User interface language: English | Español

Date May 2021 Marks available 7 Reference code 21M.1.AHL.TZ2.9
Level Additional Higher Level Paper Paper 1 (without calculator) Time zone Time zone 2
Command term Find Question number 9 Adapted from N/A

Question

The lines l1 and l2 have the following vector equations where λ, μ.

l1:r1=32-1+λ2-22

l2:r2=204+μ1-11

By using the substitution u=sinx, find sinxcosxsin2x-sinx-2dx.

Markscheme

u=sinxdu=cosxdx (or equivalent)        A1

=uu2-u-2du        A1

attempt to use partial fractions        M1

uu+1u-2Au+1+Bu-2uAu-2+Bu+1

Valid attempt to solve for A and B         (M1)

A=13 and B=23        A1

uu+1u-213u+1+23u-2

13u+1+23u-2du=13lnu+1+23lnu-2+C (or equivalent)        A1

 

Note: Condone the absence of +C or lack of moduli here but not in the final answer.

 

=13lnsinx+1+23lnsinx-2+C        A1

 

Note: Condone further simplification of the correct answer.

 

[7 marks]

Examiners report

[N/A]

Syllabus sections

Topic 5 —Calculus » AHL 5.15—Further derivatives and indefinite integration of these, partial fractions
Show 26 related questions
Topic 5 —Calculus » AHL 5.16—Integration by substitution, parts and repeated parts
Topic 5 —Calculus

View options