File "markSceme-SL-paper1.html"

Path: /IB QUESTIONBANKS/4 Fourth Edition - PAPER/HTML/Chemistry/Topic 11/markSceme-SL-paper1html
File size: 159.94 KB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-746ec5d03ead8d9e8b3bb7d32173f2b4e2e22a05f0c5278e086ab55b3c9c238e.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-3c91afd8a2942c18d21ed2700e1bdec14ada97f1d3788ae229315e1276d81453.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../index.html">Home</a>
</li>
<li class="active dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Questionbanks
<b class="caret"></b>
</a><ul class="dropdown-menu">
<li>
<a href="../../geography.html" target="_blank">DP Geography</a>
</li>
<li>
<a href="../../physics.html" target="_blank">DP Physics</a>
</li>
<li>
<a href="../../chemistry.html" target="_blank">DP Chemistry</a>
</li>
<li>
<a href="../../biology.html" target="_blank">DP Biology</a>
</li>
<li>
<a href="../../furtherMath.html" target="_blank">DP Further Mathematics HL</a>
</li>
<li>
<a href="../../mathHL.html" target="_blank">DP Mathematics HL</a>
</li>
<li>
<a href="../../mathSL.html" target="_blank">DP Mathematics SL</a>
</li>
<li>
<a href="../../mathStudies.html" target="_blank">DP Mathematical Studies</a>
</li>
</ul></li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">

<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">



</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="images/logo.jpg" alt="Ib qb 46 logo">
</div>
</div>
</div><h2>SL Paper 1</h2><div class="question">
<p>Which value of <em>q</em>, in J, has the correct number of significant figures?</p>
<p style="text-align: center;"><em>q </em>= <em>mc</em>Δ<em>T</em></p>
<p>where <em>m </em>= 2.500 g, <em>c </em>= 4.18 J g<sup>−1</sup> K<sup>−1</sup> and Δ<em>T </em>= 0.60 K.</p>
<p>A.     6</p>
<p>B.     6.3</p>
<p>C.     6.27</p>
<p>D.     6.270</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<div class="page" title="Page 10">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 10">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 11">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 11">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 11">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 12">
<div class="layoutArea">
<div class="column">
<p>Which molecule has an index of hydrogen deficiency (IHD) = 1?</p>
A. &nbsp;C<sub>6</sub>H<sub>6</sub><br>B. &nbsp;C<sub>2</sub>Cl<sub>2</sub><br>C. &nbsp;C<sub>4</sub>H<sub>9</sub>N<br>D. &nbsp;C<sub>2</sub>H<sub>6</sub>O</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>What is the ratio of the areas of the signals in the <sup>1</sup>H NMR spectrum of pentan-3-ol?</p>
<p>A.     6:4:1:1</p>
<p>B.     6:2:2:2</p>
<p>C.     5:5:1:1</p>
<p>D.     3:3:2:2:1:1</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which feature of a molecule does infrared spectrometry detect?</p>
<p>A.     molecular mass</p>
<p>B.     bonds present</p>
<p>C.     total number of protons</p>
<p>D.     total number of proton environments</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>What is the index of hydrogen deficiency (IHD) for this molecule?&nbsp;</p>
<p style="text-align: center;"><img src="" alt></p>
<p>A. 3</p>
<p>B. 4</p>
<p>C. 5</p>
<p>D. 6&nbsp;</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The enthalpy of combustion of ethanol is determined by heating a known mass of tap water in a glass beaker with a flame of burning ethanol.</p>
<p>Which will lead to the greatest error in the final result?</p>
<p>A.     Assuming the density of tap water is 1.0 g cm<sup>−3</sup></p>
<p>B.     Assuming all the energy from the combustion will heat the water</p>
<p>C.     Assuming the specific heat capacity of the tap water is 4.18 J g<sup>−1</sup> K<sup>−1</sup></p>
<p>D.     Assuming the specific heat capacity of the beaker is negligible</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>What can be deduced from the following <sup>1</sup>H\(\,\)NMR spectrum?</p>
<p style="text-align: center;"><img src=""></p>
<p>A. &nbsp; &nbsp; There is only one hydrogen atom in the molecule.</p>
<p>B. &nbsp; &nbsp; There is only one hydrogen environment in the molecule.</p>
<p>C. &nbsp; &nbsp; The molecule is a hydrocarbon.</p>
<p>D. &nbsp; &nbsp; There is only one isotope in the element.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>What is the Index of Hydrogen Deficiency (IHD) for 1,3,5-hexatriene (C<sub>6</sub>H<sub>8</sub>)?</p>
<p>A. &nbsp; &nbsp; 1</p>
<p>B. &nbsp; &nbsp; 3</p>
<p>C. &nbsp; &nbsp; 5</p>
<p>D. &nbsp; &nbsp; 6</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>What can be determined about a molecule from the number of signals in its <sup>1</sup>H\(\,\)NMR spectrum?</p>
<p>A. &nbsp; &nbsp; Bonds present</p>
<p>B. &nbsp; &nbsp; Molecular formula</p>
<p>C. &nbsp; &nbsp; Molecular mass</p>
<p>D. &nbsp; &nbsp; Number of hydrogen environments</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which information can be gained from an infrared (IR) spectrum?</p>
<p>A. &nbsp; &nbsp; Ionization energy of the most abundant element</p>
<p>B. &nbsp; &nbsp; Number of different elements in the compound</p>
<p>C. &nbsp; &nbsp; Bonds present in a molecule</p>
<p>D. &nbsp; &nbsp; Molecular formula of the compound</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">The graph below represents the relationship between two variables in a fixed amount of gas.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-09-27_om_06.25.35.png" alt="N10/4/CHEMI/SPM/ENG/TZ0/04_1"></p>
<p class="p1">Which variables could be represented by each axis?</p>
<p class="p1"><img src="images/Schermafbeelding_2016-09-27_om_06.26.22.png" alt="N10/4/CHEMI/SPM/ENG/TZ0/04_2"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">Which are likely to be reduced when an experiment is repeated a number of times?</p>
<p class="p1">A.&nbsp; &nbsp; &nbsp;Random errors</p>
<p class="p1">B.&nbsp; &nbsp; &nbsp;Systematic errors</p>
<p class="p1">C.&nbsp; &nbsp; &nbsp;Both random and systematic errors</p>
<p class="p1">D.&nbsp; &nbsp; &nbsp;Neither random nor systematic errors</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<div class="page" title="Page 10">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 10">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 11">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 11">
<div class="layoutArea">
<div class="column">
<p>What is the relationship between the two variables sketched on the graph?</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src="" alt></p>
<p style="display: inline !important;">A. &nbsp;<em>y</em> is proportional to <em>x</em></p>
<div class="column">B. <em>&nbsp;y</em> is inversely proportional to <em>x</em><br>C. &nbsp;<em>y</em> is proportional to <em>&minus;x</em><br>D. &nbsp;<em>y</em> decreases exponentially with an increase in <em>x</em></div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<div class="page" title="Page 10">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 10">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 11">
<div class="layoutArea">
<div class="column">
<p>A measuring cylinder was used to obtain a known volume of a liquid. The volume was read from the top of the meniscus and the liquid completely emptied into a flask. The exact same process was then repeated. Which statement is correct about the overall described procedure and the volumes measured?</p>
<div class="page" title="Page 11">
<div class="layoutArea">
<div class="column">A. &nbsp;There is a systematic error and the volumes measured are accurate.<br>B. &nbsp;There is a random error and the volumes measured are accurate.<br>C. &nbsp;There is a random error and the volumes measured are inaccurate.<br>D. &nbsp;There is a systematic error and the volumes measured are inaccurate.</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">A student recorded the volume of a gas as \({\text{0.01450 d}}{{\text{m}}^{\text{3}}}\). How many significant figures are there in this value?</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>3</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>4</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>5</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>6</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p class="p1">In spite of the fact that there was a G2 form comment that the question was too easy, 26% of the candidates managed to give an incorrect response and the discrimination index of 0.27 showed it to be a reasonable discriminator.</p>
</div>
<br><hr><br><div class="question">
<p class="p1">The relationship between the pressure, \(P\), and the volume, \(V\), of a fixed amount of gas at a constant temperature is investigated experimentally. Which statements are correct?</p>
<p class="p1">I. <span class="Apple-converted-space">&nbsp; &nbsp; </span>A graph of \(V\) against \(P\) will be a curve (non-linear).</p>
<p class="p1">II. <span class="Apple-converted-space">&nbsp; &nbsp; </span>A graph of \(V\) against \(\frac{1}{P}\) will be linear.</p>
<p class="p1">III. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(V = {\text{constant}} \times \frac{{\text{1}}}{P}\)</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>I and II only</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>I and III only</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>II and III only</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>I, II and III</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p class="p1">One respondent stated that this question was not suitable for Topic 11. It is true that this MCQ on Topic 10 often does in fact test the AS&lsquo;s associated with Topics 11.1 and 11.2. However, Topic 11.3 on Graphical Techniques also is an integral part of Topic 11 and this question in fact links Topic 11.3 explicitly with the pressure-volume relationship from Topic 1.4, so is a completely suitable question for assessing this Topic 11.3, as candidates are required to interpret graphical behaviour. The question was found to be quite challenging for candidates with 40.98% of candidates getting the correct answer D.</p>
</div>
<br><hr><br><div class="question">
<p class="p1">A burette reading is recorded as \(27.70 \pm 0.05{\text{ c}}{{\text{m}}^{\text{3}}}\). Which of the following could be the actual value?</p>
<p class="p1">I. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({\text{27.68 c}}{{\text{m}}^{\text{3}}}\)</p>
<p class="p1">II. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({\text{27.78 c}}{{\text{m}}^{\text{3}}}\)</p>
<p class="p1">III. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({\text{27.74 c}}{{\text{m}}^{\text{3}}}\)</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>I and II only</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>I and III only</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>II and III only</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>I, II and III</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p class="p1">Two respondents stated that the wording of this question was vague. However, this in fact was the easiest question on the entire paper for candidates with 91.01% of candidates getting the correct answer, B.</p>
</div>
<br><hr><br><div class="question">
<p>What is the density, in g\(\,\)cm<sup>&minus;3</sup>, of a 34.79 g sample with a volume of 12.5 cm<sup>3</sup>?</p>
<p>A. &nbsp; &nbsp; 0.359</p>
<p>B. &nbsp; &nbsp; 0.36</p>
<p>C. &nbsp; &nbsp; 2.783</p>
<p>D. &nbsp; &nbsp; 2.78</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<div class="page" title="Page 10">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 10">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 11">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 11">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 11">
<div class="layoutArea">
<div class="column">
<p>Which feature of a molecule can be determined from its <sup>1</sup>H NMR spectrum?</p>
A. &nbsp;Number of hydrogen environments<br>B. &nbsp;Total mass of hydrogen atoms present<br>C. &nbsp;Vibration frequency of C&ndash;H bonds<br>D. &nbsp;Ionization energy of a hydrogen atom</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>What is always correct about the molecular ion, M<sup>+</sup>, in a mass spectrum of a compound?</p>
<p>A. The M<sup>+</sup> ion peak has the smallest <em>m/z </em>ratio in the mass spectrum.</p>
<p>B. The <em>m/z </em>ratio of the M<sup>+</sup> ion peak gives the relative molecular mass of the molecule.</p>
<p>C. The M<sup>+</sup> ion is the most stable fragment formed during electron bombardment.</p>
<p>D. The M<sup>+</sup> ion peak has the greatest intensity in the mass spectrum.&nbsp;</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">How many significant figures are there in 0.00370?</p>
<p class="p1">A.&nbsp; &nbsp; &nbsp;2</p>
<p class="p1">B.&nbsp; &nbsp; &nbsp;3</p>
<p class="p1">C.&nbsp; &nbsp; &nbsp;5</p>
<p class="p1">D.&nbsp; &nbsp; &nbsp;6</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">A piece of metallic aluminium with a mass of 10.044 g was found to have a volume of \({\text{3.70 c}}{{\text{m}}^{\text{3}}}\). A student carried out the following calculation to determine the density.</p>
<p class="p1">\[{\text{Density (g}}\,{\text{c}}{{\text{m}}^{ - 3}}{\text{)}} = \frac{{10.044}}{{3.70}}\]</p>
<p class="p1">What is the best value the student could report for the density of aluminium?</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({\text{2.715 g}}\,{\text{c}}{{\text{m}}^{ - 3}}\)</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({\text{2.7 g}}\,{\text{c}}{{\text{m}}^{ - 3}}\)</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({\text{2.71 g}}\,{\text{c}}{{\text{m}}^{ - 3}}\)</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({\text{2.7146 g}}\,{\text{c}}{{\text{m}}^{ - 3}}\)</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p class="p1">One respondent stated that the question would have been clearer if &ldquo;most appropriate&rdquo; was used instead of &ldquo;best value&rdquo;. 58.77% of candidates got the correct answer.</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Which would be the best method to decrease the <strong>random </strong>uncertainty of a measurement in an acid-base titration?</p>
<p class="p1">A.&nbsp; &nbsp; &nbsp;Repeat the titration</p>
<p class="p1">B.&nbsp; &nbsp; &nbsp;Ensure your eye is at the same height as the meniscus when reading from the burette</p>
<p class="p1">C.&nbsp; &nbsp; &nbsp;Use a different burette</p>
<p class="p1">D.&nbsp; &nbsp; &nbsp;Use a different indicator for the titration</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">A student weighs a standard 70.00 g mass five times using the same balance. Each time she obtains a reading of 71.20 g. Which statement is correct about the precision and accuracy of the measurements?</p>
<p class="p1">A.&nbsp; &nbsp; &nbsp;Precise and accurate</p>
<p class="p1">B.&nbsp; &nbsp; &nbsp;Precise but inaccurate</p>
<p class="p1">C.&nbsp; &nbsp; &nbsp;Accurate but not precise</p>
<p class="p1">D.&nbsp; &nbsp; &nbsp;Neither accurate nor precise</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p class="p1">B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">Ultraviolet radiation has a shorter wavelength than infrared radiation. How does the frequency and energy of ultraviolet radiation compare with infrared radiation?</p>
<p class="p1"><img src="images/Schermafbeelding_2016-08-08_om_10.13.19.png" alt="M15/4/CHEMI/SPM/ENG/TZ1/06"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p class="p1">A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>What is the index of hydrogen deficiency, IHD, of 3-methylcyclohexene?</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-08-09_om_13.09.54.png" alt="M18/4/CHEMI/SPM/ENG/TZ1/29"></p>
<p>A.     0</p>
<p>B.     1</p>
<p>C.     2</p>
<p>D.     3</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>How are the uncertainties of two quantities combined when the quantities are multiplied together?</p>
<p>A.     Uncertainties are added.</p>
<p>B.     % uncertainties are multiplied.</p>
<p>C.     Uncertainties are multiplied.</p>
<p>D.     % uncertainties are added.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>What information is provided by <sup>1</sup>H NMR, MS and IR for an organic compound?</p>
<p style="padding-left: 90px;">I.&nbsp; &nbsp;<sup>1</sup>H NMR: chemical environment(s) of protons<br>II.&nbsp; MS: fragmentation pattern<br>III. IR: types of functional group</p>
<p>A. I and II only</p>
<p>B. I and III only</p>
<p>C. II and III only</p>
<p>D. I, II and III</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">Which would be the best method to decrease the random uncertainty of a measurement in an acid&ndash;base titration?</p>
<p class="p2">A.&nbsp; &nbsp; &nbsp;Ensure your eye is at the same height as the meniscus when reading the burette.</p>
<p class="p2">B.&nbsp; &nbsp; &nbsp;Use a different indicator for the titration.</p>
<p class="p2">C.&nbsp; &nbsp; &nbsp;Use a different burette.</p>
<p class="p2">D.&nbsp; &nbsp; &nbsp;Repeat the titration.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p class="p1">D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p class="p1">One respondent stated in the G2 form that the answer could be A. In the teacher&rsquo;s notes of assessment statement 11.1.3 it is stated that &ldquo;random uncertainties are reduced by repeating readings&rdquo;. 75.05% of the candidates chose the correct answer D with only 16.05% opting for A. This proved to be the sixth easiest question of the paper with a discrimination index of 0.20.</p>
</div>
<br><hr><br><div class="question">
<p>In an experiment to determine a specific quantity, a student calculated that her experimental uncertainty was 0.9% and her experimental error was 3.5%. Which statement is correct?</p>
<p>A. &nbsp; &nbsp; Only random uncertainties are present in this experiment.</p>
<p>B. &nbsp; &nbsp; Both random uncertainties and systematic errors are present in this experiment.</p>
<p>C. &nbsp; &nbsp; Repeats of this experiment would reduce the systematic errors.</p>
<p>D. &nbsp; &nbsp; Repeats of this experiment would reduce both systematic errors and random uncertainties.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>This was answered correctly by about 73% of candidates.</p>
</div>
<br><hr><br><div class="question">
<p>A student measured the change in mass on heating a sample of calcium carbonate, CaCO<sub>3</sub>(s). What is the mass loss?</p>
<p style="padding-left: 180px;">Mass before heating: 2.347 g &plusmn; 0.001<br>Mass after heating: 2.001 g &plusmn; 0.001&nbsp;</p>
<p>A. 0.346g &plusmn; 0.001&nbsp;</p>
<p>B. 0.346g &plusmn; 0.002&nbsp;</p>
<p>C. 0.35g &plusmn; 0.002&nbsp;</p>
<p>D. 0.35g &plusmn; 0.001</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">A student heated a solid in a crucible. The student measured the mass of the solid and crucible before and after heating and recorded the results.</p>
<p class="p2">\[\begin{array}{*{20}{l}} {{\text{Mass of crucible and solid before heating}}}&amp;{ = 101.692{\text{ g}}} \\ {{\text{Mass of crucible and solid after heating}}}&amp;{ = 89.312{\text{ g}}} \end{array}\]</p>
<p class="p1">What value should the student record for the mass lost in grams?</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>12.4</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>12.38</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>12.380</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>12.3800</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">A student measured the mass and volume of a piece of silver and recorded the following values.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2016-08-26_om_09.09.59.png" alt="N13/4/CHEMI/SPM/ENG/TZ0/30"></p>
<p class="p1">Which value, in \({\text{g}}\,{\text{c}}{{\text{m}}^{ - 3}}\), for the density of silver should the student report in her laboratory notebook?</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>10.49</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>10.4900</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>10.5</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>10.500</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p class="p1">C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>What is the best way to minimize the random uncertainty when titrating an acid of unknown strength against a standard solution of sodium hydroxide (<em>ie </em>one of known concentration)?</p>
<p>A.&nbsp; &nbsp; &nbsp;First standardize the sodium hydroxide solution against a standard solution of a different acid.</p>
<p>B.&nbsp; &nbsp; &nbsp;Use a pH meter rather than an indicator to determine the equivalence point.</p>
<p>C.&nbsp; &nbsp; &nbsp;Keep your eye at the same height as the meniscus when reading the burette.</p>
<p>D.&nbsp; &nbsp; &nbsp;Repeat the titration several times.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>There was a suggestion that we should have used the phrase &ldquo;minimize random error&rdquo; instead of &ldquo;minimize random uncertainty&rdquo;. That is a fair point but it didn&rsquo;t seem to worry the candidates, 75% of whom gave the correct answer.&nbsp;</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Density can be calculated by dividing mass by volume. \(0.20 \pm 0.02{\text{ g}}\) of a metal has a volume of \(0.050 \pm 0.005{\text{ c}}{{\text{m}}^{\text{3}}}\). How should its density be recorded using this data?</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(4.0 \pm 0.025{\text{ g}}\,{\text{c}}{{\text{m}}^{ - 3}}\)</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(4.0 \pm 0.8{\text{ g}}\,{\text{c}}{{\text{m}}^{ - 3}}\)</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(4.00 \pm 0.025{\text{ g}}\,{\text{c}}{{\text{m}}^{ - 3}}\)</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(4.00 \pm 0.8{\text{ g}}\,{\text{c}}{{\text{m}}^{ - 3}}\)</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>What is the graphical relationship between <em>n</em> and <em>T</em> in the ideal gas equation, <em>pV</em> = <em>nRT</em>, all other variables remaining constant?</p>
<p style="text-align: center;"><img src=""></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A student carries out a titration three times and obtains the following volumes: \(3.0 \pm 0.1{\text{ c}}{{\text{m}}^3}\), \(3.2 \pm 0.1{\text{ c}}{{\text{m}}^3}\) and \(3.2 \pm 0.1{\text{ c}}{{\text{m}}^3}\). What is the average volume?</p>
<p>A. &nbsp; &nbsp; \(3.1 \pm 0.1{\text{ c}}{{\text{m}}^3}\)</p>
<p>B. &nbsp; &nbsp; \(3.13 \pm 0.1{\text{ c}}{{\text{m}}^3}\)</p>
<p>C. &nbsp; &nbsp; \(3.1 \pm 0.3{\text{ c}}{{\text{m}}^3}\)</p>
<p>D. &nbsp; &nbsp; \(3.13 \pm 0.3{\text{ c}}{{\text{m}}^3}\)</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>A</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p>This was the second most difficult question of the paper. Most candidates answered C or D, not realizing that, if correct, repeats would then increase the uncertainty.</p>
</div>
<br><hr><br><div class="question">
<p class="p1">The heat change in a neutralization reaction can be determined by mixing equal volumes of HCl(aq) and NaOH(aq) of the same concentration in a glass beaker. The maximum temperature change is recorded using an alcohol thermometer.</p>
<p class="p1">What is the biggest source of error in this experiment?</p>
<p class="p1">A.&nbsp; &nbsp; &nbsp;Heat absorbed by the glass thermometer</p>
<p class="p1">B.&nbsp; &nbsp; &nbsp;Random error in the thermometer reading</p>
<p class="p1">C.&nbsp; &nbsp; &nbsp;Heat loss to the surroundings</p>
<p class="p1">D.&nbsp; &nbsp; &nbsp;Systematic error in measuring the volumes of HCl(aq) and NaOH(aq) using burettes</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p class="p1">C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>Which statement about errors is correct?</p>
<p>A.&nbsp; &nbsp; &nbsp;A random error is always expressed as a percentage.</p>
<p>B.&nbsp; &nbsp; &nbsp;A systematic error can be reduced by taking more readings.</p>
<p>C.&nbsp; &nbsp; &nbsp;A systematic error is always expressed as a percentage.</p>
<p>D.&nbsp; &nbsp; &nbsp;A random error can be reduced by taking more readings.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>D</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>A student performs an acid-base titration using a pH meter, but forgets to calibrate it. Which type&nbsp;of error will occur and how will it affect the quality of the measurements?</p>
<p>A. Random error and lower precision</p>
<p>B. Systematic error and lower accuracy</p>
<p>C. Systematic error and lower precision</p>
<p>D. Random error and lower accuracy</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>B</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p>The rate of a reaction is studied at different temperatures.</p>
<p>Which is the best way to plot the data?</p>
<p><img src="images/Schermafbeelding_2018-08-10_om_07.47.54.png" alt="M18/4/CHEMI/SPM/ENG/TZ2/30"></p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br><div class="question">
<p class="p1">\({\text{50 c}}{{\text{m}}^{\text{3}}}\) of copper(II) sulfate solution is measured into a plastic cup using a \({\text{100 c}}{{\text{m}}^{\text{3}}}\) measuring cylinder. Excess zinc powder is added and the temperature rise that occurs is measured with a &ndash;10 &deg;C to +110 &deg;C thermometer. The enthalpy change for the reaction is then calculated. Which statement is correct?</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>Systematic error will be reduced by repeating the experiment several times and averaging the results.</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>Random error will be reduced by insulating the plastic cup.</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>Random error will be reduced by using a 50 cm<span class="s1">\(^3\) </span>graduated pipette instead of a measuring cylinder.</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>Systematic error will be increased by using a larger volume of copper(II) sulfate solution.</p>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
<p class="p1">One respondent remarked that it was good to see a more demanding Q30. This was born out by the statistics where it appeared as the second hardest question on the paper. It is important that lab work breeds familiarity with errors, both random and systematic.</p>
</div>
<br><hr><br><div class="question">
<div class="page" title="Page 3">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 3">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 3">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 3">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 4">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 7">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 7">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 8">
<div class="section">
<div class="layoutArea">
<div class="column">
<p>Graph 1 shows a plot of volume of CO<sub>2</sub>(g) against time for the reaction of CaCO<sub>3</sub>(s) with 1.00 moldm<sup>&minus;3</sup>HCl (aq). The acid is the limiting reagent and entirely covers the lumps of CaCO<sub>3</sub>(s).</p>
<p>Which set of conditions is most likely to give the data plotted in graph 2 when the same mass of CaCO<sub>3</sub>(s) is reacted with the same volume of HCl(aq) at the same temperature?</p>
<p><img style="display: block; margin-left: auto; margin-right: auto;" src="" alt></p>
<p>&nbsp;</p>
<p><img src="" alt></p>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<h2 style="margin-top: 1em">Markscheme</h2>
<div class="question">
<p>C</p>
</div>
<h2 style="margin-top: 1em">Examiners report</h2>
<div class="question">
[N/A]
</div>
<br><hr><br>