File "HL-paper2.html"
Path: /IB QUESTIONBANKS/4 Fourth Edition - PAPER/HTML/Chemistry/Topic 13/HL-paper2html
File size: 303.63 KB
MIME-type: text/html
Charset: utf-8
<!DOCTYPE html>
<html>
<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-746ec5d03ead8d9e8b3bb7d32173f2b4e2e22a05f0c5278e086ab55b3c9c238e.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-3c91afd8a2942c18d21ed2700e1bdec14ada97f1d3788ae229315e1276d81453.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">
</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../index.html">Home</a>
</li>
<li class="active dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Questionbanks
<b class="caret"></b>
</a><ul class="dropdown-menu">
<li>
<a href="../../geography.html" target="_blank">DP Geography</a>
</li>
<li>
<a href="../../physics.html" target="_blank">DP Physics</a>
</li>
<li>
<a href="../../chemistry.html" target="_blank">DP Chemistry</a>
</li>
<li>
<a href="../../biology.html" target="_blank">DP Biology</a>
</li>
<li>
<a href="../../furtherMath.html" target="_blank">DP Further Mathematics HL</a>
</li>
<li>
<a href="../../mathHL.html" target="_blank">DP Mathematics HL</a>
</li>
<li>
<a href="../../mathSL.html" target="_blank">DP Mathematics SL</a>
</li>
<li>
<a href="../../mathStudies.html" target="_blank">DP Mathematical Studies</a>
</li>
</ul></li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">
<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>
<div class="page-content container">
<div class="row">
<div class="span24">
</div>
</div>
<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="images/logo.jpg" alt="Ib qb 46 logo">
</div>
</div>
</div><h2>HL Paper 2</h2><div class="specification">
<p>An acidic sample of a waste solution containing Sn<sup>2+</sup>(aq) reacted completely with K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> solution to form Sn<sup>4+</sup>(aq).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Identify one organic functional group that can react with acidified K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub>(aq).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.v.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Corrosion of iron is similar to the processes that occur in a voltaic cell. The initial steps involve the following half-equations:</p>
<p style="text-align: center;">Fe<sup>2+</sup>(aq) + 2e<sup>–</sup> \( \rightleftharpoons \) Fe(s)</p>
<p style="text-align: center;">\(\frac{1}{2}\)O<sub>2</sub>(g) + H<sub>2</sub>O(l) + 2e<sup>–</sup> \( \rightleftharpoons \) 2OH<sup>–</sup>(aq)</p>
<p>Calculate <em>E</em> <sup>θ</sup>, in V, for the spontaneous reaction using section 24 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the Gibbs free energy, Δ<em>G</em> <sup>θ</sup>, in kJ, which is released by the corrosion of 1 mole of iron. Use section 1 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why iron forms many different coloured complex ions.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Zinc is used to galvanize iron pipes, forming a protective coating. Outline how this process prevents corrosion of the iron pipes.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>There are only two isotopes, \(_{{\text{29}}}^{{\text{63}}}{\text{Cu}}\) and \(_{{\text{29}}}^{{\text{65}}}{\text{Cu}}\), in naturally occurring copper.</p>
</div>
<div class="specification">
<p>A chemist considered preparing a copper(I) salt by reacting copper metal with the corresponding copper(II) salt according to the equation below.</p>
<p>\[{\text{C}}{{\text{u}}^{2 + }}{\text{(aq)}} + {\text{Cu (s)}} \to {\text{2C}}{{\text{u}}^ + }{\text{(aq)}}\]</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The relative atomic mass of copper is 63.55. Calculate the percentage of \(_{{\text{29}}}^{{\text{63}}}{\text{Cu}}\) in the naturally occurring element.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the <strong>full</strong> electronic configuration of a copper atom.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why most copper(II) compounds are coloured, whereas most copper(I) compounds are not.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Using data from Table 14 of the Data Booklet, calculate the cell potential for this reaction.</p>
<p> </p>
<p> </p>
<p> </p>
<p>(ii) Use this result to predict, with a reason, whether this reaction will be spontaneous.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>The concentration of a solution of a weak acid, such as ethanedioic acid, can be determined<br>by titration with a standard solution of sodium hydroxide, NaOH (aq).</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>5.00 g of an impure sample of hydrated ethanedioic acid, (COOH)<sub>2</sub>•2H<sub>2</sub>O, was dissolved in water to make 1.00 dm<sup>3</sup> of solution. 25.0 cm<sup>3</sup> samples of this solution were titrated against a 0.100 mol dm<sup>-3</sup> solution of sodium hydroxide using a suitable indicator.</p>
<p style="text-align: center;">(COOH)<sub>2</sub> (aq) + 2NaOH (aq) → (COONa)<sub>2 </sub>(aq) + 2H<sub>2</sub>O (l)</p>
<p>The mean value of the titre was 14.0 cm<sup>3</sup>.</p>
<p>(i) Suggest a suitable indicator for this titration. Use section 22 of the data booklet.</p>
<p>(ii) Calculate the amount, in mol, of NaOH in 14.0 cm<sup>3</sup> of 0.100 mol dm<sup>-3</sup> solution.</p>
<p>(iii) Calculate the amount, in mol, of ethanedioic acid in each 25.0 cm<sup>3</sup> sample.</p>
<p>(iv) Determine the percentage purity of the hydrated ethanedioic acid sample.</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the Lewis (electron dot) structure of the ethanedioate ion, <sup>–</sup>OOCCOO<sup>–</sup>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why all the C–O bond lengths in the ethanedioate ion are the same length and suggest a value for them. Use section 10 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain how ethanedioate ions act as ligands.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Chromium is a transition metal with many uses.</p>
</div>
<div class="specification">
<p class="p1">A voltaic cell is constructed as follows. One half-cell contains a chromium electrode immersed in a solution containing \({\text{C}}{{\text{r}}^{3 + }}{\text{(aq)}}\) ions. The other half-cell contains a copper electrode immersed in a solution containing \({\text{C}}{{\text{u}}^{2 + }}{\text{(aq)}}\) ions. The two electrodes are connected to a voltmeter and the two solutions by a salt bridge.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-08-07_om_11.31.53.png" alt="M15/4/CHEMI/HP2/ENG/TZ2/08.e"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Draw an orbital diagram (using the arrow-in-box notation) showing the electrons in the 4s and 3d sub-levels in chromium metal.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Outline the nature of the metallic bonding present in chromium.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain why chromium metal is malleable.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the name of \({\text{C}}{{\text{r}}_{\text{2}}}{{\text{O}}_{\text{3}}}\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Describe the ionic bonding present in \({\text{C}}{{\text{r}}_{\text{2}}}{{\text{O}}_{\text{3}}}\) and how the ions are formed.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Suggest why solid \({\text{C}}{{\text{r}}_{\text{2}}}{{\text{O}}_{\text{3}}}\) does <strong>not </strong>conduct electricity.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Chromium forms the complex ion \({[{\text{Cr}}{({\text{N}}{{\text{H}}_{\text{3}}})_{\text{4}}}{\text{C}}{{\text{l}}_2}]^ + }\).</p>
<p class="p2">Deduce the oxidation number of chromium in this complex.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Chromium forms the complex ion \({[{\text{Cr}}{({\text{N}}{{\text{H}}_{\text{3}}})_{\text{4}}}{\text{C}}{{\text{l}}_2}]^ + }\).</p>
<p class="p1">Describe the nature of the ligand-chromium ion bonds in terms of acid-base theory.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Chromium forms the complex ion \({[{\text{Cr}}{({\text{N}}{{\text{H}}_{\text{3}}})_{\text{4}}}{\text{C}}{{\text{l}}_2}]^ + }\).</p>
<p class="p2">Explain why \({[{\text{Cr}}{({\text{N}}{{\text{H}}_{\text{3}}})_{\text{4}}}{\text{C}}{{\text{l}}_{\text{2}}}{\text{]}}^ + }\) is coloured.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Chromium forms the complex ion \({[{\text{Cr}}{({\text{N}}{{\text{H}}_{\text{3}}})_{\text{4}}}{\text{C}}{{\text{l}}_2}]^ + }\).</p>
<p class="p1">Draw the structures of <strong>two </strong>possible isomers of this complex ion.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The dichromate ion, \({\text{C}}{{\text{r}}_{\text{2}}}{\text{O}}_{\text{7}}^{2 - }{\text{(aq)}}\)<span class="s1">, and the iodide ion, \({{\text{I}}^ - }{\text{(aq)}}\)</span>, react together in the presence of an acid to form \({\text{C}}{{\text{r}}^{3 + }}{\text{(aq)}}\)<span class="s1"> and \({\text{IO}}_3^ - {\text{(aq)}}\) ions. Deduce the half-equation for the reaction of \({{\text{I}}^ - }\)</span> <span class="s1">to \({\text{IO}}_3^ - \)</span> and the overall equation for this reaction.</p>
<p class="p2"> </p>
<p class="p1">Half-equation:</p>
<p class="p2"> </p>
<p class="p2"> </p>
<p class="p1">Overall equation:</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain in terms of oxidation numbers whether iodine is oxidized or reduced in part (d) (i).</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Define the term <em>standard electrode potential</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the cell potential, in V, under standard conditions, for this voltaic cell, using table 14 of the data booklet and \({\text{E}}_{{\text{C}}{{\text{r}}^{3 + }}/{\text{Cr}}}^\Theta = -0.74{\text{ V}}\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Predict the balanced equation for the spontaneous reaction which will produce a current in this voltaic cell.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Identify the negative and the positive electrodes in this cell.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Predict the direction of movement of electrons in the external circuit.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.v.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the directions in which the negative ions (anions) and the positive ions (cations) flow in the salt bridge.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.vi.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The graph of the first ionization energy plotted against atomic number for the first twenty elements shows periodicity.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-10-14_om_07.20.08.png" alt="M09/4/CHEMI/HP2/ENG/TZ1/08.b"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain how information from this graph provides evidence for the existence of main energy levels and sub-levels within atoms.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State what is meant by the term <em>second ionization energy</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Sketch and explain the shape of the graph obtained for the successive ionization energies of potassium using a logarithmic scale for ionization energy on the <em>y</em>-axis against number of electrons removed on the <em>x</em>-axis.</p>
<p class="p1"><img src="images/Schermafbeelding_2016-10-14_om_11.58.24.png" alt="M09/4/CHEMI/HP2/ENG/TZ1/08.b.iv/M"></p>
<p class="p1"> </p>
<div class="marks">[4]</div>
<div class="question_part_label">b.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the <strong>full </strong>electronic configurations of copper, Cu, and the copper(I) ion, \({\text{C}}{{\text{u}}^ + }\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain why copper(II) compounds in aqueous solution are coloured whereas scandium(III) compounds in aqueous solution are colourless.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>Millerite, a nickel sulfide mineral, is an important source of nickel. The first step in extracting nickel is to roast the ore in air.</p>
</div>
<div class="specification">
<p>The reaction for the formation of liquid tetracarbonylnickel is shown below:</p>
<p style="text-align: left;">\[{\text{Ni(s)}} + 4{\text{CO(g)}} \to {\text{Ni(CO}}{{\text{)}}_4}{\text{(l)}}\]</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Formulate an equation for the oxidation of nickel(II) sulfide to nickel(II) oxide.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The nickel obtained from another ore, nickeliferous limonite, is contaminated with iron. Both nickel and iron react with carbon monoxide gas to form gaseous complexes, tetracarbonylnickel, \({\text{Ni(CO}}{{\text{)}}_{\text{4}}}{\text{(g)}}\), and pentacarbonyliron, \({\text{Fe(CO}}{{\text{)}}_{\text{5}}}{\text{(g)}}\). Suggest why the nickel can be separated from the iron successfully using carbon monoxide.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the standard entropy change, \(\Delta {S^\theta }\), of the reaction, in \({\text{J}}\,{{\text{K}}^{ - 1}}\), using the values given.</p>
<p style="text-align: center;"><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate a value for \(\Delta {H^\theta }\) in kJ.</p>
<p style="text-align: center;"><img src=""></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your answers to (c)(i) and (c)(ii), to determine the temperature, in °C, at which the decomposition of liquid tetracarbonylnickel to nickel and carbon monoxide becomes favourable.</p>
<p><br>(If you did not get answers to (c)(i) and (c)(ii), use \( - 500{\text{ J}}\,{{\text{K}}^{ - 1}}\) and \( - 200{\text{ kJ}}\) respectively but these are not the correct answers.)</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why experiments involving tetracarbonylnickel are very hazardous.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Hydrogen peroxide decomposes according to the equation below.</p>
<p>\({\text{2}}{{\text{H}}_{\text{2}}}{{\text{O}}_{\text{2}}}{\text{(aq)}} \to {\text{2}}{{\text{H}}_{\text{2}}}{\text{O(l)}} + {{\text{O}}_{\text{2}}}{\text{(g)}}\)</p>
<p>The rate of the decomposition can be monitored by measuring the volume of oxygen gas released. The graph shows the results obtained when a solution of hydrogen peroxide decomposed in the presence of a CuO catalyst.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-22_om_06.42.58.png" alt="N14/4/CHEMI/HP2/ENG/TZ0/11"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline how the initial rate of reaction can be found from the graph.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain how and why the rate of reaction changes with time.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A Maxwell-Boltzmann energy distribution curve is drawn below. Label both axes and explain, by annotating the graph, how catalysts increase the rate of reaction.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-22_om_06.52.11.png" alt="N14/4/CHEMI/HP2/ENG/TZ0/11.b"></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) In some reactions, increasing the concentration of a reactant does not increase the rate of reaction. Describe how this may occur.</p>
<p> </p>
<p> </p>
<p> </p>
<p>(ii) Consider the reaction</p>
<p>\[{\text{2A}} + {\text{B}} \to {\text{C}} + {\text{D}}\]</p>
<p>The reaction is first order with respect to <strong>A</strong>, and zero order with respect to <strong>B</strong>. Deduce the rate expression for this reaction.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch a graph of rate constant \((k)\) versus temperature.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-22_om_07.07.50.png" alt="N14/4/CHEMI/HP2/ENG/TZ0/11.d"></p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hydrochloric acid neutralizes sodium hydroxide, forming sodium chloride and water.</p>
<p>\({\text{NaOH(aq)}} + {\text{HCl(aq)}} \to {\text{NaCl(aq)}} + {{\text{H}}_{\text{2}}}{\text{O(l)}}\) \(\Delta {H^\Theta } = - 57.9{\text{ kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\)</p>
<p>(i) Define <em>standard enthalpy change of reaction</em>, \(\Delta {H^\Theta }\).</p>
<p>(ii) Determine the amount of energy released, in kJ, when \({\text{50.0 c}}{{\text{m}}^{\text{3}}}\) of \({\text{1.00 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) sodium hydroxide solution reacts with \({\text{50.0 c}}{{\text{m}}^{\text{3}}}\) of \({\text{1.00 mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\) hydrochloric acid solution.</p>
<p>(iii) In an experiment, 2.50 g of solid sodium hydroxide was dissolved in \({\text{50.0 c}}{{\text{m}}^{\text{3}}}\) of water. The temperature rose by 13.3 °C. Calculate the standard enthalpy change, in \({\text{kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\), for dissolving one mole of solid sodium hydroxide in water.</p>
<p>\[{\text{NaOH(s)}} \to {\text{NaOH(aq)}}\]</p>
<p>(iv) Using relevant data from previous question parts, determine \(\Delta {H^\Theta }\), in \({\text{kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\), for the reaction of solid sodium hydroxide with hydrochloric acid.</p>
<p>\[{\text{NaOH(s)}} + {\text{HCl(aq)}} \to {\text{NaCl(aq)}} + {{\text{H}}_{\text{2}}}{\text{O(l)}}\]</p>
<div class="marks">[9]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Zinc is found in the d-block of the periodic table. Explain why it is not considered a transition metal.</p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p>(ii) Explain why \({\text{F}}{{\text{e}}^{3 + }}\) is a more stable ion than \({\text{F}}{{\text{e}}^{2 + }}\) by reference to their electron configurations.</p>
<div class="marks">[5]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>Titanium and vanadium are consecutive elements in the first transition metal series.</p>
</div>
<div class="specification">
<p>\({\text{TiC}}{{\text{l}}_{\text{4}}}\) reacts with water and the resulting titanium(IV) oxide can be used as a smoke screen.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the bonding in metals.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Titanium exists as several isotopes. The mass spectrum of a sample of titanium gave the following data:</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-09-20_om_08.37.43.png" alt="M17/4/CHEMI/HP2/ENG/TZ1/02.b"></p>
<p style="text-align: left;">Calculate the relative atomic mass of titanium to two decimal places.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the number of protons, neutrons and electrons in the \(_{{\text{22}}}^{{\text{48}}}{\text{Ti}}\) atom.</p>
<p><img src="images/Schermafbeelding_2017-09-20_om_08.43.58.png" alt="M17/4/CHEMI/HP2/ENG/TZ1/02.c"></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the full electron configuration of the \(_{{\text{22}}}^{{\text{48}}}{\text{T}}{{\text{i}}^{2 + }}\) ion.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest why the melting point of vanadium is higher than that of titanium.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch a graph of the first six successive ionization energies of vanadium on the axes provided.</p>
<p style="text-align: left;"><img src="images/Schermafbeelding_2017-09-20_om_09.09.57.png" alt="M17/4/CHEMI/HP2/ENG/TZ1/02.d.iii"></p>
<div class="marks">[1]</div>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why an aluminium-titanium alloy is harder than pure aluminium.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe, in terms of the electrons involved, how the bond between a ligand and a central metal ion is formed.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why transition metals form coloured compounds.</p>
<div class="marks">[4]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the type of bonding in potassium chloride which melts at 1043 K.</p>
<div class="marks">[1]</div>
<div class="question_part_label">g.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A chloride of titanium, \({\text{TiC}}{{\text{l}}_{\text{4}}}\), melts at 248 K. Suggest why the melting point is so much lower than that of KCl.</p>
<div class="marks">[1]</div>
<div class="question_part_label">g.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Formulate an equation for this reaction.</p>
<div class="marks">[2]</div>
<div class="question_part_label">h.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest one disadvantage of using this smoke in an enclosed space.</p>
<div class="marks">[1]</div>
<div class="question_part_label">h.ii.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Chromium is a typical transition metal with many uses.</p>
</div>
<div class="specification">
<p class="p1">A voltaic cell is constructed as follows. One half-cell contains a platinum electrode in a solution containing \({{\text{K}}_{\text{2}}}{\text{C}}{{\text{r}}_{\text{2}}}{{\text{O}}_{\text{7}}}\) and \({{\text{H}}_{\text{2}}}{\text{S}}{{\text{O}}_{\text{4}}}\). The other half-cell contains an iron electrode in a solution containing \({\text{F}}{{\text{e}}^{2 + }}\) ions. The two electrodes are connected to a voltmeter and the two solutions by a salt bridge.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Distinguish between the terms <em>oxidation </em>and <em>reduction </em>in terms of oxidation numbers.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the names of \({\text{C}}{{\text{r}}_{\text{2}}}{{\text{O}}_{\text{3}}}\) and \({\text{Cr}}{{\text{O}}_{\text{3}}}\).</p>
<p class="p1">\({\text{C}}{{\text{r}}_{\text{2}}}{{\text{O}}_{\text{3}}}\):</p>
<p class="p1">\({\text{Cr}}{{\text{O}}_{\text{3}}}\):</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Define the term <em>oxidizing agent</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">\({\text{C}}{{\text{r}}_{\text{2}}}{\text{O}}_7^{2 - }{\text{(aq)}}\) and \({{\text{I}}^ - }{\text{(aq)}}\) ions react together in the <strong>presence of acid </strong>to form \({\text{C}}{{\text{r}}^{3 + }}{\text{(aq)}}\) and \({\text{IO}}_3^ - {\text{(aq)}}\) ions. Deduce the balanced chemical equation for this redox reaction and identify the species that acts as the oxidizing agent.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Draw a diagram of the voltaic cell, labelling the positive and negative electrodes (cathode and anode) and showing the direction of movement of the electrons and ions. Deduce an equation for the reaction occurring in each of the half-cells, and the equation for the overall cell reaction.</p>
<div class="marks">[5]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Define the term <em>standard electrode potential</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the cell potential, in V, under standard conditions, using information from Table 14 of the Data Booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State <strong>two </strong>characteristic properties of transition elements.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the type of bond formed by a ligand and identify the feature that enables it to form this bond.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain why the complex \({{\text{[Cr(}}{{\text{H}}_{\text{2}}}{\text{O}}{{\text{)}}_{\text{6}}}{\text{]}}^{{\text{3 + }}}}\) is coloured.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Draw an orbital box diagram (arrow-in-box notation) showing the electrons in the 4s and 3d sub-levels in chromium metal.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Chromium is often used in electroplating. State what is used as the positive electrode (anode), the negative electrode (cathode) and the electrolyte in the chromium electroplating process.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Lithium and boron are elements in period 2 of the periodic table. Lithium occurs in group 1 (the alkali metals) and boron occurs in group 3. Isotopes exist for both elements.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The electron configuration of boron is \({\text{1}}{{\text{s}}^{\text{2}}}{\text{2}}{{\text{s}}^{\text{2}}}{\text{2}}{{\text{p}}^{\text{1}}}\). Draw the shape of an s orbital and a \({{\text{p}}_x}\) orbital on the axes below.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-22_om_07.40.13.png" alt="N12/4/CHEMI/HP2/ENG/T2.a.iii/XX"></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(ii) <span class="Apple-converted-space"> </span>Cobalt is a transition metal. One common ion of cobalt is \({\text{C}}{{\text{o}}^{3 + }}\). Draw the orbital diagram (using the arrow-in-box notation) for the \({\text{C}}{{\text{o}}^{3 + }}\) ion.</p>
<p class="p1"><img src="images/Schermafbeelding_2016-09-22_om_07.50.02.png" alt="N12/4/CHEMI/HP2/ENG/TZ0/02.b"></p>
<p class="p1">(iii) <span class="Apple-converted-space"> </span>State the other most common ion of cobalt.</p>
<p class="p1">(iv) <span class="Apple-converted-space"> </span>Explain why the complex \({\text{[Co(N}}{{\text{H}}_{\text{3}}}{{\text{)}}_{\text{6}}}{\text{]C}}{{\text{l}}_{\text{3}}}\) is coloured.</p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>EUK-134, the structure of which is shown below, is a complex ion of manganese(III) that is used in expensive sun-protection products because of its powerful antioxidant properties.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2016-08-25_om_05.49.36.png" alt="N13/4/CHEMI/HP2/ENG/TZ0/04"></p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the electron configuration of the manganese ion in EUK-134.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the name given to species that bond to a central metal ion, and identify the type of bond present.</p>
<p> </p>
<p>Name given:</p>
<p> </p>
<p>Type of bond:</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Transition metals have certain characteristic properties. State <strong>two</strong> properties that are involved in EUK-134 rapidly decreasing the concentration of oxidizing agents.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Substances like EUK-134 are often coloured. Explain why compounds of transition metals absorb visible radiation.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">An electrochemical cell is made from an iron half-cell connected to a cobalt half-cell:</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-10-14_om_07.11.23.png" alt="M09/4/CHEMI/HP2/ENG/TZ1/07.a"></p>
<p class="p1">The standard electrode potential for \({\text{F}}{{\text{e}}^{2 + }}{\text{(aq)}} + {\text{2}}{{\text{e}}^ - } \rightleftharpoons {\text{Fe(s)}}\) is –0.45 V. The total cell potential obtained when the cell is operating under standard conditions is 0.17 V. Cobalt is produced during the spontaneous reaction.</p>
</div>
<div class="specification">
<p class="p1">An electrolytic cell is made using a very dilute solution of sodium chloride.</p>
</div>
<div class="specification">
<p class="p1">Predict the products by giving the relevant half-equation for the reaction occurring at each electrode if the electrolyte of the cell described in part (c) was changed to:</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Define the term <em>standard electrode potential </em>and state the meaning of the minus sign in the value of –0.45 V.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the value for the standard electrode potential for the cobalt half-cell.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce which species acts as the oxidizing agent when the cell is operating.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce the equation for the spontaneous reaction taking place when the iron half-cell is connected instead to an aluminium half-cell.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain the function of the salt bridge in an electrochemical cell.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.v.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>\({{\text{[Co(}}{{\text{H}}_{\text{2}}}{\text{O}}{{\text{)}}_{\text{6}}}{\text{]}}^{2 + }}\)</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>\({\text{C}}{{\text{o}}_{\text{2}}}{{\text{(S}}{{\text{O}}_{\text{4}}}{\text{)}}_{\text{3}}}\)</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>\({{\text{[CoC}}{{\text{l}}_{\text{4}}}{\text{]}}^{2 - }}\)</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Draw a labelled diagram of the cell. Use an arrow to show the direction of the electron flow and identify the positive and negative electrodes.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Give the formulas of all the ions present in the solution.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Predict the products obtained at each electrode and state the half-equation for the formation of each product.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce the molar ratios of the products obtained at the two electrodes.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">concentrated sodium chloride</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">molten sodium bromide</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>The oxides and chlorides of period 3 elements exhibit periodicity.</p>
</div>
<div class="specification">
<p>Chlorine gas, \({\text{C}}{{\text{l}}_{\text{2}}}{\text{(g)}}\), is bubbled through separate solutions of aqueous bromine, \({\text{B}}{{\text{r}}_{\text{2}}}{\text{(aq)}}\), and potassium bromide, \({\text{KBr(aq)}}\).</p>
</div>
<div class="specification">
<p>The hydrogen halides do not show perfect periodicity. A bar chart of boiling points shows that the boiling point of hydrogen fluoride, HF, is much higher than periodic trends would indicate.</p>
<p style="text-align: left;"><img src="images/Schermafbeelding_2016-08-12_om_06.29.26.png" alt="M14/4/CHEMI/HP2/ENG/TZ1/05.c"></p>
</div>
<div class="specification">
<p>Transition metals form complex ions which are usually coloured.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) State the changes in the acid-base nature of the oxides across period 3 (from \({\text{N}}{{\text{a}}_2}{\text{O}}\) to \({\text{C}}{{\text{l}}_{\text{2}}}{{\text{O}}_{\text{7}}}\)), including equations for the reactions of \({\text{N}}{{\text{a}}_2}{\text{O}}\) and \({\text{S}}{{\text{O}}_{\text{3}}}\) with water.</p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p>(ii) State whether or not molten aluminium chloride, \({\text{A}}{{\text{l}}_{\text{2}}}{\text{C}}{{\text{l}}_{\text{6}}}\), and molten aluminium oxide, \({\text{A}}{{\text{l}}_{\text{2}}}{{\text{O}}_{\text{3}}}\), conduct electricity. Explain this behaviour in terms of the structure and bonding of the two compounds.</p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p> </p>
<p>(iii) State the equation for the reaction of \({\text{C}}{{\text{l}}_{\text{2}}}\) with water.</p>
<div class="marks">[7]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Predict any changes that may be observed in each case.</p>
<p> </p>
<p>\({\text{B}}{{\text{r}}_{\text{2}}}{\text{(aq)}}\):</p>
<p> </p>
<p> </p>
<p>\({\text{KBr(aq)}}\):</p>
<p> </p>
<p> </p>
<p>(ii) State the half-equations for the reactions that occur.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) Explain why the boiling point of HF is much higher than the boiling points of the other hydrogen halides.</p>
<p> </p>
<p> </p>
<p>(ii) Explain the trend in the boiling points of HCl, HBr and HI.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the full electron configurations of Cr and \({\text{C}}{{\text{r}}^{3 + }}\).</p>
<p> </p>
<p>Cr:</p>
<p> </p>
<p>\({\text{C}}{{\text{r}}^{3 + }}\):</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>\({\text{C}}{{\text{r}}^{3 + }}\) ions and water molecules bond together to form the complex ion \({{\text{[Cr(}}{{\text{H}}_{\text{2}}}{\text{O}}{{\text{)}}_{\text{6}}}{\text{]}}^{3 + }}\).</p>
<p>Describe how the water acts and how it forms the bond, identifying the acid-base character of the reaction.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the \({{\text{[Cr(}}{{\text{H}}_{\text{2}}}{\text{O}}{{\text{)}}_{\text{6}}}{\text{]}}^{3 + }}\) ion is coloured.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline, including a relevant equation, whether the \({{\text{[Cr(}}{{\text{H}}_{\text{2}}}{\text{O}}{{\text{)}}_{\text{6}}}{\text{]}}^{3 + }}\) ion is acidic, basic or neutral.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain how the number of electrons in the outer main energy level of phosphorus, P, can be determined using the data of successive ionization energies.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Draw the shape of the \({{\text{p}}_{\text{z}}}\) orbital using the coordinates shown.</p>
<p class="p1"><img src="images/Schermafbeelding_2016-10-18_om_06.24.59.png" alt="M09/4/CHEMI/HP2/ENG/TZ2/03.a.i"></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the electron configuration of \({\text{F}}{{\text{e}}^{3 + }}\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Define the term <em>ligand.</em></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain why the complex \({{\text{[Fe(}}{{\text{H}}_{\text{2}}}{\text{O}}{{\text{)}}_{\text{6}}}{\text{]}}^{3 + }}\) is coloured.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The element selenium \({\text{(}}Z = 34{\text{)}}\) has electrons in the 4s, 3d and 4p orbitals. Draw an orbital box diagram (arrow-in-box notation) to represent these electrons.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.v.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The periodic table shows the relationship between electron configuration and the properties of elements and is a valuable tool for making predictions in chemistry.</p>
</div>
<div class="specification">
<p class="p1">The ten elements in the first-row d-block have characteristic properties and many uses.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Define the term <em>electronegativity</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>Outline <strong>two </strong>reasons why a sodium ion has a smaller radius than a sodium atom.</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>Explain why the ionic radius of \({{\text{P}}^{3 - }}\) is <strong>greater </strong>than the ionic radius of \({\text{S}}{{\text{i}}^{4 + }}\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The graph below represents the successive ionization energies of sodium. The vertical axis plots log (ionization energy) instead of ionization energy to allow the data to be represented without using an unreasonably long vertical axis.</p>
<p class="p1"><img src="images/Schermafbeelding_2016-10-11_om_06.18.18.png" alt="M10/4/CHEMI/HP2/ENG/TZ2/06.d"></p>
<p class="p1">State the full electron configuration of sodium and explain how the successive ionization energy data for sodium are related to its electron configuration.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) Explain why the first ionization energy of aluminium is <strong>lower </strong>than the first ionization energy of magnesium.</p>
<p class="p1">(ii) Explain why the first ionization energy of sulfur is <strong>lower </strong>than the first ionization energy of phosphorus.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State and explain the type of reaction that takes place between \({\text{F}}{{\text{e}}^{3 + }}\) and \({{\text{H}}_{\text{2}}}{\text{O}}\) to form \({{\text{[Fe(}}{{\text{H}}_{\text{2}}}{\text{O}}{{\text{)}}_{\text{6}}}{\text{]}}^{3 + }}\) in terms of acid-base theories.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain why \({{\text{[Fe(}}{{\text{H}}_{\text{2}}}{\text{O}}{{\text{)}}_{\text{6}}}{\text{]}}^{3 + }}\) is coloured.</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Outline the economic significance of the use of a catalyst in the Haber process which is an exothermic reaction.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.iii.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Phosphoryl chloride, \({\text{POC}}{{\text{l}}_{\text{3}}}\), is a dehydrating agent.</p>
</div>
<div class="specification">
<p class="p1">\({\text{POC}}{{\text{l}}_{\text{3}}}\left( {\text{g}} \right)\) decomposes according to the following equation.</p>
<p class="p1">\[{\text{2POC}}{{\text{l}}_3}{\text{(g)}} \to {\text{2PC}}{{\text{l}}_3}{\text{(g)}} + {{\text{O}}_2}{\text{(g)}}\]</p>
</div>
<div class="specification">
<p class="p1">POCl<sub><span class="s1">3 </span></sub>can be prepared by the reaction of phosphorus pentachloride, PCl<sub><span class="s1">5 </span></sub>, with tetraphosphorus decaoxide, P<sub><span class="s1">4</span></sub>O<sub><span class="s1">10</span></sub>.</p>
</div>
<div class="specification">
<p class="p1">PCl<sub><span class="s1">3 </span></sub>and Cl<sup>–</sup><span class="s1"> </span>can act as ligands in transition metal complexes such as Ni(PCl<sub><span class="s1">3</span></sub>)<sub><span class="s1">4 </span></sub>and [Cr(H<sub><span class="s1">2</span></sub>O)<sub><span class="s1">3</span></sub>Cl<sub><span class="s1">3</span></sub>].</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Predict and explain the sign of the entropy change, \(\Delta S\), for this reaction.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the standard entropy change for the reaction, \(\Delta {S^\Theta }\), in \({\text{J}}\,{{\text{K}}^{ - 1}}{\text{mo}}{{\text{l}}^{ - 1}}\), using the data below.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-16_om_07.31.10.png" alt="M13/4/CHEMI/HP2/ENG/TZ2/05.a.ii"></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Define the term <em>standard enthalpy change of formation</em>, \(\Delta H_{\text{f}}^\Theta \).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the standard enthalpy change for the reaction, \(\Delta {H^\Theta }\), in \({\text{kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\), using the data below.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-16_om_07.42.10.png" alt="M13/4/CHEMI/HP2/ENG/TZ2/05.a.iv"></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine the standard free energy change for the reaction, \(\Delta {G^\Theta }\), in \({\text{kJ}}\,{\text{mo}}{{\text{l}}^{ - 1}}\), at 298 K.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.v.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce the temperature, in K, at which the reaction becomes spontaneous.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.vi.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce the Lewis (electron dot) structure of POCl<sub><span class="s1">3 </span></sub>(with P as the central element) and PCl<sub><span class="s1">3 </span></sub>and predict the shape of each molecule, using the valence shell electron pair repulsion theory (VSEPR).</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State and explain the Cl–P–Cl bond angle in PCl<sub><span class="s1">3</span></sub>.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce the Lewis (electron dot) structure of PCl<sub><span class="s1">5</span></sub>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Predict the shape of this molecule, using the valence shell electron pair repulsion theory (VSEPR).</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Identify all the different bond angles in PCl<sub><span class="s1">5</span></sub>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">PCl<sub><span class="s1">3</span></sub>Br<sub><span class="s1">2 </span></sub>has the same molecular shape as PCl<sub><span class="s1">5</span></sub>. Draw the three isomers of PCl<sub><span class="s1">3</span></sub>Br<sub><span class="s1">2 </span></sub>and deduce whether each isomer is polar or non-polar.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Define the term <em>ligand</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain why the complex [Cr(H<sub><span class="s1">2</span></sub>O)<sub><span class="s1">3</span></sub>Cl<sub><span class="s1">3</span></sub>] is coloured.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.ii.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Iron has three main naturally occurring isotopes which can be investigated using a mass spectrometer.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the full electronic configurations of a Cu atom and a \({\text{C}}{{\text{u}}^ + }\) ion.</p>
<p class="p2"> </p>
<p class="p1">Cu:</p>
<p class="p2"> </p>
<p class="p1">\({\text{C}}{{\text{u}}^ + }\):</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain the origin of colour in transition metal complexes and use your explanation to suggest why copper(II) sulfate, CuSO<sub><span class="s1">4</span></sub>(aq), is blue, but zinc sulfate, ZnSO<sub><span class="s1">4</span></sub>(aq), is colourless.</p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">\({\text{C}}{{\text{u}}^{2 + }}{\text{(aq)}}\) reacts with ammonia to form the complex ion \({{\text{[Cu(N}}{{\text{H}}_{\text{3}}}{{\text{)}}_{\text{4}}}{\text{]}}^{2 + }}\). Explain this reaction in terms of an acid-base theory, and outline how the bond is formed between \({\text{C}}{{\text{u}}^{2 + }}\) and \({\text{N}}{{\text{H}}_{\text{3}}}\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Bromine is a member of group 7, the halogens.</p>
</div>
<div class="specification">
<p class="p1">Iron is a transition metal.</p>
</div>
<div class="specification">
<p class="p1">Freshly prepared iron(II) bromide can be electrolysed both in the liquid state and in aqueous solution.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain the trend in reactivity of the halogens.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce, using equations where appropriate, if bromine reacts with sodium chloride solution and with sodium iodide solution.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Describe the bonding in metals and explain their malleability.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">List <strong>three </strong>characteristic properties of transition elements.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Identify the type of bonding between iron and cyanide in \({{\text{[Fe(CN}}{{\text{)}}_{\text{6}}}{\text{]}}^{3 - }}\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce the oxidation number of iron in \({{\text{[Fe(CN}}{{\text{)}}_{\text{6}}}{\text{]}}^{3 - }}\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Draw the abbreviated orbital diagram for an <strong>iron atom </strong>using the arrow-in-box notation to represent electrons.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.v.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Draw the abbreviated orbital diagram for the <strong>iron ion in [Fe(CN)<sub>6</sub>]<sup>3–</sup></strong> using the arrow-in-box notation to represent electrons.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.vi.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Describe, using a diagram, the essential components of an electrolytic cell.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Describe the <strong>two </strong>ways in which current is conducted in an electrolytic cell.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Predict and explain the products of electrolysis of a <strong>dilute </strong>iron(II) bromide solution.</p>
<div class="marks">[4]</div>
<div class="question_part_label">c.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Identify another product that is formed if the solution of iron(II) bromide is <strong>concentrated</strong>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain why this other product is formed.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.v.</div>
</div>
<br><hr><br><div class="specification">
<p>The emission spectrum of an element can be used to identify it.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Hydrogen spectral data give the frequency of 3.28 × 10<sup>15</sup> s<sup>−1</sup> for its convergence limit.</p>
<p>Calculate the ionization energy, in J, for a single atom of hydrogen using sections 1 and 2 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the wavelength, in m, for the electron transition corresponding to the frequency in (a)(iii) using section 1 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce any change in the colour of the electrolyte during electrolysis.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the gas formed at the anode (positive electrode) when graphite is used in place of copper.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.v.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why transition metals exhibit variable oxidation states in contrast to alkali metals.</p>
<p><img src=""></p>
<p>Â </p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The reaction between carbon monoxide, CO(g), and nitrogen dioxide, \({\text{N}}{{\text{O}}_{\text{2}}}{\text{(g)}}\), was studied at different temperatures and a graph was plotted of \(\ln k\) against \(\frac{1}{T}\). The equation of the line of best fit was found to be:</p>
<p>\[\ln k = - 1.60 \times {10^4}\left( {\frac{1}{T}} \right) + 23.2\]</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-11-01_om_07.50.41.png" alt="M12/4/CHEMI/HP2/ENG/TZ2/09.c"></p>
<p class="p1">\[\frac{1}{T}/{\text{1}}{{\text{0}}^{ - 3}}{{\text{K}}^{ - 1}}\]</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>State the <strong>full </strong>electron configuration of Fe.</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>State the <strong>abbreviated </strong>electron configuration of \({\text{F}}{{\text{e}}^{3 + }}\) ions.</p>
<p class="p1">(iii) <span class="Apple-converted-space"> </span>Cyanide ions, \({\text{C}}{{\text{N}}^ - }\), can act as ligands. One complex ion that involves the cyanide ion is \({{\text{[Fe(CN}}{{\text{)}}_{\text{6}}}{\text{]}}^{3 - }}\). Identify the property of a cyanide ion which allows it to act as a ligand, and explain the bonding that occurs in the complex ion in terms of acid–base theory. Describe the structure of the complex ion, \({{\text{[Fe(CN}}{{\text{)}}_{\text{6}}}{\text{]}}^{3 - }}\).</p>
<p class="p1">(iv) <span class="Apple-converted-space"> </span>Explain why complexes of \({\text{F}}{{\text{e}}^{3 + }}\) are coloured.</p>
<div class="marks">[8]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space"> </span>The Arrhenius equation is shown in Table 1 of the Data Booklet. Identify the symbols \(k\) and A.</p>
<p class="p1">\(k\):</p>
<p class="p1">A:</p>
<p class="p1">(ii) <span class="Apple-converted-space"> </span>Calculate the activation energy, \({E_{\text{a}}}\), for the reaction between CO(g) and \({\text{N}}{{\text{O}}_{\text{2}}}{\text{(g)}}\).</p>
<p class="p1">(iii) <span class="Apple-converted-space"> </span>Calculate the numerical value of A.</p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Brass is a copper containing alloy with many uses. An analysis is carried out to determine the percentage of copper present in three identical samples of brass. The reactions involved in this analysis are shown below.</p>
<p class="p1">\[\begin{array}{*{20}{l}} {{\text{Step 1: Cu(s)}} + {\text{2HN}}{{\text{O}}_3}{\text{(aq)}} + {\text{2}}{{\text{H}}^ + }{\text{(aq)}} \to {\text{C}}{{\text{u}}^{2 + }}{\text{(aq)}} + {\text{2N}}{{\text{O}}_2}{\text{(g)}} + {\text{2}}{{\text{H}}_2}{\text{O(l)}}} \\ {{\text{Step 2: 4}}{{\text{I}}^ - }{\text{(aq)}} + {\text{2C}}{{\text{u}}^{2 + }}{\text{(aq)}} \to {\text{2CuI(s)}} + {{\text{I}}_2}{\text{(aq)}}} \\ {{\text{Step 3: }}{{\text{I}}_2}{\text{(aq)}} + {\text{2}}{{\text{S}}_2}{\text{O}}_3^{2 - }{\text{(aq)}} \to {\text{2}}{{\text{I}}^ - }{\text{(aq)}} + {{\text{S}}_4}{\text{O}}_6^{2 - }{\text{(aq)}}} \end{array}\]</p>
</div>
<div class="specification">
<p class="p1">In step 1 the copper reacts to form a blue solution.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the full electronic configuration of \({\text{C}}{{\text{u}}^{2 + }}\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain why the copper solution is coloured.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<br><hr><br><div class="question">
<p class="p1">Explain why copper is considered a transition metal while scandium is not.</p>
</div>
<br><hr><br><div class="specification">
<p>Trends in physical and chemical properties are useful to chemists.</p>
</div>
<div class="specification">
<p>Cobalt forms the transition metal complex [Co(NH<sub>3</sub>)<sub>4</sub> (H<sub>2</sub>O)Cl]Br.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Explain why the melting points of the group 1 metals (Li → Cs) decrease down the group whereas the melting points of the group 17 elements (F → I) increase down the group.</p>
<p><img src=""></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the shape of the complex ion.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Deduce the charge on the complex ion and the oxidation state of cobalt.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe, in terms of acid-base theories, the type of reaction that takes place between the cobalt ion and water to form the complex ion.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The electron configuration of chromium can be expressed as \({\text{[Ar]4}}{{\text{s}}^{\text{x}}}{\text{3}}{{\text{d}}^{\text{y}}}\).</p>
</div>
<div class="specification">
<p class="p1">Hydrogen and nitrogen(II) oxide react according to the following equation.</p>
<p class="p1">\[2{{\text{H}}_2}{\text{(g)}} + {\text{2NO(g)}} \rightleftharpoons {{\text{N}}_2}{\text{(g)}} + {\text{2}}{{\text{H}}_2}{\text{O(g)}}\]</p>
<p class="p1">At time <span class="s1">= \(t\)</span> seconds, the rate of the reaction is</p>
<p class="p1">\[{\text{rate}} = k{\text{[}}{{\text{H}}_2}{\text{(g)][NO(g)}}{{\text{]}}^2}\]</p>
</div>
<div class="specification">
<p class="p1">When concentrated hydrochloric acid is added to a solution containing hydrated copper(II) ions, the colour of the solution changes from light blue to green. The equation for the reaction is:</p>
<p>\[{{\text{[Cu(}}{{\text{H}}_2}{\text{O}}{{\text{)}}_6}{\text{]}}^{2 + }}{\text{(aq)}} + {\text{4C}}{{\text{l}}^ - }{\text{(aq)}} \to {{\text{[CuC}}{{\text{l}}_4}{\text{]}}^{2 - }}{\text{(aq)}} + {\text{6}}{{\text{H}}_2}{\text{O(l)}}\]</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain what the square brackets around argon, [Ar], represent.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the values of \(x\) and \(y\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Annotate the diagram below showing the 4s and 3d orbitals for a chromium atom using an arrow, <img src="images/Schermafbeelding_2016-10-27_om_08.08.15.png" alt="M11/4/CHEMI/HP2/ENG/TZ2/03.a.iii_1"> and <img src="images/Schermafbeelding_2016-10-27_om_08.09.21.png" alt="M11/4/CHEMI/HP2/ENG/TZ2/03.a.iii_2">, to represent a spinning electron.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-10-27_om_08.10.12.png" alt="M11/4/CHEMI/HP2/ENG/TZ2/03.a.iii_3"></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain precisely what the square brackets around nitrogen(II) oxide, [NO(g)], represent in this context.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Deduce the units for the rate constant \(k\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain what the square brackets around the copper containing species represent.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Explain why the \({{\text{[Cu(}}{{\text{H}}_{\text{2}}}{\text{O}}{{\text{)}}_{\text{6}}}{\text{]}}^{2 + }}\) ion is coloured and why the \({{\text{[CuC}}{{\text{l}}_{\text{4}}}{\text{]}}^{2 - }}\) ion has a different colour.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Some words used in chemistry can have a specific meaning which is different to their meaning in everyday English.</p>
<p class="p1">State what the term <em>spontaneous </em>means when used in a chemistry context.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Describe the emission spectrum of hydrogen. Outline how this spectrum is related to the energy levels in the hydrogen atom.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Transition elements form complexes such as \({{\text{[Fe(CN}}{{\text{)}}_{\text{6}}}{\text{]}}^{4 - }}\) and \({{\text{[FeC}}{{\text{l}}_{\text{4}}}{\text{]}}^ - }\). Deduce the oxidation number of iron in each of these complex ions.</p>
<p class="p1">\({{\text{[Fe(CN}}{{\text{)}}_{\text{6}}}{\text{]}}^{4 - }}\)</p>
<p class="p1">\({{\text{[FeC}}{{\text{l}}_{\text{4}}}{\text{]}}^ - }\)</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>Urea, (H<sub>2</sub>N)<sub>2</sub>CO, is excreted by mammals and can be used as a fertilizer.</p>
</div>
<div class="specification">
<p>Urea can also be made by the direct combination of ammonia and carbon dioxide gases.</p>
<p style="text-align: center;">2NH<sub>3</sub>(g) + CO<sub>2</sub>(g) \( \rightleftharpoons \) (H<sub>2</sub>N)<sub>2</sub>CO(g) + H<sub>2</sub>O(g) <span class="Apple-converted-space"> </span>Δ<em>H </em>< 0</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the percentage by mass of nitrogen in urea to two decimal places using section 6 of the data booklet.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest how the percentage of nitrogen affects the cost of transport of fertilizers giving a reason.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The structural formula of urea is shown.</p>
<p><img style="margin-right:auto;margin-left:auto;display: block;" src="images/Schermafbeelding_2018-08-07_om_11.43.42.png" alt="M18/4/CHEMI/HP2/ENG/TZ1/01.b_01"></p>
<p>Predict the electron domain and molecular geometries at the nitrogen and carbon atoms, applying the VSEPR theory.</p>
<p><img src="images/Schermafbeelding_2018-08-07_om_11.45.16.png" alt="M18/4/CHEMI/HP2/ENG/TZ1/01.b_02"></p>
<p>Â </p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Urea can be made by reacting potassium cyanate, KNCO, with ammonium chloride, NH<sub>4</sub>Cl.</p>
<p style="text-align: center;">KNCO(aq) + NH<sub>4</sub>Cl(aq) → (H<sub>2</sub>N)<sub>2</sub>CO(aq) + KCl(aq)</p>
<p>Determine the maximum mass of urea that could be formed from 50.0 cm<sup>3</sup> of 0.100 mol dm<sup>−3</sup> potassium cyanate solution.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the equilibrium constant expression, <em>K</em><sub>c</sub>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Predict, with a reason, the effect on the equilibrium constant, <em>K</em><sub>c</sub>, when the temperature is increased.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Determine an approximate order of magnitude for <em>K</em><sub>c</sub>, using sections 1 and 2 of the data booklet. Assume Δ<em>G</em><sup>Θ</sup> for the forward reaction is approximately +50 kJ at 298 K.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Suggest one reason why urea is a solid and ammonia a gas at room temperature.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch two different hydrogen bonding interactions between ammonia and water.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The combustion of urea produces water, carbon dioxide and nitrogen.</p>
<p>Formulate a balanced equation for the reaction.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the maximum volume of CO<sub>2</sub>, in cm<sup>3</sup>, produced at STP by the combustion of 0.600 g of urea, using sections 2 and 6 of the data booklet.</p>
<div class="marks">[1]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Describe the bond formation when urea acts as a ligand in a transition metal complex ion.</p>
<div class="marks">[2]</div>
<div class="question_part_label">h.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The C–N bonds in urea are shorter than might be expected for a single C–N bond. Suggest, in terms of electrons, how this could occur.</p>
<div class="marks">[1]</div>
<div class="question_part_label">i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The mass spectrum of urea is shown below.</p>
<p><img style="margin-right:auto;margin-left:auto;display: block;" src="images/Schermafbeelding_2018-08-07_om_13.00.41.png" alt="M18/4/CHEMI/HP2/ENG/TZ1/01.j_01"></p>
<p>Identify the species responsible for the peaks at <em>m</em>/<em>z </em>= 60 and 44.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">j.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The IR spectrum of urea is shown below.</p>
<p><img style="margin-right:auto;margin-left:auto;display: block;" src="images/Schermafbeelding_2018-08-07_om_13.07.17.png" alt="M18/4/CHEMI/HP2/ENG/TZ1/01.k_01"></p>
<p>Identify the bonds causing the absorptions at 3450 cm<sup>−1</sup> and 1700 cm<sup>−1</sup> using section 26 of the data booklet.</p>
<p><img src=""></p>
<div class="marks">[2]</div>
<div class="question_part_label">k.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Predict the number of signals in the <sup>1</sup>H NMR spectrum of urea.</p>
<div class="marks">[1]</div>
<div class="question_part_label">l.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Predict the splitting pattern of the <sup>1</sup>H NMR spectrum of urea.</p>
<div class="marks">[1]</div>
<div class="question_part_label">l.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline why TMS (tetramethylsilane) may be added to the sample to carry out <sup>1</sup>H NMR spectroscopy and why it is particularly suited to this role.</p>
<div class="marks">[2]</div>
<div class="question_part_label">l.iii.</div>
</div>
<br><hr><br><div class="specification">
<p>Tin(II) chloride is a white solid that is commonly used as a reducing agent.</p>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>(i) State why you would expect tin(II) chloride to have a similar lattice enthalpy to strontium chloride, using section 9 of the data booklet.</p>
<p>(ii) Calculate the molar enthalpy change when strontium chloride is dissolved in water, using sections 18 and 20 of the data booklet.</p>
<p>(iii) Tin(II) chloride reacts with water to precipitate the insoluble basic chloride, Sn(OH)Cl.</p>
<p><img src="" alt></p>
<p>Suggest why tin(II) chloride is usually dissolved in dilute hydrochloric acid.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Tin can also exist in the +4 oxidation state.</p>
<p><img src="" alt></p>
<p>Vanadium can be reduced from an oxidation state of +4 to +3 according to the equation:</p>
<p><img src="" alt></p>
<p>(i) Calculate the cell potential, <em>E</em><sup>Θ</sup>, and the standard free energy, Δ<em>G</em><sup>Θ</sup>, change for the reaction between the VO<sup>2+</sup> and Sn<sup>2+</sup> ions, using sections 1 and 2 of the data booklet.</p>
<p><em>E</em><sup>Θ</sup>:</p>
<p>Δ<em>G</em><sup>Θ</sup>:</p>
<p>(ii) Deduce, giving your reason, whether a reaction between Sn<sup>2+</sup>(aq) and VO<sup>2+</sup>(aq) would be spontaneous.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Outline, giving the <strong>full</strong> electron configuration of the vanadium atom, what is meant by the term transition metal.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In an aqueous solution of vanadium(III) chloride, the vanadium exists as [V (H<sub>2</sub>O)<sub>6</sub>]<sup>3+</sup>, [VCl (H<sub>2</sub>O)<sub>5</sub>]<sup>2+</sup> or [VCl<sub>2</sub>(H<sub>2</sub>O)<sub>4</sub>]<sup>+</sup> depending on the concentration of chloride ions in the solution.</p>
<p>(i) Describe how Cl<sup>−</sup> and H<sub>2</sub>O bond to the vanadium ion.</p>
<p>(ii) Outline what would happen to the wavelength at which the vanadium complex ions would absorb light as the water molecules are gradually replaced by chloride ions, using section 15 of the data booklet.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Eight successive ionisation energies of vanadium are shown in the graph below:</p>
<p><img src="" alt></p>
<p>(i) State the sub-levels from which each of the first four electrons are lost.</p>
<p>First: Second: Third: Fourth: </p>
<p>(ii) Outline why there is an increase in ionization energy from electron 3 to electron 5.</p>
<p>(iii) Explain why there is a large increase in the ionization energy between electrons 5 and 6.</p>
<p>(iv) Vanadium is comprised almost entirely of <sup>51</sup>V. State the number of neutrons an atom of <sup>51</sup>V has in its nucleus.</p>
<div class="marks">[6]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br>