{ - 6}}\)</p>
<p class="p1">Z <span class="Apple-converted-space"> </span>\({K_{\text{a}}} = 1.47 \times {10^{ - 5}}\)</p>
</div>
<br><hr><br><div class="question">
<p>The acid–base indicator phenol red, HIn, changes colour from yellow to red over a pH range of 6.6–8.2. Which statement is correct?</p>
<p>A. In a strongly acidic solution \({\text{[HIn]}} < {\text{[I}}{{\text{n}}^ - }{\text{]}}\).</p>
<p>B. The \({\text{p}}{K_{\text{a}}}\) of phenol red is between 6.6 and 8.2.</p>
<p>C. The \({\text{I}}{{\text{n}}^ - }\) ions are yellow.</p>
<p>D. Phenol red would be a suitable indicator for the titration of a strong acid and a weak base.</p>
</div>
<br><hr><br><div class="question">
<p>Methylamine acts as a weak base when it reacts with water. For a diluted aqueous solution, what is the \({K_{\text{b}}}\) expression for this reaction?</p>
<p>A. \({K_{\text{b}}} = \frac{{{\text{[C}}{{\text{H}}_{\text{3}}}{\text{NH}}_{\text{3}}^ + {\text{][O}}{{\text{H}}^ - }{\text{]}}}}{{{\text{[C}}{{\text{H}}_{\text{3}}}{\text{N}}{{\text{H}}_{\text{2}}}{\text{]}}}}\)</p>
<p>B. \({K_{\text{b}}} = \frac{{{\text{[C}}{{\text{H}}_{\text{3}}}{\text{N}}{{\text{H}}_{\text{2}}}{\text{][}}{{\text{H}}_{\text{2}}}{\text{O]}}}}{{{\text{[C}}{{\text{H}}_{\text{3}}}{\text{NH}}_{\text{3}}^ + {\text{][O}}{{\text{H}}^ - }{\text{]}}}}\)</p>
<p>C. \({K_{\text{b}}} = \frac{{{\text{[C}}{{\text{H}}_{\text{3}}}{\text{NH}}_{\text{3}}^ + {\text{][O}}{{\text{H}}^ - }{\text{]}}}}{{{\text{[C}}{{\text{H}}_{\text{3}}}{\text{N}}{{\text{H}}_{\text{2}}}{\text{][}}{{\text{H}}_{\text{2}}}{\text{O]}}}}\)</p>
<p>D. \({K_{\text{b}}} = \frac{{{\text{[C}}{{\text{H}}_{\text{3}}}{\text{N}}{{\text{H}}_{\text{2}}}{\text{]}}}}{{{\text{[C}}{{\text{H}}_{\text{3}}}{\text{NH}}_{\text{3}}^ + {\text{][O}}{{\text{H}}^ - }{\text{]}}}}\)</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Four aqueous solutions are listed below.</p>
<p class="p1">W. <span class="Apple-converted-space"> </span>\({\text{0.100 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}{\text{ HN}}{{\text{O}}_{\text{3}}}{\text{(aq)}}\)</p>
<p class="p1">X. <span class="Apple-converted-space"> </span>\({\text{0.001 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}{\text{ HN}}{{\text{O}}_{\text{3}}}{\text{(aq)}}\)</p>
<p class="p1">Y. <span class="Apple-converted-space"> </span>\({\text{0.100 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}{\text{ KOH(aq)}}\)</p>
<p class="p1">Z. <span class="Apple-converted-space"> </span>\({\text{0.001 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}{\text{ KOH(aq)}}\)</p>
<p class="p1">What is the correct order of <strong>increasing </strong>pH of these solutions?</p>
<p class="p1">A. <span class="Apple-converted-space"> </span>\({\text{W}} < {\text{X}} < {\text{Y}} < {\text{Z}}\)</p>
<p class="p1">B. <span class="Apple-converted-space"> </span>\({\text{W}} < {\text{X}} < {\text{Z}} < {\text{Y}}\)</p>
<p class="p1">C. <span class="Apple-converted-space"> </span>\({\text{X}} < {\text{W}} < {\text{Y}} < {\text{Z}}\)</p>
<p class="p1">D. <span class="Apple-converted-space"> </span>\({\text{X}} < {\text{W}} < {\text{Z}} < {\text{Y}}\)</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Which of the following is an example of a Lewis acid–base reaction, but not a Brønsted–Lowry acid–base reaction?</p>
<p class="p1">A. <span class="Apple-converted-space"> </span>\({\text{2CrO}}_4^{2 - }{\text{(aq)}} + {\text{2}}{{\text{H}}^ + }{\text{(aq)}} \to {\text{C}}{{\text{r}}_2}{\text{O}}_7^{2 - }{\text{(aq)}} + {{\text{H}}_2}{\text{O(l)}}\)</p>
<p class="p1">B. <span class="Apple-converted-space"> </span>\({\text{Co(}}{{\text{H}}_2}{\text{O)}}_6^{2 + }{\text{(aq)}} + {\text{4HCl(aq)}} \to {\text{CoCl}}_4^{2 - }{\text{(aq)}} + {\text{4}}{{\text{H}}^ + }{\text{(aq)}} + {\text{6}}{{\text{H}}_2}{\text{O(l)}}\)</p>
<p class="p1">C. <span class="Apple-converted-space"> </span>\({\text{N}}{{\text{H}}_3}{\text{(aq)}} + {{\text{H}}^ + }{\text{(aq)}} \to {\text{NH}}_4^ + {\text{(aq)}}\)</p>
<p class="p1">D. <span class="Apple-converted-space"> </span>\({\text{C}}{{\text{H}}_3}{\text{CO}}{{\text{O}}^ - }{\text{(aq)}} + {{\text{H}}_2}{\text{O(l)}} \to {\text{C}}{{\text{H}}_3}{\text{COOH(aq)}} + {\text{O}}{{\text{H}}^ - }{\text{(aq)}}\)</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Which equation represents a reaction for which a base dissociation constant expression, \({K_b}\), can be written?</p>
<p class="p1">A. <span class="Apple-converted-space"> </span>\({\text{C}}{{\text{H}}_{\text{3}}}{\text{COOH(aq)}} + {\text{N}}{{\text{H}}_{\text{3}}}{\text{(aq)}} \rightleftharpoons {\text{C}}{{\text{H}}_{\text{3}}}{\text{CO}}{{\text{O}}^ - }{\text{(aq)}} + {\text{NH}}_4^ + {\text{(aq)}}\)</p>
<p class="p1">B. <span class="Apple-converted-space"> </span>\({\text{HF(aq)}} \rightleftharpoons {{\text{H}}^ + }{\text{(aq)}} + {{\text{F}}^ - }{\text{(aq)}}\)</p>
<p class="p2">C. <span class="Apple-converted-space"> </span>\({\text{HCN(aq)}} + {\text{O}}{{\text{H}}^ - }{\text{(aq)}} \rightleftharpoons {\text{C}}{{\text{N}}^ - }{\text{(aq)}} + {{\text{H}}_{\text{2}}}{\text{O(l)}}\)</p>
<p class="p1">D. <span class="Apple-converted-space"> </span>\({\text{N}}{{\text{H}}_{\text{3}}}{\text{(aq)}} + {{\text{H}}_{\text{2}}}{\text{O(l)}} \rightleftharpoons {\text{NH}}_4^ + {\text{(aq)}} + {\text{O}}{{\text{H}}^ - }{\text{(aq)}}\)</p>
</div>
<br><hr><br><div class="question">
<p>A weak acid is titrated with a strong base. Which statement is true for the titration curve?</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-11_om_07.29.10.png" alt="M14/4/CHEMI/HPM/ENG/TZ1/28"></p>
<p>A. <strong>A</strong> is the equivalence point.</p>
<p>B. The pH at <strong>A</strong> equals the \({\text{p}}{K_{\text{a}}}\) of the acid.</p>
<p>C. The pH at <strong>B</strong> equals 7.</p>
<p>D. <strong>C</strong> is in the buffer region.</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Which mixture will form a buffer in aqueous solution?</p>
<p class="p1">A. <span class="Apple-converted-space"> </span>\({\text{0.10 mol N}}{{\text{H}}_{\text{3}}} + {\text{0.20 mol HCl}}\)</p>
<p class="p1">B. <span class="Apple-converted-space"> </span>\({\text{0.10 mol N}}{{\text{H}}_{\text{3}}} + {\text{0.20 mol NaOH}}\)</p>
<p class="p2">C. <span class="Apple-converted-space"> </span>\({\text{0.10 mol NaOH}} + {\text{0.20 mol KCl}}\)</p>
<p class="p1">D. <span class="Apple-converted-space"> </span>\({\text{0.20 mol N}}{{\text{H}}_{\text{3}}} + {\text{0.10 mol HCl}}\)</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Ammonia acts as a weak base when it reacts with water. What is the \({K_{\text{b}}}\) expression for this reaction?</p>
<p class="p1">A. <span class="Apple-converted-space"> </span>\(\frac{{[{\text{NH}}_4^ + ][{\text{O}}{{\text{H}}^ - }]}}{{[{\text{N}}{{\text{H}}_3}][{{\text{H}}_2}{\text{O]}}}}\)</p>
<p class="p1">B. <span class="Apple-converted-space"> </span>\(\frac{{[{\text{N}}{{\text{H}}_3}{\text{][}}{{\text{H}}_2}{\text{O]}}}}{{{\text{[NH}}_4^ + {\text{][O}}{{\text{H}}^ - }{\text{]}}}}\)</p>
<p class="p1">C. <span class="Apple-converted-space"> </span>\(\frac{{[{\text{N}}{{\text{H}}_3}]}}{{[{\text{NH}}_4^ + ][{\text{O}}{{\text{H}}^ - }]}}\)</p>
<p class="p1">D. <span class="Apple-converted-space"> </span>\(\frac{{[{\text{NH}}_4^ + ][{\text{O}}{{\text{H}}^ - }]}}{{[{\text{N}}{{\text{H}}_3}]}}\)</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Which titration curve is produced by the titration of \({\text{25 c}}{{\text{m}}^{\text{3}}}\) of \({\text{1.00 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) NaOH with \({\text{1.00 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}{\text{ C}}{{\text{H}}_{\text{3}}}{\text{COOH}}\)?</p>
<p class="p1"><img src="images/Schermafbeelding_2016-11-01_om_06.30.02.png" alt="M12/4/CHEMI/HPM/ENG/TZ2/27"></p>
</div>
<br><hr><br><div class="question">
<p class="p1">Which reaction represents an acid–base reaction according to the Lewis theory but not according to the Brønsted–Lowry theory?</p>
<p class="p1">A. <span class="Apple-converted-space"> </span>\({\text{CO}}_3^{2 - }({\text{aq)}} + {{\text{H}}_3}{{\text{O}}^ + }({\text{aq)}} \rightleftharpoons {{\text{H}}_2}{\text{O(l)}} + {\text{HCO}}_3^ - {\text{(aq)}}\)</p>
<p class="p1">B. <span class="Apple-converted-space"> </span>\({\text{C}}{{\text{H}}_3}{\text{COOH(aq)}} + {\text{N}}{{\text{H}}_3}({\text{aq)}} \rightleftharpoons {\text{NH}}_4^ + ({\text{aq)}} + {\text{C}}{{\text{H}}_3}{\text{CO}}{{\text{O}}^ - }({\text{aq)}}\)</p>
<p class="p1">C. <span class="Apple-converted-space"> </span>\({\text{N}}{{\text{H}}_3}({\text{aq)}} + {\text{HF(aq)}} \rightleftharpoons {\text{NH}}_4^ + ({\text{aq)}} + {{\text{F}}^ - }({\text{aq)}}\)</p>
<p class="p1">D. <span class="Apple-converted-space"> </span>\({\rm{CuS}}{{\rm{O}}_{\rm{4}}}{\rm{(s)}} + 5{{\rm{H}}_{\rm{2}}}{\rm{O(l)}} \rightleftharpoons {\rm{CuS}}{{\rm{O}}_{\rm{4}}}{\rm{ \bullet 5}}{{\rm{H}}_{\rm{2}}}{\rm{O(s)}}\)</p>
</div>
<br><hr><br><div class="question">
<p>Which is an example of a Lewis base?</p>
<p>A. an electrophile</p>
<p>B. BF<sub>3</sub></p>
<p>C. CH<sub>4</sub></p>
<p>D. a nucleophile</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Which mixtures could act as buffers?</p>
<p class="p1">I. <span class="Apple-converted-space"> </span>NaOH(aq) and HCl(aq)</p>
<p class="p1">II. <span class="Apple-converted-space"> </span>NaOH(aq) and \({\text{C}}{{\text{H}}_{\text{3}}}{\text{COOH(aq)}}\)</p>
<p class="p1">III. <span class="Apple-converted-space"> </span>HCl(aq) and \({\text{C}}{{\text{H}}_{\text{3}}}{\text{COONa(aq)}}\)</p>
<p class="p1">A. <span class="Apple-converted-space"> </span>I and II only</p>
<p class="p1">B. <span class="Apple-converted-space"> </span>I and III only</p>
<p class="p1">C. <span class="Apple-converted-space"> </span>II and III only</p>
<p class="p1">D. <span class="Apple-converted-space"> </span>I, II and III</p>
</div>
<br><hr><br><div class="question">
<p class="p1">At the same concentration, which acid would have the lowest pH?</p>
<p class="p1">\(\begin{array}{*{20}{l}} {{\text{A.}}}&{{\text{HN}}{{\text{O}}_{\text{2}}}}&{{K_{\text{a}}} = 5.6 \times {{10}^{ - 4}}{\text{ mol}}\,{\text{d}}{{\text{m}}^{ - 3}}} \\ {{\text{B.}}}&{{\text{HF}}}&{{K_{\text{a}}} = 6.8 \times {{10}^{ - 4}}{\text{ mol}}\,{\text{d}}{{\text{m}}^{ - 3}}} \\ {{\text{C.}}}&{{{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{COOH}}}&{{K_{\text{a}}} = 6.3 \times {{10}^{ - 5}}{\text{ mol}}\,{\text{d}}{{\text{m}}^{ - 3}}} \\ {{\text{D.}}}&{{\text{HCN}}}&{{K_{\text{a}}} = 4.9 \times {{10}^{ - 10}}{\text{ mol}}\,{\text{d}}{{\text{m}}^{ - 3}}} \end{array}\)</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Consider the equation for the dissociation of water:</p>
<p class="p1">\[\begin{array}{*{20}{l}} {{{\text{H}}_2}{\text{O(l)}} \rightleftharpoons {{\text{H}}^ + }{\text{(aq)}} + {\text{O}}{{\text{H}}^ - }{\text{(aq)}}}&{\Delta H = + 57.3{\text{ kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}} \end{array}\]</p>
<p class="p1">Which statement is correct?</p>
<p class="p1">A. <span class="Apple-converted-space"> </span>The pH of pure water is always 7.</p>
<p class="p1">B. <span class="Apple-converted-space"> </span>At temperatures above 298 K the pH of pure water is below 7.</p>
<p class="p1">C. <span class="Apple-converted-space"> </span>At temperatures above 298 K the pH of pure water is above 7.</p>
<p class="p1">D. <span class="Apple-converted-space"> </span>\({K_{\text{w}}}\) decreases with increasing temperature.</p>
</div>
<br><hr><br><div class="question">
<p>Which pair of compounds could be used to make a buffer solution (assuming appropriate molar ratios)?</p>
<p>A. KCl and HCl</p>
<p>B. NaCl and HCl</p>
<p>C. \({\text{KHS}}{{\text{O}}_{\text{4}}}\) and \({{\text{H}}_{\text{2}}}{\text{S}}{{\text{O}}_{\text{4}}}\)</p>
<p>D. \({\text{C}}{{\text{H}}_{\text{3}}}{\text{COONa}}\) and \({\text{C}}{{\text{H}}_{\text{3}}}{\text{COOH}}\)</p>
</div>
<br><hr><br><div class="question">
<p class="p1">During a titration, \({\text{0.1 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) sodium hydroxide is added to \({\text{0.1 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) ethanoic acid. Which indicator would be the <strong>best </strong>to use as an end point indicator in this titration?</p>
<p class="p1"><img src="images/Schermafbeelding_2016-09-21_om_08.26.59.png" alt="N12/4/CHEMI/HPM/ENG/TZ0/29"></p>
</div>
<br><hr><br><div class="question">
<p class="p1">Bromophenol blue changes from yellow to blue over the pH range of 3.0 to 4.6. Which statement is correct?</p>
<p class="p1">A. <span class="Apple-converted-space"> </span>Molecules of bromophenol blue, HIn, are blue.</p>
<p class="p1">B. <span class="Apple-converted-space"> </span>At \({\text{pH}} < 3.0\), a solution of bromophenol blue contains more ions, \({\text{I}}{{\text{n}}^ - }\), than molecules, HIn.</p>
<p class="p1">C. <span class="Apple-converted-space"> </span>The \({\text{p}}{K_{\text{a}}}\) of bromophenol blue is between 3.0 and 4.6.</p>
<p class="p1">D. <span class="Apple-converted-space"> </span>Bromophenol blue is a suitable indicator to titrate ethanoic acid with potassium hydroxide</p>
<p class="p1">solution.</p>
</div>
<br><hr><br><div class="question">
<p class="p1">\({\text{100 c}}{{\text{m}}^{\text{3}}}\) of a NaOH solution of pH 12 is mixed with \({\text{900 c}}{{\text{m}}^{\text{3}}}\) of water. What is the pH of the resulting solution?</p>
<p class="p1">A. <span class="Apple-converted-space"> </span>1</p>
<p class="p1">B. <span class="Apple-converted-space"> </span>3</p>
<p class="p1">C. <span class="Apple-converted-space"> </span>11</p>
<p class="p1">D. <span class="Apple-converted-space"> </span>13</p>
</div>
<br><hr><br><div class="question">
<div class="page" title="Page 3">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 4">
<div class="section">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 5">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 5">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 7">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 11">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 12">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 12">
<div class="layoutArea">
<div class="column" style="text-align: left;">The diagram represents the bonding in aluminium chloride.</div>
<div class="column" style="text-align: left;"> </div>
<div class="column" style="text-align: center;"><img src="" alt></div>
<div class="column" style="text-align: center;"> </div>
<div class="column" style="text-align: center;"> </div>
<div class="column">Which statement is correct?</div>
<div class="column"> </div>
<div class="column">A. The aluminium atoms behave as Lewis acids.<br>B. The aluminium atoms behave as Lewis bases.<br>C. One aluminium atom is a Lewis base and the other a Lewis acid.<br>D. One chlorine atom is a Lewis base and the other a Lewis acid.</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<br><hr><br><div class="question">
<p class="p1">Equal volumes and concentrations of hydrochloric acid and ethanoic acid are titrated with sodium hydroxide solutions of the same concentration. Which statement is correct?</p>
<p class="p1">A. The initial pH values of both acids are equal.</p>
<p class="p1">B. At the equivalence points, the solutions of both titrations have pH values of 7.</p>
<p class="p1">C. The same volume of sodium hydroxide is needed to reach the equivalence point.</p>
<p class="p1">D. The pH values of both acids increase equally until the equivalence points are reached.</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Which statements are correct about the complex \({\text{[Cu(N}}{{\text{H}}_{\text{3}}}{{\text{)}}_{\text{2}}}{\text{C}}{{\text{l}}_{\text{2}}}{\text{]}}\)<span class="s1">?</span></p>
<p class="p2">I. <span class="Apple-converted-space"> </span>Oxidation state of copper is +<span class="s2">2.</span></p>
<p class="p1">II. <span class="Apple-converted-space"> </span>Ammonia is a ligand.</p>
<p class="p1">III. <span class="Apple-converted-space"> </span>Chloride ions act as Lewis acids.</p>
<p class="p1">A. <span class="Apple-converted-space"> </span>I and II only</p>
<p class="p1">B. <span class="Apple-converted-space"> </span>I and III only</p>
<p class="p1">C. <span class="Apple-converted-space"> </span>II and III only</p>
<p class="p1">D. <span class="Apple-converted-space"> </span>I, II and III</p>
</div>
<br><hr><br><div class="question">
<p>In which reaction does \({{\text{H}}_{\text{2}}}{\text{O}}\) act as a Lewis base but not as a Brønsted–Lowry base.</p>
<p>A. \({{\text{H}}_2}{\text{O}} + {\text{NH}}_4^ + \to {{\text{H}}_3}{{\text{O}}^ + } + {\text{N}}{{\text{H}}_3}\)</p>
<p>B. \({{\text{H}}_2}{\text{O}} + {\text{CaO}} \to {\text{C}}{{\text{a}}^{{\text{2}} + }} + {\text{2O}}{{\text{H}}^ - }\)</p>
<p>C. \({{\text{H}}_2}{\text{O}} + {{\text{[Fe(}}{{\text{H}}_2}{\text{O}}{{\text{)}}_6}{\text{]}}^{{\text{3}} + }} \to {\text{Fe[(OH)(}}{{\text{H}}_2}{\text{O}}{{\text{)}}_5}{{\text{]}}^{{\text{2}} + }} + {{\text{H}}_3}{{\text{O}}^ + }\)</p>
<p>D. \({\text{6}}{{\text{H}}_2}{\text{O}} + {{\text{[Ni(N}}{{\text{H}}_3}{{\text{)}}_6}{\text{]}}^{2 + }} \to {\text{6N}}{{\text{H}}_3} + {{\text{[Ni(}}{{\text{H}}_2}{\text{O}}{{\text{)}}_6}{\text{]}}^{2 + }}\)</p>
</div>
<br><hr><br><div class="question">
<p class="p1">The strengths of four acids are:</p>
<p class="p1"><span class="Apple-converted-space"> </span>glycine <span class="Apple-converted-space"> </span>\({\text{p}}{K_{\text{a}}} = {\text{9.87}}\)</p>
<p class="p1"><span class="Apple-converted-space"> </span>chloroethanoic acid <span class="Apple-converted-space"> </span>\({K_{\text{a}}} = 1.38 \times {10^{ - 3}}\)</p>
<p class="p1"><span class="Apple-converted-space"> </span>phenol <span class="Apple-converted-space"> </span>\({K_{\text{a}}} = 1.00 \times {10^{ - 10}}\)</p>
<p class="p1"><span class="Apple-converted-space"> </span>butanoic acid <span class="Apple-converted-space"> </span>\({\text{p}}{K_{\text{a}}} = 4.82\)</p>
<p class="p1">What is the order of <strong>increasing </strong>acid strength?</p>
<p class="p1">A. <span class="Apple-converted-space"> </span>\({\text{chloroethanoic acid}} < {\text{butanoic acid}} < {\text{phenol}} < {\text{glycine}}\)</p>
<p class="p1">B. <span class="Apple-converted-space"> </span>\({\text{glycine}} < {\text{phenol}} < {\text{chloroethanoic acid}} < {\text{butanoic acid}}\)</p>
<p class="p1">C. <span class="Apple-converted-space"> </span>\({\text{phenol}} < {\text{chloroethanoic acid}} < {\text{butanoic acid}} < {\text{glycine}}\)</p>
<p class="p1">D. <span class="Apple-converted-space"> </span>\({\text{phenol}} < {\text{glycine}} < {\text{butanoic acid}} < {\text{chloroethanoic acid}}\)</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Based on information in the table below, which acid is the strongest?</p>
<p class="p1"><img src="images/Schermafbeelding_2016-10-26_om_16.25.20.png" alt="M11/4/CHEMI/HPM/ENG/TZ2/27"></p>
</div>
<br><hr><br><div class="question">
<p>Methyl orange is an indicator which changes its colour from red to yellow in a pH range of 3.2 – 4.4.</p>
<p>For which titration would methyl orange be a suitable indicator?</p>
<p>A. Iodine and sodium thiosulfate solution</p>
<p>B. Hydrochloric acid and ammonia solution</p>
<p>C. Ethanoic acid and sodium hydroxide solution</p>
<p>D. Ethanoic acid and ammonia solution</p>
</div>
<br><hr><br><div class="question">
<p>The \({\text{p}}{K_{\text{b}}}\) of \({\text{H}}{{\text{S}}^ - }\) is 7.08. What is its conjugate acid and what is the \({K_{\text{a}}}\) value of the acid?</p>
<p><img src="images/Schermafbeelding_2016-08-11_om_07.15.56.png" alt="M14/4/CHEMI/HPM/ENG/TZ1/26"></p>
</div>
<br><hr><br><div class="question">
<p>Cobalt forms the complex \({{\text{[Co(N}}{{\text{H}}_{\text{3}}}{{\text{)}}_{\text{5}}}{\text{Cl]}}^{2 + }}\). Which statements are correct for this complex?</p>
<p>I. The cobalt ion acts as a Lewis acid.</p>
<p>II. The cobalt ion has an oxidation number of +II.</p>
<p>III. There are 90° bond angles between the cobalt ion and the ligands.</p>
<p>A. I and II only</p>
<p>B. I and III only</p>
<p>C. II and III only</p>
<p>D. I, II and III</p>
</div>
<br><hr><br><div class="question">
<p>Which of the following will form a buffer solution if combined in appropriate molar ratios?</p>
<p>A. HCl and NaCl</p>
<p>B. NaOH and HCOONa</p>
<p>C. NH<sub>4</sub>Cl and HCl</p>
<p>D. HCl and NH<sub>3</sub></p>
</div>
<br><hr><br><div class="question">
<p class="p1">Which mixtures are buffer solutions?</p>
<p class="p1">I. <span class="Apple-converted-space"> </span>\({\text{KHS}}{{\text{O}}_{\text{4}}}{\text{(aq)}}\) and \({{\text{H}}_{\text{2}}}{\text{S}}{{\text{O}}_{\text{4}}}{\text{(aq)}}\)</p>
<p class="p1">II. <span class="Apple-converted-space"> </span>\({\text{C}}{{\text{H}}_{\text{3}}}{\text{COONa(aq)}}\) and \({\text{C}}{{\text{H}}_{\text{3}}}{\text{COOH(aq)}}\)</p>
<p class="p1">III. <span class="Apple-converted-space"> </span>\({\text{HCOOK(aq)}}\) and \({\text{HCOOH(aq)}}\)</p>
<p class="p1">A. <span class="Apple-converted-space"> </span>I and II only</p>
<p class="p1">B. <span class="Apple-converted-space"> </span>I and III only</p>
<p class="p1">C. <span class="Apple-converted-space"> </span>II and III only</p>
<p class="p1">D. <span class="Apple-converted-space"> </span>I, II and III</p>
</div>
<br><hr><br><div class="question">
<p class="p1">For which titration can the end point <strong>not </strong>be determined accurately by using an acid-base indicator?</p>
<p class="p1">A. <span class="Apple-converted-space"> </span>\({\text{N}}{{\text{H}}_{\text{3}}}{\text{(aq)}} + {\text{C}}{{\text{H}}_{\text{3}}}{\text{COOH(aq)}}\)</p>
<p class="p1">B. <span class="Apple-converted-space"> </span>\({\text{NaOH(aq)}} + {\text{HN}}{{\text{O}}_{\text{3}}}{\text{(aq)}}\)</p>
<p class="p1">C. <span class="Apple-converted-space"> </span>\({\text{N}}{{\text{H}}_{\text{3}}}{\text{(aq)}} + {\text{HN}}{{\text{O}}_{\text{3}}}{\text{(aq)}}\)</p>
<p class="p1">D. <span class="Apple-converted-space"> </span>\({\text{NaOH(aq)}} + {\text{C}}{{\text{H}}_{\text{3}}}{\text{COOH(aq)}}\)</p>
</div>
<br><hr><br><div class="question">
<p>The table below shows data for the \({{K_{\text{a}}}}\) and \({{\text{p}}{K_{\text{b}}}}\) values for some acids and bases at 298 K.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-24_om_14.49.59.png" alt="N13/4/CHEMI/HPM/ENG/TZ0/28"></p>
<p>Which two formulas represent the weakest acid and the weakest base in the table?</p>
<p>A. HClO and \({{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{N}}{{\text{H}}_{\text{2}}}\)</p>
<p>B. \({{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{COOH}}\) and \({\text{N}}{{\text{H}}_{\text{3}}}\)</p>
<p>C. \({{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{COOH}}\) and \({{\text{C}}_{\text{6}}}{{\text{H}}_{\text{5}}}{\text{N}}{{\text{H}}_{\text{2}}}\)</p>
<p>D. HClO and \({\text{N}}{{\text{H}}_{\text{3}}}\)</p>
</div>
<br><hr><br><div class="question">
<p>Which graph would be obtained by adding \({\text{0.10 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}{\text{HCl(aq)}}\) to \({\text{25 c}}{{\text{m}}^{\text{3}}}\) of \({\text{0.10 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}{\text{NaOH(aq)}}\)?</p>
<p><img src="images/Schermafbeelding_2016-08-11_om_09.06.14.png" alt="M14/4/CHEMI/HPM/ENG/TZ2/30"></p>
</div>
<br><hr><br><div class="question">
<p class="p1">The \({\text{p}}{K_{\text{b}}}\) value of ammonia is 4.75 at 298 K. What is the \({\text{p}}{K_{\text{a}}}\) value of the ammonium ion?</p>
<p class="p1">A. <span class="Apple-converted-space"> </span>\(\frac{{{\text{1}}{{\text{0}}^{ - 14}}}}{{{\text{4.75}}}}\)</p>
<p class="p1">B. <span class="Apple-converted-space"> </span>\(\frac{{{\text{14.00}}}}{{{\text{4.75}}}}\)</p>
<p class="p1">C. <span class="Apple-converted-space"> </span>\(14.00 - 4.75\)</p>
<p class="p1">D. <span class="Apple-converted-space"> </span>\(\frac{{{\text{1}}{{\text{0}}^{ - 14}}}}{{{\text{1}}{{\text{0}}^{ - 4.75}}}}\)</p>
</div>
<br><hr><br><div class="question">
<p>Which compound will produce an aqueous solution which has a pH greater than 7?</p>
<p>A. \({\text{CuS}}{{\text{O}}_{\text{4}}}\)</p>
<p>B. \({\text{FeC}}{{\text{l}}_{\text{3}}}\)</p>
<p>C. \({\text{N}}{{\text{a}}_{\text{2}}}{\text{C}}{{\text{O}}_{\text{3}}}\)</p>
<p>D. \({\text{N}}{{\text{H}}_{\text{4}}}{\text{N}}{{\text{O}}_{\text{3}}}\)</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Which mixture is a buffer solution?</p>
<p class="p1">A. 25 cm<span class="s1"><sup>3</sup> </span>of 0.10 mol dm<sup><span class="s2">-</span><span class="s1">3 </span></sup>NH<sub><span class="s1">3 </span></sub>(aq) and 50 cm<sup><span class="s1">3 </span></sup>of 0.10 mol dm<sup><span class="s2">-</span><span class="s1">3 </span></sup>HC<span class="s3">l </span>(aq)</p>
<p class="p1">B. 50 cm<sup>3</sup><span class="s1"> </span>of 0.10 mol dm<sup><span class="s2">-</span><span class="s1">3 </span></sup>NH<sub><span class="s1">3 </span></sub>(aq) and 25 cm<sup><span class="s1">3 </span></sup>of 0.10 mol dm<sup><span class="s2">-</span><span class="s1">3 </span></sup>HC<span class="s3">l </span>(aq)</p>
<p class="p1">C. 25 cm<sup><span class="s1">3 </span></sup>of 0.10 mol dm<sup><span class="s2">-</span><span class="s1">3 </span></sup>NaOH (aq) and 25 cm<sup><span class="s1">3 </span></sup>of 0.10 mol dm<sup><span class="s2">-</span><span class="s1">3 </span></sup>HC<span class="s3">l </span>(aq)</p>
<p class="p1">D. 50 cm<sup><span class="s1">3 </span></sup>of 0.10 mol dm<sup><span class="s2">-</span><span class="s1">3 </span></sup>NaOH (aq) and 25 cm<sup><span class="s1">3 </span></sup>of 0.10 mol dm<sup><span class="s2">-</span><span class="s1">3 </span></sup>HC<span class="s3">l </span>(aq)</p>
</div>
<br><hr><br><div class="question">
<p class="p1">The values of \({K_{\text{w}}}\), the ionic product constant of water, are:</p>
<p class="p2" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-12_om_13.46.17.png" alt="M13/4/CHEMI/HPM/ENG/TZ1/26"></p>
<p class="p1">Which statements are correct?</p>
<p class="p1">I. <span class="Apple-converted-space"> </span>The \({\text{[O}}{{\text{H}}^ - }{\text{]}}\) in water is less than the \({\text{[}}{{\text{H}}^ + }{\text{]}}\) at 18 °<span class="s1">C</span>.</p>
<p class="p1">II. <span class="Apple-converted-space"> </span>The ionization of water is an endothermic process.</p>
<p class="p1">III. <span class="Apple-converted-space"> </span>The pH of water is lower at 25 °<span class="s1">C </span>than at 18 °<span class="s1">C</span>.</p>
<p class="p1">A. <span class="Apple-converted-space"> </span>I and II only</p>
<p class="p1">B. <span class="Apple-converted-space"> </span>I and III only</p>
<p class="p1">C. <span class="Apple-converted-space"> </span>II and III only</p>
<p class="p1">D. <span class="Apple-converted-space"> </span>I, II and III</p>
</div>
<br><hr><br><div class="question">
<p class="p1">What is the approximate pH of a \({\text{0.01 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) ammonia solution?</p>
<p class="p1">A. <span class="Apple-converted-space"> </span>2</p>
<p class="p1">B. <span class="Apple-converted-space"> </span>More than 2 but less than 7</p>
<p class="p1">C. <span class="Apple-converted-space"> </span>More than 7 but less than 12</p>
<p class="p1">D. <span class="Apple-converted-space"> </span>12</p>
</div>
<br><hr><br><div class="question">
<p>What is the order of increasing acidity?</p>
<p><img src="images/Schermafbeelding_2018-08-08_om_11.25.10.png" alt="M18/4/CHEMI/HPM/ENG/TZ2/27"></p>
<p>A. HClO < CH<sub>3</sub>CH<sub>2</sub>COOH < HF < HIO<sub>3</sub></p>
<p>B. HClO < HF < CH<sub>3</sub>CH<sub>2</sub>COOH < HIO<sub>3</sub></p>
<p>C. HIO<sub>3</sub> < HF < CH<sub>3</sub>CH<sub>2</sub>COOH < HClO</p>
<p>D. HIO<sub>3</sub> < CH<sub>3</sub>CH<sub>2</sub>COOH < HF < HClO</p>
</div>
<br><hr><br><div class="question">
<p>What is the order of increasing acidity of the following acids?</p>
<p style="text-align: center;"><img src=""></p>
<p>A. chloroethanoic < ethanoic < hydrogen fluoride < hydrogen cyanide</p>
<p>B. ethanoic < chloroethanoic < hydrogen fluoride < hydrogen cyanide</p>
<p>C. chloroethanoic < ethanoic < hydrogen cyanide < hydrogen fluoride</p>
<p>D. hydrogen cyanide < ethanoic < hydrogen fluoride < chloroethanoic</p>
</div>
<br><hr><br><div class="question">
<p>Which indicator is appropriate for the acid-base titration shown below?</p>
<p style="text-align: center;"><img src=""></p>
<p>A. Thymol blue (p<em>K</em><sub>a</sub> = 1.5)<br>B. Methyl orange (p<em>K</em><sub>a</sub> = 3.7)<br>C. Bromophenol blue (p<em>K</em><sub>a</sub> = 4.2)<br>D. Phenolphthalein (p<em>K</em><sub>a</sub> = 9.6)</p>
</div>
<br><hr><br><div class="question">
<p>A buffer is produced by mixing 20.0 cm<sup>3</sup> of 0.10 mol dm<sup>−3</sup> ethanoic acid, CH<sub>3</sub>COOH(aq), with 0.10 mol dm<sup>−3</sup> sodium hydroxide, NaOH(aq).</p>
<p>What is the volume of NaOH required and the pH of the buffer?</p>
<p><img src=""></p>
</div>
<br><hr><br><div class="question">
<p>The forward reaction of this equilibrium is endothermic.</p>
<p>\[{{\text{H}}_{\text{2}}}{\text{O(l)}} \rightleftharpoons {{\text{H}}^{\text{ + }}}{\text{(aq)}} + {\text{O}}{{\text{H}}^ - }{\text{(aq) }} {K_w} = 1.0 \times {10^{ - 14}}{\text{ at 25 }}^\circ {\text{C}}\]</p>
<p>What is correct about water at 50 °C?</p>
<p>A. \({\text{[}}{{\text{H}}^{\text{ + }}}{\text{]}} > {\text{[O}}{{\text{H}}^ - }{\text{]}}\)</p>
<p>B. \({\text{[}}{{\text{H}}^ + }{\text{]}} < {\text{[O}}{{\text{H}}^ - }{\text{]}}\)</p>
<p>C. \({\text{pH}} < {\text{7.0}}\)</p>
<p>D. \({\text{pH}} = {\text{7.0}}\)</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Which indicator would be the most appropriate for titrating aqueous ethylamine, \({\text{C}}{{\text{H}}_{\text{3}}}{\text{C}}{{\text{H}}_{\text{2}}}{\text{N}}{{\text{H}}_{\text{2}}}\), with nitric acid, \({\text{HN}}{{\text{O}}_{\text{3}}}\)?</p>
<p class="p1">A. <span class="Apple-converted-space"> </span>Bromophenol blue \({\text{(p}}{K_{\text{a}}} = {\text{ }}4{\text{.}}1)\)</p>
<p class="p1">B. <span class="Apple-converted-space"> </span>Bromothymol blue \({\text{(p}}{K_{\text{a}}} = {\text{ }}7{\text{.}}3)\)</p>
<p class="p1">C. <span class="Apple-converted-space"> </span>Phenol red \({\text{(p}}{K_{\text{a}}} = {\text{ }}8{\text{.}}0)\)</p>
<p class="p1">D. <span class="Apple-converted-space"> </span>Thymolphthalein \({\text{(p}}{K_{\text{a}}} = {\text{ }}10{\text{.}}0)\)</p>
</div>
<br><hr><br><div class="question">
<p>Which mixture of solutions can be used to prepare a buffer solution?</p>
<p>A. \({\text{50.0 c}}{{\text{m}}^{\text{3}}}{\text{ 0.100 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}{\text{ HCl}}\) and \({\text{100.0 c}}{{\text{m}}^{\text{3}}}{\text{ 0.100 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}{\text{ N}}{{\text{H}}_{\text{3}}}\)</p>
<p>B. \({\text{50.0 c}}{{\text{m}}^{\text{3}}}{\text{ 0.100 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}{\text{ HCl}}\) and \({\text{50.0 c}}{{\text{m}}^{\text{3}}}{\text{ 0.100 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}{\text{ N}}{{\text{H}}_{\text{3}}}\)</p>
<p>C. \({\text{50.0 c}}{{\text{m}}^{\text{3}}}{\text{ 0.100 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}{\text{ HCl}}\) and \({\text{100.0 c}}{{\text{m}}^{\text{3}}}{\text{ 0.100 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}{\text{ N}}{{\text{H}}_{\text{4}}}{\text{Cl}}\)</p>
<p>D. \({\text{50.0 c}}{{\text{m}}^{\text{3}}}{\text{ 0.100 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}{\text{ HCl}}\) and \({\text{50.0 c}}{{\text{m}}^{\text{3}}}{\text{ 0.100 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}{\text{ N}}{{\text{H}}_{\text{4}}}{\text{Cl}}\)</p>
</div>
<br><hr><br><div class="question">
<p class="p1">An equal amount of each of the following salts is added separately to the same volume of water.</p>
<p class="p1">Which salt will have the greatest effect on the pH of water?</p>
<p class="p1">A. <span class="Apple-converted-space"> </span>\({\text{Al(N}}{{\text{O}}_{\text{3}}}{{\text{)}}_{\text{3}}}\)</p>
<p class="p1">B. <span class="Apple-converted-space"> </span>\({\text{N}}{{\text{a}}_{\text{2}}}{\text{S}}{{\text{O}}_{\text{4}}}\)</p>
<p class="p1">C. <span class="Apple-converted-space"> </span>RbCl</p>
<p class="p1">D. <span class="Apple-converted-space"> </span>KBr</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Which compound forms an acidic solution when dissolved in water?</p>
<p class="p1">A. <span class="Apple-converted-space"> </span>\({\text{FeC}}{{\text{l}}_{\text{3}}}\)</p>
<p class="p1">B. <span class="Apple-converted-space"> </span>\({\text{C}}{{\text{H}}_{\text{3}}}{\text{N}}{{\text{H}}_{\text{2}}}\)</p>
<p class="p1">C. <span class="Apple-converted-space"> </span>\({\text{NaN}}{{\text{O}}_{\text{3}}}\)</p>
<p class="p1">D. <span class="Apple-converted-space"> </span>\({\text{N}}{{\text{a}}_{\text{2}}}{\text{C}}{{\text{O}}_{\text{3}}}\)</p>
</div>
<br><hr><br><div class="question">
<p>Which compounds can be mixed together as aqueous solutions of equal volume and concentration to form an acidic buffer solution?</p>
<p>A. Sodium hydrogensulfate and sulfuric acid</p>
<p>B. Sodium propanoate and propanoic acid</p>
<p>C. Ammonium chloride and ammonia solution</p>
<p>D. Sodium chloride and hydrochloric acid</p>
</div>
<br><hr><br><div class="question">
<p>Which statements about an acid–base indicator are correct?</p>
<p>I. It can be a weak acid.</p>
<p>II. It is a substance in which the conjugate acid/base pair are different colours.</p>
<p>III. It can be a weak base.</p>
<p>A. I and II only</p>
<p>B. I and III only</p>
<p>C. II and III only</p>
<p>D. I, II and III</p>
</div>
<br><hr><br><div class="question">
<div class="page" title="Page 3">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 4">
<div class="section">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 5">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 5">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 7">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 11">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 12">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 12">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 13">
<div class="layoutArea">
<div class="column">
<p>Which titration curve would occur when a weak acid is added to a strong base?</p>
<p><img src="" alt></p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<br><hr><br>