EQUILIBRIUM AHL (HL only)Please ensure that you have also completed the Core (SL & HL) questions | 1. (a) Consider the equilibrium: $N_{2}\left(g\right)\ +\ O_{2}\left(g\right)\ \rightleftharpoons\ 2NO\left(g\right)$ | |---| | (i) Write an expression for the equilibrium constant, K _c , for the reaction. [1] | | | | (ii) At a temperature, T, $K_c = 1.6 \times 10^{-3}$. If the initial concentrations of N_2 and O_2 are each 2.0 mol dm ⁻³ (0 mol dm ⁻³ of NO initially), calculate the concentration of NO at equilibrium. | | | | | | | | | | (iii) Using section 1 and 2 of the data booklet, calculate the standard Gibb's free energy change, ΔG° , for this reaction, in kJ, if temperature T = 1400°C. [3] | | | | | | (iv) State and explain what your answer to (iii) suggests about the position of equilibrium. | | [1] | | | | CO_2 (g) + $2H_2$ (g) \rightleftharpoons CH_3OH (g) $\Delta H = -91$ kJ mol ⁻¹ | | | | | | |---|--|-----|--|-----|--| | Chamber A contains 1.00 mol of CO_2 (g) and chamber B contains 2.00 mol of H_2 (g). | A CO ₂ (g) Volume: 100cm ³ | Тар | B H ₂ (g) Volume: 200cm ³ | | | | (a) What initial pressure change will occur, if any, when the tap is opened. [1] | | | | | | | | | | | | | | (b) Write an expression for, and calculate the theoretical value of K _c , if the maximum yield of CH₃OH in this experiment is 90%. Give your answer to 3 significant figures. [5] | (c) How will the initial pressure have changed when the experiment reaches equilibrium. Explain your reasoning. | | | | | | | | | | | [-] | | | Total 16 marks (24 minutes) | | | | | | 2. An experiment is carried out to investigate the following equilibrium: