File "HL-paper1.html"
Path: /IB QUESTIONBANKS/4 Fourth Edition - PAPER/HTML/Chemistry/Topic 15/HL-paper1html
File size: 137.86 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-746ec5d03ead8d9e8b3bb7d32173f2b4e2e22a05f0c5278e086ab55b3c9c238e.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-3c91afd8a2942c18d21ed2700e1bdec14ada97f1d3788ae229315e1276d81453.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../index.html">Home</a>
</li>
<li class="active dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Questionbanks
<b class="caret"></b>
</a><ul class="dropdown-menu">
<li>
<a href="../../geography.html" target="_blank">DP Geography</a>
</li>
<li>
<a href="../../physics.html" target="_blank">DP Physics</a>
</li>
<li>
<a href="../../chemistry.html" target="_blank">DP Chemistry</a>
</li>
<li>
<a href="../../biology.html" target="_blank">DP Biology</a>
</li>
<li>
<a href="../../furtherMath.html" target="_blank">DP Further Mathematics HL</a>
</li>
<li>
<a href="../../mathHL.html" target="_blank">DP Mathematics HL</a>
</li>
<li>
<a href="../../mathSL.html" target="_blank">DP Mathematics SL</a>
</li>
<li>
<a href="../../mathStudies.html" target="_blank">DP Mathematical Studies</a>
</li>
</ul></li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="images/logo.jpg" alt="Ib qb 46 logo">
</div>
</div>
</div><h2>HL Paper 1</h2><div class="question">
<p>In which reaction will the entropy of the system increase significantly?</p>
<p>A. \({\text{CaC}}{{\text{O}}_3}{\text{(s)}} \to {\text{CaO(s)}} + {\text{C}}{{\text{O}}_2}{\text{(g)}}\)</p>
<p>B. \({{\text{H}}_2}{\text{O(g)}} \to {{\text{H}}_2}{\text{O(l)}}\)</p>
<p>C. \({\text{HCl(g)}} + {\text{N}}{{\text{H}}_3}{\text{(g)}} \to {\text{N}}{{\text{H}}_4}{\text{Cl(s)}}\)</p>
<p>D. \({\text{NaOH(aq)}} + {\text{HCl(aq)}} \to {\text{NaCl(aq)}} + {{\text{H}}_2}{\text{O(l)}}\)</p>
</div>
<br><hr><br><div class="question">
<p>Consider the values of \(\Delta {H^\Theta }\) and \(\Delta {S^\Theta }\) À for the reaction of nitrogen with oxygen at 298 K.</p>
<p> \({{\text{N}}_{\text{2}}}{\text{(g)}} + {{\text{O}}_{\text{2}}}{\text{(g)}} \to {\text{2NO(g)}}\) \(\Delta {H^\Theta } = + 181{\text{ kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\)</p>
<p> \(\Delta {S^\Theta } = + 25{\text{ J}}\,{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}}\)</p>
<p>Which statement is correct for this reaction?</p>
<p>A. \(\Delta {G^\Theta }\) is positive at all temperatures.</p>
<p>B. \(\Delta {G^\Theta }\) is negative at all temperatures.</p>
<p>C. \(\Delta {G^\Theta }\) is positive at high temperatures.</p>
<p>D. \(\Delta {G^\Theta }\) is positive at low temperatures.</p>
</div>
<br><hr><br><div class="question">
<p>What is the standard enthalpy of formation, in kJ mol<sup>–1</sup>, of IF (g)?</p>
<p style="text-align: center;">IF<sub>7</sub> (g) + I<sub>2</sub> (s) → IF<sub>5</sub> (g) + 2IF (g) <em>ΔH\(^\theta \)</em> = –89 kJ</p>
<p><em>ΔH</em>\(_f^\theta \) (IF<sub>7</sub>) = –941 kJ mol<sup>–1</sup></p>
<p><em>ΔH</em>\(_f^\theta \) (IF<sub>5</sub>) = –840 kJ mol<sup>–1</sup></p>
<p>A. –190</p>
<p>B. –95</p>
<p>C. +6</p>
<p>D. +95</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Which is a correct definition of lattice enthalpy?</p>
<p class="p1">A. It is the enthalpy change that occurs when an electron is removed from 1 mol of gaseous atoms.</p>
<p class="p1">B. It is the enthalpy change that occurs when 1 mol of a compound is formed from its elements.</p>
<p class="p1">C. It is the enthalpy change that occurs when 1 mol of solid crystal changes into a liquid.</p>
<p class="p1">D. It is the enthalpy change that occurs when 1 mol of solid crystal is formed from its gaseous ions.</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Which equation corresponds to the lattice enthalpy for silver iodide, AgI?</p>
<p class="p1">A. <span class="Apple-converted-space"> </span>\({\text{AgI(s)}} \to {\text{Ag(s)}} + {\text{I(g)}}\)</p>
<p class="p1">B. <span class="Apple-converted-space"> </span>\({\text{AgI(s)}} \to {\text{Ag(s)}} + \frac{1}{2}{{\text{I}}_2}{\text{(g)}}\)</p>
<p class="p1">C. <span class="Apple-converted-space"> </span>\({\text{AgI(s)}} \to {\text{A}}{{\text{g}}^ + }{\text{(aq)}} + {{\text{I}}^ - }{\text{(aq)}}\)</p>
<p class="p1">D. <span class="Apple-converted-space"> </span>\({\text{AgI(s)}} \to {\text{A}}{{\text{g}}^ + }{\text{(g)}} + {{\text{I}}^ - }{\text{(g)}}\)</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Which reaction has the largest increase in entropy?</p>
<p class="p1">A. <span class="Apple-converted-space"> </span>\({{\text{H}}_2}({\text{g)}} + {\text{C}}{{\text{l}}_2}({\text{g)}} \to {\text{2HCl(g)}}\)</p>
<p class="p1">B. <span class="Apple-converted-space"> </span>\({\text{Al(OH}}{{\text{)}}_3}{\text{(s)}} + {\text{NaOH(aq)}} \to {\text{Al(OH)}}_4^ - {\text{(aq)}} + {\text{N}}{{\text{a}}^ + }{\text{(aq)}}\)</p>
<p class="p1">C. <span class="Apple-converted-space"> </span>\({\text{N}}{{\text{a}}_2}{\text{C}}{{\text{O}}_3}({\text{s)}} + 2{\text{HCl(aq)}} \to {\text{2NaCl(aq)}} + {\text{C}}{{\text{O}}_2}({\text{g)}} + {{\text{H}}_2}{\text{O(l)}}\)</p>
<p class="p1">D. <span class="Apple-converted-space"> </span>\({\text{BaC}}{{\text{l}}_2}({\text{aq)}} + {\text{N}}{{\text{a}}_2}{\text{S}}{{\text{O}}_4}({\text{aq)}} \to {\text{BaS}}{{\text{O}}_4}({\text{s)}} + 2{\text{NaCl(aq)}}\)</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Which reaction has the greatest increase in entropy?</p>
<p class="p1">A. <span class="Apple-converted-space"> </span>\({\text{S}}{{\text{O}}_2}{\text{(g)}} + {\text{2}}{{\text{H}}_2}{\text{S(g)}} \to {\text{2}}{{\text{H}}_2}{\text{O(l)}} + {\text{3S(s)}}\)</p>
<p class="p1">B. <span class="Apple-converted-space"> </span>\({\text{CaO(s)}} + {\text{C}}{{\text{O}}_2}{\text{(g)}} \to {\text{CaC}}{{\text{O}}_3}{\text{(s)}}\)</p>
<p class="p1">C. <span class="Apple-converted-space"> </span>\({\text{Ca}}{{\text{C}}_2}{\text{(s)}} + {\text{2}}{{\text{H}}_2}{\text{O(l)}} \to {\text{Ca(OH}}{{\text{)}}_2}{\text{(s)}} + {{\text{C}}_2}{{\text{H}}_2}{\text{(g)}}\)</p>
<p class="p1">D. <span class="Apple-converted-space"> </span>\({{\text{N}}_2}{\text{(g)}} + {{\text{O}}_2}{\text{(g)}} \to {\text{2NO(g)}}\)</p>
</div>
<br><hr><br><div class="question">
<p>Which equation represents enthalpy of hydration?</p>
<p>A. Na(g) → Na<sup>+</sup>(aq) + e<sup>−</sup></p>
<p>B. Na<sup>+</sup>(g) → Na<sup>+</sup>(aq)</p>
<p>C. NaCl(s) → Na<sup>+</sup>(g) + Cl<sup>−</sup>(g)</p>
<p>D. NaCl(s) → Na<sup>+</sup>(aq) + Cl<sup>−</sup>(aq)</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Which ionic compound has the most endothermic lattice enthalpy?</p>
<p class="p1">A. NaCl</p>
<p class="p1">B. KCl</p>
<p class="p1">C. NaF</p>
<p class="p1">D. KF</p>
</div>
<br><hr><br><div class="question">
<p>Which statement is correct?</p>
<p>A. If Δ<em>H </em>< 0, reaction is always spontaneous.</p>
<p>B. If Δ<em>H </em>> 0, reaction is never spontaneous.</p>
<p>C. If Δ<em>S </em>< 0, reaction can be spontaneous if temperature is low enough.</p>
<p>D. If Δ<em>S </em>< 0, reaction can be spontaneous if temperature is high enough.</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Which step(s) is/are endothermic in the Born-Haber cycle for the formation of LiCl?</p>
<p class="p1">A. <span class="Apple-converted-space"> </span>\(\frac{1}{2}{\text{C}}{{\text{l}}_{\text{2}}}{\text{(g)}} \to {\text{Cl(g)}}\) <strong>and</strong> \({\text{Li(s)}} \to {\text{Li(g)}}\)</p>
<p class="p1">B. <span class="Apple-converted-space"> </span>\({\text{Cl(g)}} + {{\text{e}}^ - } \to {\text{C}}{{\text{l}}^ - }{\text{(g)}}\) <strong>and</strong> \({\text{Li(g)}} \to {\text{L}}{{\text{i}}^ + }{\text{(g)}} + {{\text{e}}^ - }\)</p>
<p class="p1">C. <span class="Apple-converted-space"> </span>\({\text{L}}{{\text{i}}^ + }{\text{(g)}} + {\text{C}}{{\text{l}}^ - }{\text{(g)}} \to {\text{LiCl(s)}}\)</p>
<p class="p1">D. <span class="Apple-converted-space"> </span>\(\frac{1}{2}{\text{C}}{{\text{l}}_2}{\text{(g)}} \to {\text{Cl(g)}}\) <strong>and</strong> \({\text{Cl(g)}} + {{\text{e}}^ - } \to {\text{C}}{{\text{l}}^ - }{\text{(g)}}\)</p>
</div>
<br><hr><br><div class="question">
<p>Which ion’s hydration energy is the most exothermic?</p>
<p>A. Li<sup>+</sup></p>
<p>B. Na<sup>+</sup></p>
<p>C. Br<sup>–</sup></p>
<p>D. I<sup>–</sup></p>
</div>
<br><hr><br><div class="question">
<p>Which value represents the lattice enthalpy, in kJ mol<sup>−1</sup>, of strontium chloride, SrCl<sub>2</sub>?</p>
<p><img src="images/Schermafbeelding_2018-08-08_om_11.13.49.png" alt="M18/4/CHEMI/HPM/ENG/TZ2/16"></p>
<p>A. – (–829) + 164 + 243 + 550 + 1064 – (–698)</p>
<p>B. –829 + 164 + 243 + 550 + 1064 – 698</p>
<p>C. – (–829) + 164 + 243 + 550 + 1064 – 698</p>
<p>D. –829 + 164 + 243 + 550 + 1064 – (–698)</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Which change will <span class="s1"><strong>not </strong></span>increase the entropy of a system?</p>
<p class="p1">A. Increasing the temperature</p>
<p class="p1">B. Changing the state from liquid to gas</p>
<p class="p1">C. Mixing different types of particles</p>
<p class="p1">D. A reaction where four moles of gaseous reactants changes to two moles of gaseous products</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Which reaction has the greatest increase in entropy?</p>
<p class="p1">A. <span class="Apple-converted-space"> </span>\({{\text{C}}_3}{{\text{H}}_8}{\text{(g)}} + {\text{5}}{{\text{O}}_2}{\text{(g)}} \to {\text{3C}}{{\text{O}}_2}{\text{(g)}} + {\text{4}}{{\text{H}}_2}{\text{O(g)}}\)</p>
<p class="p1">B. <span class="Apple-converted-space"> </span>\({{\text{H}}_2}{\text{(g)}} + {\text{C}}{{\text{l}}_2}{\text{(g)}} \to {\text{2HCl(g)}}\)</p>
<p class="p1">C. <span class="Apple-converted-space"> </span>\({{\text{N}}_2}{\text{(g)}} + {\text{3}}{{\text{H}}_2}{\text{(g)}} \to {\text{2N}}{{\text{H}}_3}{\text{(g)}}\)</p>
<p class="p1">D. <span class="Apple-converted-space"> </span>\({{\text{C}}_2}{{\text{H}}_4}{\text{(g)}} + {{\text{H}}_2}{\text{(g)}} \to {{\text{C}}_2}{{\text{H}}_6}{\text{(g)}}\)</p>
</div>
<br><hr><br><div class="question">
<p>Which combination of \(\Delta H\) and \(\Delta S\) signs will always result in a spontaneous reaction at all temperatures?</p>
<p><img src="images/Schermafbeelding_2016-08-24_om_13.57.34.png" alt="N13/4/CHEMI/HPM/ENG/TZ0/19"></p>
</div>
<br><hr><br><div class="question">
<p class="p1">Which compound has the most positive lattice enthalpy of dissociation?</p>
<p class="p1">A. <span class="Apple-converted-space"> </span>NaCl</p>
<p class="p1">B. <span class="Apple-converted-space"> </span>NaBr</p>
<p class="p1">C. <span class="Apple-converted-space"> </span>\({\text{MgC}}{{\text{l}}_{\text{2}}}\)</p>
<p class="p1">D. <span class="Apple-converted-space"> </span>\({\text{MgB}}{{\text{r}}_{\text{2}}}\)</p>
</div>
<br><hr><br><div class="question">
<div class="page" title="Page 3">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 4">
<div class="section">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 5">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 5">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 7">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 7">
<div class="layoutArea">
<div class="column">
<p style="display: inline !important;">Which transition represents an enthalpy of hydration?</p>
<p style="display: inline !important;"> </p>
<p style="display: inline !important;"> </p>
</div>
<div class="column"> </div>
<div class="column">A. 2H<sub>2</sub>O (l) → H<sub>3</sub>O<sup>+</sup> (aq) + OH<sup>−</sup> (aq)</div>
<div class="column">B. NaCl (s) → Na<sup>+</sup> (aq) + Cl<sup>−</sup> (aq)<br>C. K<sup>+(</sup>s)→K<sup>+</sup>(aq)<br>D. K<sup>+</sup>(g)→K<sup>+</sup>(aq)</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<br><hr><br><div class="question">
<p class="p1"><span class="s1">Which combination of \(\Delta H\)</span> <span class="s1">and \(\Delta S\)</span> values corresponds to a non-spontaneous reaction at all temperatures?</p>
<p class="p1"><img src="images/Schermafbeelding_2016-08-01_om_18.10.25.png" alt="M15/4/CHEMI/HPM/ENG/TZ1/18"></p>
</div>
<br><hr><br><div class="question">
<p class="p1">Which reactions/processes have a positive entropy change, \(\Delta {S^\Theta }\)?</p>
<p class="p1">I. <span class="Apple-converted-space"> </span>\({\text{NaCl(s)}} \to {\text{NaCl(aq)}}\)</p>
<p class="p1">II. <span class="Apple-converted-space"> </span>\({\text{N}}{{\text{a}}_2}{\text{C}}{{\text{O}}_3}{\text{(s)}} + {\text{2HCl(aq)}} \to {\text{C}}{{\text{O}}_2}{\text{(g)}} + {\text{2NaCl(aq)}} + {{\text{H}}_2}{\text{O(l)}}\)</p>
<p class="p1">III. <span class="Apple-converted-space"> </span>\({\text{AgN}}{{\text{O}}_3}{\text{(aq)}} + {\text{NaCl(aq)}} \to {\text{AgCl(s)}} + {\text{NaN}}{{\text{O}}_3}{\text{(aq)}}\)</p>
<p class="p1">A. <span class="Apple-converted-space"> </span>I and II only</p>
<p class="p1">B. <span class="Apple-converted-space"> </span>I and III only</p>
<p class="p1">C. <span class="Apple-converted-space"> </span>II and III only</p>
<p class="p1">D. <span class="Apple-converted-space"> </span>I, II and III</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Which change leads to an increase in entropy?</p>
<p class="p1">A. <span class="Apple-converted-space"> </span>\({\text{C}}{{\text{O}}_{\text{2}}}{\text{(g)}} \to {\text{C}}{{\text{O}}_{\text{2}}}{\text{(s)}}\)</p>
<p class="p1">B. <span class="Apple-converted-space"> </span>\({\text{S}}{{\text{F}}_6}({\text{g)}} \to {\text{S}}{{\text{F}}_6}({\text{l)}}\)</p>
<p class="p1">C. <span class="Apple-converted-space"> </span>\({{\text{H}}_2}{\text{O(l)}} \to {{\text{H}}_2}{\text{O(s)}}\)</p>
<p class="p1">D. <span class="Apple-converted-space"> </span>\({\text{NaCl(s)}} \to {\text{NaCl(aq)}}\)</p>
</div>
<br><hr><br><div class="question">
<p>Which ionic compound has the most endothermic lattice enthalpy?</p>
<p>A. Sodium chloride</p>
<p>B. Sodium oxide</p>
<p>C. Magnesium chloride</p>
<p>D. Magnesium oxide</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Which factors will increase the entropy of this system?</p>
<p class="p1">\[{\text{CaC}}{{\text{O}}_{\text{3}}}{\text{(s)}} \rightleftharpoons {\text{CaO(s)}} + {\text{C}}{{\text{O}}_{\text{2}}}{\text{(g)}}\]</p>
<p class="p1">I. <span class="Apple-converted-space"> </span>Increasing the temperature without changing the volume of the container.</p>
<p class="p1">II. <span class="Apple-converted-space"> </span>Decreasing the concentration of the gas without changing the volume of the container.</p>
<p class="p1">III. <span class="Apple-converted-space"> </span>Increasing the pressure without changing the volume of the container.</p>
<p class="p1">A. <span class="Apple-converted-space"> </span>I and II only</p>
<p class="p1">B. <span class="Apple-converted-space"> </span>I and III only</p>
<p class="p1">C. <span class="Apple-converted-space"> </span>II and III only</p>
<p class="p1">D. <span class="Apple-converted-space"> </span>I, II and III</p>
</div>
<br><hr><br><div class="question">
<p>Which system has the most negative entropy change, Δ<em>S</em>, for the forward reaction?</p>
<p>A. N<sub>2</sub>(g) + 3H<sub>2</sub>(g) \( \rightleftharpoons \) 2NH<sub>3</sub>(g)</p>
<p>B. CaCO<sub>3</sub>(s) → CaO(s) + CO<sub>2</sub>(g)</p>
<p>C. 2S<sub>2</sub>O<sub>3</sub><sup>2−</sup>(aq) + I<sub>2</sub>(aq) → S<sub>4</sub>O<sub>6</sub><sup>2−</sup>(aq) + 2I<sup>–</sup>(aq)</p>
<p>D. H<sub>2</sub>O(l) → H<sub>2</sub>O(g)</p>
</div>
<br><hr><br><div class="question">
<p>Which change <strong>must</strong> be negative when a reaction occurs spontaneously?</p>
<p>A. \(\Delta H\)</p>
<p>B. \(\Delta G\)</p>
<p>C. \(\Delta S\)</p>
<p>D. \(\Delta T\)</p>
</div>
<br><hr><br><div class="question">
<p>Which statements are correct for ionic compounds?</p>
<p style="padding-left: 60px;">I. Lattice energy increases as ionic radii increase.<br>II. Within the same group, the melting point of salts tends to decrease as the radius of the cation increases.<br>III. Solubility in water depends on the relative magnitude of the lattice energy compared to the hydration energy.</p>
<p>A. I and II only</p>
<p>B. I and III only</p>
<p>C. II and III only</p>
<p>D. I, II and III</p>
</div>
<br><hr><br><div class="question">
<p>Which processes have a negative value for \(\Delta {S^\Theta }\)?</p>
<p>I. \({{\text{H}}_{\text{2}}}{\text{O(l)}} \to {{\text{H}}_{\text{2}}}{\text{O(s)}}\)</p>
<p>II. \({\text{2}}{{\text{H}}_{\text{2}}}{{\text{O}}_{\text{2}}}{\text{(l)}} \to {\text{2}}{{\text{H}}_{\text{2}}}{\text{O(l)}} + {{\text{O}}_{\text{2}}}{\text{(g)}}\)</p>
<p>III. \({\text{2}}{{\text{H}}_{\text{2}}}{\text{(g)}} + {{\text{O}}_{\text{2}}}{\text{(g)}} \to {\text{2}}{{\text{H}}_{\text{2}}}{\text{O(g)}}\)</p>
<p>A. I and II only</p>
<p>B. I and III only</p>
<p>C. II and III only</p>
<p>D. I, II and III</p>
</div>
<br><hr><br><div class="question">
<p>Which processes are predicted to have a positive entropy change, \(\Delta S\)?</p>
<p>I. \({{\text{I}}_2}{\text{(g)}} \to {{\text{I}}_2}{\text{(s)}}\)</p>
<p>II. \({\text{4N}}{{\text{H}}_3}{\text{(g)}} + {\text{5}}{{\text{O}}_2}{\text{(g)}} \to {\text{4NO(g)}} + {\text{6}}{{\text{H}}_2}{\text{O(g)}}\)</p>
<p>III. \({\text{C}}{{\text{H}}_3}{\text{OH(l)}} \to {\text{C}}{{\text{H}}_3}{\text{OH(g)}}\)</p>
<p>A. I and II only</p>
<p>B. I and III only</p>
<p>C. II and III only</p>
<p>D. I, II and III</p>
</div>
<br><hr><br><div class="question">
<p>Which equation represents the lattice enthalpy of magnesium sulfide?</p>
<p>A. MgS (s) → Mg (g) + S (g)</p>
<p>B. MgS (s) → Mg<sup>+</sup> (g) + S<sup>–</sup> (g)</p>
<p>C. MgS (s) → Mg<sup>2+</sup> (g) + S<sup>2–</sup> (g)</p>
<p>D. MgS (s) → Mg (s) + S (s)</p>
</div>
<br><hr><br><div class="question">
<p>Which equation represents the second electron affinity of oxygen?</p>
<p>A. \(\frac{1}{2}{{\text{O}}_2}{\text{(g)}} + {\text{2}}{{\text{e}}^ - } \to {{\text{O}}^{2 - }}{\text{(g)}}\)</p>
<p>B. \({\text{O(g)}} + {\text{2}}{{\text{e}}^ - } \to {{\text{O}}^{2 - }}{\text{(g)}}\)</p>
<p>C. \({{\text{O}}_2}{\text{(g)}} + {\text{4}}{{\text{e}}^ - } \to {\text{2}}{{\text{O}}^{2 - }}{\text{(g)}}\)</p>
<p>D. \({{\text{O}}^ - }{\text{(g)}} + {{\text{e}}^ - } \to {{\text{O}}^{2 - }}{\text{(g)}}\)</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Which combinations of values will result in a spontaneous reaction?</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-08-02_om_08.06.44.png" alt="M15/4/CHEMI/HPM/ENG/TZ2/18"></p>
<p class="p1">A. <span class="Apple-converted-space"> </span>I and II only</p>
<p class="p1">B. <span class="Apple-converted-space"> </span>I and III only</p>
<p class="p1">C. <span class="Apple-converted-space"> </span>II and III only</p>
<p class="p1">D. <span class="Apple-converted-space"> </span>I, II and III</p>
</div>
<br><hr><br><div class="question">
<div class="page" title="Page 3">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 4">
<div class="section">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 5">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 5">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 7">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 7">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 8">
<div class="section">
<div class="layoutArea">
<div class="column">
<p>What are the signs for the entropy changes associated with this reaction?</p>
<p style="text-align: center;">H<sub>2</sub>O(g) → H<sub>2</sub>O(l)</p>
<p> </p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src="" alt></p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<br><hr><br><div class="question">
<p>Which combination of Δ<em>H </em><sup>θ </sup>and Δ<em>S </em><sup>θ</sup> will result in a non-spontaneous reaction at all temperatures?</p>
<p><img src=""></p>
</div>
<br><hr><br><div class="question">
<p>The combustion of glucose is exothermic and occurs according to the following equation:</p>
<p style="text-align: center;">C<sub>6</sub>H<sub>12</sub>O<sub>6</sub> (s) + 6O<sub>2</sub> (g) → 6CO<sub>2</sub> (g) + 6H<sub>2</sub>O (g)</p>
<p>Which is correct for this reaction?</p>
<p><img src=""></p>
</div>
<br><hr><br><div class="question">
<p>The Born-Haber cycle for potassium oxide is shown below:</p>
<p style="text-align: center;"><img src=""></p>
<p>Which expression represents the lattice enthalpy in kJ mol<sup>–1</sup>?</p>
<p>A. –361 + 428 + 838 + 612</p>
<p>B. –(–361) + 428 + 838 + 612</p>
<p>C. –361 + 428 + 838 – 612</p>
<p>D. –(–361) + 428 + 838 – 612</p>
</div>
<br><hr><br><div class="question">
<p class="p1">What is the correct order for <strong>increasing </strong>lattice enthalpy?</p>
<p class="p1">A. <span class="Apple-converted-space"> </span>\({\text{MgO}} < {\text{MgC}}{{\text{l}}_{\text{2}}} < {\text{NaCl}} < {\text{CsCl}}\)</p>
<p class="p1">B. <span class="Apple-converted-space"> </span>\({\text{CsCl}} < {\text{NaCl}} < {\text{MgC}}{{\text{l}}_{\text{2}}} < {\text{MgO}}\)</p>
<p class="p1">C. <span class="Apple-converted-space"> </span>\({\text{NaCl}} < {\text{CsCl}} < {\text{MgO}} < {\text{MgC}}{{\text{l}}_{\text{2}}}\)</p>
<p class="p1">D. <span class="Apple-converted-space"> </span>\({\text{NaCl}} < {\text{CsCl}} < {\text{MgC}}{{\text{l}}_{\text{2}}} < {\text{MgO}}\)</p>
</div>
<br><hr><br><div class="question">
<p>Consider the following information:</p>
<p>\[\begin{array}{*{20}{l}} {{\text{CaC}}{{\text{O}}_{\text{3}}}{\text{(s)}} \to {\text{CaO(s)}} + {\text{C}}{{\text{O}}_{\text{2}}}{\text{(g)}}} \\ {\Delta H = + 179{\text{ kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}} \\ {\Delta S = + 161.0{\text{ J}}\,{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}}} \end{array}\]</p>
<p>What happens to the spontaneity of this reaction as the temperature is increased?</p>
<p>A. The reaction becomes more spontaneous as the temperature is increased.</p>
<p>B. The reaction becomes less spontaneous as the temperature is increased.</p>
<p>C. The reaction remains spontaneous at all temperatures.</p>
<p>D. The reaction remains non-spontaneous at all temperatures.</p>
</div>
<br><hr><br><div class="question">
<p>Which equation represents the lattice enthalpy of calcium chloride?</p>
<p>A. \({\text{CaCl(s)}} \to {\text{C}}{{\text{a}}^ + }{\text{(g)}} + {\text{C}}{{\text{l}}^ - }{\text{(g)}}\)</p>
<p>B. \({\text{CaC}}{{\text{l}}_2}{\text{(s)}} \to {\text{C}}{{\text{a}}^{{\text{2}} + }}{\text{(g)}} + {\text{2C}}{{\text{l}}^ - }{\text{(g)}}\)</p>
<p>C. \({\text{CaC}}{{\text{l}}_2}{\text{(g)}} \to {\text{C}}{{\text{a}}^{{\text{2}} + }}{\text{(g)}} + {\text{2C}}{{\text{l}}^ - }{\text{(g)}}\)</p>
<p>D. \({\text{CaC}}{{\text{l}}_2}{\text{(s)}} \to {\text{C}}{{\text{a}}^{{\text{2}} + }}{\text{(aq)}} + {\text{2C}}{{\text{l}}^ - }{\text{(aq)}}\)</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Which ionic compound has the greatest lattice enthalpy?</p>
<p class="p1">A. MgO</p>
<p class="p1">B. CaO</p>
<p class="p1">C. NaF</p>
<p class="p1">D. KF</p>
</div>
<br><hr><br><div class="question">
<p class="p1">A reaction has a standard enthalpy change, \(\Delta {H^\Theta }\), of \({\text{ +10.00 kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\) at 298 K. The standard entropy change, \(\Delta {S^\Theta }\), for the same reaction is \({\text{ +10.00 J}}\,{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}}\). What is the value of \(\Delta {G^\Theta }\) for the reaction in \({\text{kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\)?</p>
<p class="p1">A. <span class="Apple-converted-space"> </span>+9.75</p>
<p class="p1">B. <span class="Apple-converted-space"> </span>+7.02</p>
<p class="p1">C. <span class="Apple-converted-space"> </span>–240</p>
<p class="p1">D. <span class="Apple-converted-space"> </span>–2970</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Which process would be expected to have a \(\Delta {S^\Theta }\) value which is negative?</p>
<p class="p1">A. <span class="Apple-converted-space"> </span>\({\text{2}}{{\text{H}}_2}{\text{(g)}} + {{\text{O}}_2}{\text{(g)}} \to {\text{2}}{{\text{H}}_2}{\text{O(g)}}\)</p>
<p class="p1">B. <span class="Apple-converted-space"> </span>\({\text{NaCl(s)}} \to {\text{N}}{{\text{a}}^ + }{\text{(g)}} + {\text{C}}{{\text{l}}^ - }{\text{(g)}}\)</p>
<p class="p1">C. <span class="Apple-converted-space"> </span>\({{\text{H}}_2}{\text{(g)}} + {{\text{I}}_2}{\text{(g)}} \to {\text{2HI(g)}}\)</p>
<p class="p1">D. <span class="Apple-converted-space"> </span>\({\text{O}}{{\text{F}}_2}{\text{(g)}} + {{\text{H}}_2}{\text{O(g)}} \to {{\text{O}}_2}{\text{(g)}} + {\text{2HF(g)}}\)</p>
</div>
<br><hr><br><div class="question">
<p class="p1">The reaction between but-1-ene and water vapour produces butan-1-ol.</p>
<p class="p1">\[{{\text{C}}_4}{{\text{H}}_8}{\text{(g)}} + {{\text{H}}_2}{\text{O(g)}} \to {{\text{C}}_4}{{\text{H}}_9}{\text{OH(l)}}\]</p>
<p class="p1">The standard entropy values \({\text{(}}{S^\Theta }{\text{)}}\) for but-1-ene, water vapour and butan-1-ol are 310, 189 and \({\text{228 J}}\,{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}}\) respectively. What is the standard entropy change for this reaction in \({\text{J}}\,{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}}\)?</p>
<p class="p1">A. <span class="Apple-converted-space"> </span>–271</p>
<p class="p1">B. <span class="Apple-converted-space"> </span>+271</p>
<p class="p1">C. <span class="Apple-converted-space"> </span>–107</p>
<p class="p1">D. <span class="Apple-converted-space"> </span>+107</p>
</div>
<br><hr><br><div class="question">
<p>Which combination of enthalpy change and entropy change produces a non-spontaneous reaction at <strong>all</strong> temperatures?</p>
<p><img src="images/Schermafbeelding_2016-08-11_om_08.29.24.png" alt="M14/4/CHEMI/HPM/ENG/TZ2/15"></p>
</div>
<br><hr><br><div class="question">
<p class="p1">When hydrogen peroxide decomposes, the temperature of the reaction mixture increases.</p>
<p class="p1">\[{\text{2}}{{\text{H}}_{\text{2}}}{{\text{O}}_{\text{2}}}{\text{(aq)}} \to {{\text{O}}_{\text{2}}}{\text{(g)}} + {\text{2}}{{\text{H}}_{\text{2}}}{\text{O(l)}}\]</p>
<p class="p1">What are the signs of \(\Delta H\), \(\Delta S\) and \(\Delta G\) for this reaction?</p>
<p class="p1"><img src="images/Schermafbeelding_2016-10-21_om_08.35.58.png" alt="M11/4/CHEMI/HPM/ENG/TZ1/15"></p>
</div>
<br><hr><br><div class="question">
<p class="p1">Which ionic compound has the largest value of lattice enthalpy?</p>
<p class="p1">A. MgS</p>
<p class="p1">B. MgO</p>
<p class="p1">C. CaBr<sub><span class="s1">2 </span></sub></p>
<p class="p1">D. NaF</p>
</div>
<br><hr><br><div class="question">
<p>Which reaction has the greatest increase in entropy?</p>
<p>A. \({\text{2C}}{{\text{H}}_3}{\text{OH(l)}} + {\text{3}}{{\text{O}}_2}{\text{(g)}} \to {\text{2C}}{{\text{O}}_2}{\text{(g)}} + {\text{4}}{{\text{H}}_2}{\text{O(l)}}\)</p>
<p>B. \({{\text{N}}_2}{\text{(g)}} + {\text{3}}{{\text{H}}_2}{\text{(g)}} \to {\text{2N}}{{\text{H}}_3}{\text{(g)}}\)</p>
<p>C. \({\text{2HCl(aq)}} + {\text{MgC}}{{\text{O}}_3}{\text{(s)}} \to {\text{MgC}}{{\text{l}}_2}{\text{(aq)}} + {{\text{H}}_2}{\text{O(l)}} + {\text{C}}{{\text{O}}_2}{\text{(g)}}\)</p>
<p>D. \({\text{N}}{{\text{H}}_3}{\text{(g)}} + {\text{HCl(g)}} \to {\text{N}}{{\text{H}}_4}{\text{Cl(s)}}\)</p>
</div>
<br><hr><br><div class="question">
<p>Which species are arranged in order of <strong>increasing </strong>entropy?</p>
<p>A. \({{\text{C}}_{\text{3}}}{{\text{H}}_{\text{8}}}{\text{(g) < C}}{{\text{H}}_{\text{3}}}{\text{OH(l) < Hg(l) < Na(s)}}\)</p>
<p>B. \({\text{C}}{{\text{H}}_{\text{3}}}{\text{OH(l) < }}{{\text{C}}_{\text{3}}}{{\text{H}}_{\text{8}}}{\text{(g) < Hg(l) < Na(s)}}\)</p>
<p>C. \({\text{Na(s) < Hg(l) < C}}{{\text{H}}_{\text{3}}}{\text{OH(l) < }}{{\text{C}}_{\text{3}}}{{\text{H}}_{\text{8}}}{\text{(g)}}\)</p>
<p>D. \({\text{Na(s) < Hg(l) < }}{{\text{C}}_{\text{3}}}{{\text{H}}_{\text{8}}}{\text{(g) < C}}{{\text{H}}_{\text{3}}}{\text{OH(l)}}\)</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Which equation represents the electron affinity of chlorine?</p>
<p class="p1">A. <span class="Apple-converted-space"> </span>\({\text{Cl(g)}} + {{\text{e}}^ - } \to {\text{C}}{{\text{l}}^ - }{\text{(g)}}\)</p>
<p class="p1">B. <span class="Apple-converted-space"> </span>\({\text{Cl(g)}} + {{\text{e}}^ - } \to {\text{Cl(g)}}\)</p>
<p class="p1">C. <span class="Apple-converted-space"> </span>\({\text{C}}{{\text{l}}_2}({\text{g)}} + 2{{\text{e}}^ - } \to 2{\text{C}}{{\text{l}}^ - }({\text{g)}}\)</p>
<p class="p1">D. <span class="Apple-converted-space"> </span>\({\text{Cl(g)}} \to {\text{C}}{{\text{l}}^ + }{\text{(g)}} + {{\text{e}}^ - }\)</p>
</div>
<br><hr><br><div class="question">
<p>What is the correct definition of lattice enthalpy?</p>
<p>A. Enthalpy change when one mole of a solid ionic compound is separated into gaseous ions.</p>
<p>B. Enthalpy change when one mole of a solid ionic compound is separated into its ions in their standard state.</p>
<p>C. Enthalpy change when one mole of a solid ionic compound is formed from gaseous elements.</p>
<p>D. Enthalpy change when one mole of a compound is formed from the elements in their standard states.</p>
</div>
<br><hr><br><div class="question">
<p>The Born-Haber cycle for the formation of magnesium oxide is shown below.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-21_om_07.40.14.png" alt="N14/4/CHEMI/HPM/ENG/TZ0/17.01"></p>
<p>What is a correct description of the steps <strong>X</strong>, <strong>Y</strong> and <strong>Z</strong> in this cycle?</p>
<p><img src="images/Schermafbeelding_2016-08-21_om_07.42.15.png" alt="N14/4/CHEMI/HPM/ENG/TZ0/17.02"></p>
</div>
<br><hr><br><div class="question">
<p class="p1">Which combination of ions will give the greatest absolute lattice enthalpy?</p>
<p class="p1">A. A small positive ion with a high charge and a small negative ion with a high charge</p>
<p class="p1">B. A small positive ion with a low charge and a small negative ion with a low charge</p>
<p class="p1">C. A large positive ion with a high charge and a large negative ion with a high charge</p>
<p class="p1">D. A large positive ion with a low charge and a small negative ion with a low charge</p>
</div>
<br><hr><br><div class="question">
<p class="p1">The rate expression for the reaction between iodine and propanone with an acid catalyst is found to be:</p>
<p class="p1">\[{\text{rate}} = k{{\text{[}}{{\text{H}}^ + }{\text{]}}^1}{{\text{[}}{{\text{I}}_{\text{2}}}{\text{]}}^0}{{\text{[C}}{{\text{H}}_{\text{3}}}{\text{COC}}{{\text{H}}_{\text{3}}}{\text{]}}^1}\]</p>
<p class="p1">What is the overall order of the reaction?</p>
<p class="p1">A. <span class="Apple-converted-space"> </span>0</p>
<p class="p1">B. <span class="Apple-converted-space"> </span>1</p>
<p class="p1">C. <span class="Apple-converted-space"> </span>2</p>
<p class="p1">D. <span class="Apple-converted-space"> </span>3</p>
</div>
<br><hr><br><div class="question">
<p class="p1">\(\Delta {G^\Theta }\) calculations predict that a reaction is always spontaneous for which of the following combinations of \(\Delta {H^\Theta }\) and \(\Delta {S^\Theta }\)?</p>
<p class="p1">A. <span class="Apple-converted-space"> </span>\( + \Delta {H^\Theta }\) and \( + \Delta {S^\Theta }\)</p>
<p class="p1">B. <span class="Apple-converted-space"> </span>\( + \Delta {H^\Theta }\) and \( - \Delta {S^\Theta }\)</p>
<p class="p1">C. <span class="Apple-converted-space"> </span>\( - \Delta {H^\Theta }\) and \( - \Delta {S^\Theta }\)</p>
<p class="p1">D. <span class="Apple-converted-space"> </span>\( - \Delta {H^\Theta }\) and \( + \Delta {S^\Theta }\)</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Which row of the table correctly represents the equations for the lattice enthalpy of substance XY and the electron affinity of atom Y?</p>
<p class="p1"><img src="images/Schermafbeelding_2016-11-02_om_13.01.01.png" alt="N11/4/CHEMI/HPM/ENG/TZ0/17"></p>
</div>
<br><hr><br><div class="question">
<p class="p1">What is the standard entropy change, \(\Delta {S^\Theta }\), for the following reaction?</p>
<p class="p1">\[{\text{2CO(g)}} + {{\text{O}}_2}{\text{(g)}} \to {\text{2C}}{{\text{O}}_2}{\text{(g)}}\]</p>
<p class="p2" style="text-align: center;"><img src="images/Schermafbeelding_2016-10-17_om_13.47.12.png" alt="M09/4/CHEMI/HPM/ENG/TZ2/18"></p>
<p class="p1">A. <span class="Apple-converted-space"> </span>–189</p>
<p class="p1">B. <span class="Apple-converted-space"> </span>–173</p>
<p class="p1">C. <span class="Apple-converted-space"> </span>+173</p>
<p class="p1">D. <span class="Apple-converted-space"> </span>+189</p>
</div>
<br><hr><br><div class="question">
<p>What is the enthalpy of solution of MgF<sub>2</sub>(s) in kJ mol<sup>−1</sup>?</p>
<p style="text-align: center;">Lattice enthalpy of MgF<sub>2</sub>(s) = 2926 kJ mol<sup>−1</sup></p>
<p style="text-align: center;">Hydration enthalpy of Mg<sup>2+</sup>(g) = −1963 kJ mol<sup>−1</sup></p>
<p style="text-align: center;">Hydration enthalpy of F<sup>−</sup>(g) = −504 kJ mol<sup>−1</sup></p>
<p>A. 2926 − 1963 + 2(−504)</p>
<p>B. 2926 − 1963 − 504</p>
<p>C. −2926 − (−1963) − (−504)</p>
<p>D. −2926 − (−1963) − 2(−504)</p>
</div>
<br><hr><br><div class="question">
<p class="p1">When solid potassium chlorate, \({\text{KCl}}{{\text{O}}_{\text{3}}}\), dissolves in distilled water the temperature of the solution decreases. What are the signs of \(\Delta {H^\Theta }\), \(\Delta {S^\Theta }\) and \(\Delta {G^\Theta }\) for this spontaneous process?</p>
<p class="p1"><img src="images/Schermafbeelding_2016-09-12_om_13.07.18.png" alt="M13/4/CHEMI/HPM/ENG/TZ1/18"></p>
</div>
<br><hr><br><div class="question">
<p class="p1">Which represents the enthalpy change of hydration of the chloride ion?</p>
<p class="p1"><img src="" alt></p>
</div>
<br><hr><br><div class="question">
<p class="p1">During which process is there a <strong>decrease </strong>in the entropy of the system?</p>
<p class="p1">A. <span class="Apple-converted-space"> </span>\({\text{Ag(s)}} + {\text{2}}{{\text{H}}^ + }{\text{(aq)}} + {\text{NO}}_3^ - {\text{(aq)}} \to {\text{A}}{{\text{g}}^ + }{\text{(aq)}} + {{\text{H}}_2}{\text{O(l)}} + {\text{N}}{{\text{O}}_2}{\text{(g)}}\)</p>
<p class="p1">B. <span class="Apple-converted-space"> </span>\({\text{Ba(OH}}{{\text{)}}_2}{\text{(s)}} \to {\text{BaO(s)}} + {{\text{H}}_2}{\text{O(g)}}\)</p>
<p class="p1">C. <span class="Apple-converted-space"> </span>\({\text{PC}}{{\text{l}}_3}({\text{g)}} + {\text{C}}{{\text{l}}_2}({\text{g)}} \to {\text{PC}}{{\text{l}}_5}({\text{g)}}\)</p>
<p class="p1">D. <span class="Apple-converted-space"> </span>\({{\text{H}}_2}{\text{O(s)}} \to {{\text{H}}_2}{\text{O(l)}}\)</p>
</div>
<br><hr><br>