File "SL-paper2.html"

Path: /IB QUESTIONBANKS/4 Fourth Edition - PAPER/HTML/Mathematical Studies/Topic 4/SL-paper2html
File size: 598.53 KB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-746ec5d03ead8d9e8b3bb7d32173f2b4e2e22a05f0c5278e086ab55b3c9c238e.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-3c91afd8a2942c18d21ed2700e1bdec14ada97f1d3788ae229315e1276d81453.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../index.html">Home</a>
</li>
<li class="active dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Questionbanks
<b class="caret"></b>
</a><ul class="dropdown-menu">
<li>
<a href="../../geography.html" target="_blank">DP Geography</a>
</li>
<li>
<a href="../../physics.html" target="_blank">DP Physics</a>
</li>
<li>
<a href="../../chemistry.html" target="_blank">DP Chemistry</a>
</li>
<li>
<a href="../../biology.html" target="_blank">DP Biology</a>
</li>
<li>
<a href="../../furtherMath.html" target="_blank">DP Further Mathematics HL</a>
</li>
<li>
<a href="../../mathHL.html" target="_blank">DP Mathematics HL</a>
</li>
<li>
<a href="../../mathSL.html" target="_blank">DP Mathematics SL</a>
</li>
<li>
<a href="../../mathStudies.html" target="_blank">DP Mathematical Studies</a>
</li>
</ul></li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">

<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">



</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="images/logo.jpg" alt="Ib qb 46 logo">
</div>
</div>
</div><h2>SL Paper 2</h2><div class="specification">
<p>The manager of a folder factory recorded the number of folders produced by the factory (in thousands) and the production costs (in thousand Euros), for six consecutive months.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-16_om_17.30.09.png" alt="M17/5/MATSD/SP2/ENG/TZ2/03"></p>
</div>

<div class="specification">
<p>Every month the factory sells all the folders produced. Each folder is sold for 2.99 Euros.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw a scatter diagram for this data. Use a scale of 2 cm for 5000 folders on the horizontal axis and 2 cm for 10 000 Euros on the vertical axis.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down, for this set of data the mean number of folders produced, \(\bar x\);</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down, for this set of data the mean production cost, \(\bar C\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Label the point \({\text{M}}(\bar x,{\text{ }}\bar C)\) on the scatter diagram.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your graphic display calculator to find the Pearson’s product–moment correlation coefficient, \(r\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State a reason why the regression line \(C\) on \(x\) is appropriate to model the relationship between these variables.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your graphic display calculator to find the equation of the regression line \(C\) on \(x\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the regression line \(C\) on \(x\) on the scatter diagram.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the equation of the regression line to estimate the least number of folders that the factory needs to sell in a month to exceed its production cost for that month.</p>
<div class="marks">[4]</div>
<div class="question_part_label">h.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">A manufacturer produces <span class="s1">1500 </span>boxes of breakfast cereal every day.</p>
<p class="p1">The weights of these boxes are normally distributed with a mean of <span class="s1">502 </span>grams and a standard deviation of <span class="s1">2 </span>grams.</p>
</div>

<div class="specification">
<p class="p1">All boxes of cereal with a weight between <span class="s1">497.5 </span>grams and <span class="s1">505 </span>grams are sold. The manufacturer&rsquo;s income from the sale of each box of cereal is <span class="s1">$2.00</span>.</p>
</div>

<div class="specification">
<p class="p1">The manufacturer recycles any box of cereal with a weight <strong>not </strong>between <span class="s1">497.5 </span>grams and <span class="s1">505 </span>grams. The manufacturer&rsquo;s recycling cost is <span class="s1">$0.16 </span>per box.</p>
</div>

<div class="specification">
<p class="p1">A <strong>different </strong>manufacturer produces boxes of cereal with weights that are normally distributed with a mean of <span class="s1">350 </span>grams and a standard deviation of <span class="s1">1.8 </span>grams.</p>
<p class="p1">This manufacturer sells all boxes of cereal that are above a minimum weight, \(w\).</p>
<p class="p1">They sell <span class="s1">97% </span>of the cereal boxes produced.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Draw a diagram that shows this information.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i) <span class="Apple-converted-space">    </span>Find the probability that a box of cereal, chosen at random, is sold.</p>
<p class="p1">(ii) <span class="Apple-converted-space">    </span>Calculate the manufacturer’s expected daily income from these sales.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the manufacturer’s expected daily recycling cost.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the value of \(w\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">As part of his IB Biology field work, Barry was asked to measure the circumference of trees, in centimetres, that were growing at different distances, in metres, from a river bank. His results are summarized in the following table.</span></p>
<p style="font: normal normal normal 21px/normal 'Times New Roman'; text-align: center; margin: 0px;"><br><img src="images/Schermafbeelding_2014-09-20_om_14.50.23.png" alt></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>State whether <em>distance from the river bank </em>is a continuous <strong>or </strong>discrete variable.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span><strong>On graph paper, </strong>draw a scatter diagram to show Barry’s results. Use a scale of 1 cm to represent 5 m on the <em>x</em>-axis and 1 cm to represent 10 cm on the <em>y</em>-axis.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down</span></p>
<p><span>(i)     the mean distance, \(\bar x\), of the trees from the river bank;</span></p>
<p><span>(ii)     the mean circumference, \(\bar y\), of the trees.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Plot and label the point \({\text{M}}(\bar x,{\text{ }}\bar y)\) on your graph.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down</span></p>
<p><span>(i)     the Pearson’s product–moment correlation coefficient, \(r\), for Barry’s results;</span></p>
<p><span>(ii)     the equation of the regression line \(y\) on \(x\), for Barry’s results.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Draw the regression line \(y\) on \(x\) on your graph.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span><strong>Use the equation of the regression line</strong> \(y\) on \(x\) to estimate the circumference of a tree that is 40 m from the river bank.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The following table shows the number of bicycles, \(x\), produced daily by a factory and their total production cost, \(y\)<span class="s1">, in US dollars (USD)</span>. The table shows data recorded over seven days.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2015-12-22_om_10.06.31.png" alt></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">(i)     Write down the Pearson’s product–moment correlation coefficient, \(r\), for these data.</p>
<p class="p1">(ii)     Hence comment on the result.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Write down the equation of the regression line \(y\) on \(x\) for these data, in the form \(y = ax + b\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Estimate the total cost, <strong>to the nearest </strong><span class="s1"><strong>USD</strong></span>, of producing \(13\)<span class="s1"> </span>bicycles on a particular day.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">All the bicycles that are produced are sold. The bicycles are sold for <span class="s1">304 USD </span><strong>each</strong>.</p>
<p class="p1">Explain why the factory does <strong>not </strong>make a profit when producing \(13\)<span class="s1"> </span>bicycles on a particular day.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">All the bicycles that are produced are sold. The bicycles are sold for <span class="s1">304 USD </span><strong>each</strong>.</p>
<p class="p1">(i)     Write down an expression for the total selling price of \(x\) bicycles.</p>
<p class="p1">(ii)     Write down an expression for the <strong>profit </strong>the factory makes when producing \(x\) bicycles on a particular day.</p>
<p class="p1">(iii)     Find the least number of bicycles that the factory should produce, on a particular day, in order to make a profit.</p>
<div class="marks">[5]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>The following table shows the average body weight, \(x\), and the average weight of the brain, \(y\), of seven species of mammal. Both measured in kilograms (kg).</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-16_om_10.57.27.png" alt="M17/5/MATSD/SP2/ENG/TZ1/01"></p>
</div>

<div class="specification">
<p>The average body weight of grey wolves is 36 kg.</p>
</div>

<div class="specification">
<p>In fact, the average weight of the brain of grey wolves is 0.120 kg.</p>
</div>

<div class="specification">
<p>The average body weight of mice is 0.023 kg.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the range of the average body weights for these seven species of mammal.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For the data from these seven species calculate \(r\), the Pearson’s product–moment correlation coefficient;</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For the data from these seven species describe the correlation between the average body weight and the average weight of the brain.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the equation of the regression line \(y\) on \(x\), in the form \(y = mx + c\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your regression line to estimate the average weight of the brain of grey wolves.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the percentage error in your estimate in part (d).</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State whether it is valid to use the regression line to estimate the average weight of the brain of mice. Give a reason for your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">A group of candidates sat a Chemistry examination and a Physics examination. The candidates&rsquo; marks in the Chemistry examination are normally distributed with a mean of \(60\) and a standard deviation of \(12\).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Draw a diagram that shows this information.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the probability that a randomly chosen candidate who sat the Chemistry examination scored at most 60 marks.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Hee Jin scored 80 marks in the Chemistry examination.</span></p>
<p><span>Find the probability that a randomly chosen candidate who sat the Chemistry examination scored <strong>more </strong>than Hee Jin.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The candidates’ marks in the Physics examination are normally distributed with a mean of \(63\) and a standard deviation of \(10\). Hee Jin also scored \(80\) marks in the Physics examination.</span></p>
<p><span>Find the probability that a randomly chosen candidate who sat the Physics examination scored <strong>less </strong>than Hee Jin.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The candidates’ marks in the Physics examination are normally distributed with a mean of \(63\) and a standard deviation of \(10\). Hee Jin also scored \(80\) marks in the Physics examination.</span></p>
<p><span>Determine whether Hee Jin’s Physics mark, <strong>compared to the other candidates</strong>, is better than her mark in Chemistry. Give a reason for your answer.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>To obtain a “grade A” a candidate must be in the top \(10\% \) of the candidates who sat the Physics examination.</span></p>
<p><span>Find the minimum possible mark to obtain a “grade A”. Give your answer correct to the nearest integer.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p>The table below shows the distribution of test grades for 50 IB students at Greendale School.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-16_om_11.25.22.png" alt="M17/5/MATSD/SP2/ENG/TZ1/05"></p>
</div>

<div class="specification">
<p>A student is chosen at random from these 50 students.</p>
</div>

<div class="specification">
<p>A second student is chosen at random from these 50 students.</p>
</div>

<div class="specification">
<p>The number of minutes that the 50 students spent preparing for the test was normally distributed with a mean of 105 minutes and a standard deviation of 20 minutes.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the mean test grade of the students;</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the standard deviation.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the median test grade of the students.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the interquartile range.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that this student scored a grade 5 or higher.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that the first student chosen at random scored a grade 5 or higher, find the probability that both students scored a grade 6.</p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the probability that a student chosen at random spent at least 90 minutes preparing for the test.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the expected number of students that spent at least 90 minutes preparing for the test.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.ii.</div>
</div>
<br><hr><br><div class="specification">
<p>In a school, all Mathematical Studies SL students were given a test. The test contained four questions, each one on a different topic from the syllabus. The quality of each response was classified as satisfactory or not satisfactory. Each student answered only three of the four questions, each on a separate answer sheet.</p>
<p>The table below shows the number of satisfactory and not satisfactory responses for each question.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-16_om_17.16.22.png" alt="M17/5/MATSD/SP2/ENG/TZ2/01"></p>
</div>

<div class="specification">
<p>A \({\chi ^2}\) test is carried out at the 5% significance level for the data in the table.</p>
</div>

<div class="specification">
<p>The critical value for this test is 7.815.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>If the teacher chooses a response at random, find the probability that it is a response to the Calculus question;</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>If the teacher chooses a response at random, find the probability that it is a satisfactory response to the Calculus question;</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>If the teacher chooses a response at random, find the probability that it is a satisfactory response, given that it is a response to the Calculus question.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The teacher groups the responses by topic, and chooses two responses to the Logic question. Find the probability that both are not satisfactory.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the null hypothesis for this test.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Show that the expected frequency of satisfactory Calculus responses is 12.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the number of degrees of freedom for this test.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your graphic display calculator to find the \({\chi ^2}\) statistic for this data.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the conclusion of this \({\chi ^2}\) test. Give a reason for your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">In the month before their IB Diploma examinations, eight male students recorded the number of hours they spent on social media.</p>
<p class="p2">For each student, the number of hours spent on social media <span class="s1">(\(x\)) </span>and the number of IB Diploma points obtained <span class="s1">(\(y\)) </span>are shown in the following table.</p>
<p class="p2" style="text-align: center;"><img src="images/Schermafbeelding_2017-03-07_om_07.43.52.png" alt="N16/5/MATSD/SP2/ENG/TZ0/01"></p>
</div>

<div class="specification">
<p class="p1">Use your graphic display calculator to find</p>
</div>

<div class="specification">
<p class="p1">Ten female students also recorded the number of hours they spent on social media in the month before their IB Diploma examinations. Each of these female students spent between <span class="s1">3 </span>and <span class="s1">30 </span>hours on social media.</p>
<p class="p1">The equation of the regression line <span class="s1"><em>y </em></span>on <span class="s1"><em>x </em></span>for these ten female students is</p>
<p class="p1">\[y = &nbsp;- \frac{2}{3}x + \frac{{125}}{3}.\]</p>
<p class="p1">An eleventh girl spent <span class="s1">34 </span>hours on social media in the month before her IB Diploma examinations.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><span class="s1">On graph paper, draw a scatter diagram for these data. Use a scale of </span><span class="s2">2 cm </span>to represent <span class="s2">5 </span>hours on the \(x\)-axis and <span class="s2">2 cm </span>to represent <span class="s2">10 </span>points on the \(y\)-axis.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><span class="s1">(i) <span class="Apple-converted-space">    \({\bar x}\)</span>, </span>the mean number of hours spent on social media;</p>
<p class="p2">(ii) <span class="Apple-converted-space">    \({\bar y}\)</span>, the mean number of IB Diploma points.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><span class="s1">Plot the point \((\bar x,{\text{ }}\bar y)\) </span>on your scatter diagram and label this point <span class="s2">M</span>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><span class="s1">Write down the value of \(r\), </span>the Pearson’s product–moment correlation coefficient, for these data.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Write down the equation of the regression line \(y\) <span class="s1">on \(x\) for these eight male students.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Draw the regression line, from part (e), on your scatter diagram.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Use the given equation of the regression line to estimate the number of IB Diploma <span class="s1">points that this girl obtained.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Write down a reason why this estimate is not reliable.</p>
<div class="marks">[1]</div>
<div class="question_part_label">h.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">The table below shows the scores for 12 golfers for their first two rounds in a local golf tournament.</span></p>
<p><img src="" alt></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>(i) Write down the mean score in Round 1.</span></p>
<p><span>(ii) Write down the standard deviation in Round 1.</span></p>
<p><span>(iii) Find the number of these golfers that had a score of more than one standard deviation above the mean in Round 1.</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the correlation coefficient, <em>r</em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span><span>Write down the equation of the regression line of</span><span> <em>y</em> on <em>x</em>.</span></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Another golfer scored 70 in Round 1.</span></p>
<p><span>Calculate an estimate of his score in Round 2.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Another golfer scored 89 in Round 1.</span></p>
<p><span>Determine whether you can use the equation of the regression line to estimate his score in Round 2. Give a reason for your answer.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">In a mountain region there appears to be a relationship between the number of trees growing in the region and the depth of snow in winter. A set of 10 areas was chosen, and in each area the number of trees was counted and the depth of snow measured. The results are given in the table below.</span></p>
<p style="text-align: center;"><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
</div>

<div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">In a study on \(100\) students there seemed to be a difference between males and females in their choice of favourite car colour. The results are given in the table below. A \(\chi^2\) test was conducted.</span></p>
<p style="text-align: center;"><span style="font-size: medium; font-family: times new roman,times;"><img style="display: block; margin-left: auto; margin-right: auto;" src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Use your graphic display calculator to find </span><span><span>the mean number of trees</span><span>.</span></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">A, a, i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Use your graphic display calculator to find the mean depth of snow.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">A, a, iii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Use your graphic display calculator to find the standard deviation of the depth of snow.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">A, a, iv.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The covariance, <em>S<sub>xy</sub></em> = 188.5.</span></p>
<p><span>Write down the product-moment correlation coefficient, <em>r</em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">A, b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the equation of the regression line of <em>y</em> on <em>x</em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">A, c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>If the number of trees in an area is 55, estimate the depth of snow.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">A, d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Use the equation of the regression line to estimate the depth of snow in an area with 100 trees.<br></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">A, e, i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Decide whether the answer in (e)(i) is a valid estimate of the depth of snow in the area. Give a reason for your answer.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">A, e, ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the total number of male students.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">B, a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Show that the expected frequency for males, whose favourite car colour is blue, is 12.6.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">B, b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The calculated value of \({\chi ^2}\) is \(1.367\) and the critical value of \({\chi ^2}\) is \(5.99\) at the \(5\%\) significance level.</span></p>
<p><span>Write down the null hypothesis for this test.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">B, c, i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The calculated value of \({\chi ^2}\) is \(1.367\) and the critical value of \({\chi ^2}\) is \(5.99\) at the \(5\%\) significance level.</span></p>
<p><span>Write down the number of degrees of freedom.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">B, c, ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The calculated value of \({\chi ^2}\) is \(1.367\) and the critical value of \({\chi ^2}\) is \(5.99\) at the \(5\%\) significance level.</span></p>
<p><span>Determine whether the null hypothesis should be accepted at the \(5\%\) significance level. Give a reason for your answer.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">B, c, iv.</div>
</div>
<br><hr><br><div class="specification">
<p>A group of 800 students answered 40 questions on a category of their choice out of History, Science and Literature.</p>
<p>For each student the category and the number of correct answers, \(N\), was recorded. The results obtained are represented in the following table.</p>
<p><img src="images/Schermafbeelding_2018-02-13_om_14.11.54.png" alt="N17/5/MATSD/SP2/ENG/TZ0/01"></p>
</div>

<div class="specification">
<p>A \({\chi ^2}\) test at the 5% significance level is carried out on the results. The critical value for this test is 12.592.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State whether \(N\) is a discrete or a continuous variable.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down, for \(N\), the modal class;</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down, for \(N\), the mid-interval value of the modal class.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your graphic display calculator to estimate the mean of \(N\);</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your graphic display calculator to estimate the standard deviation of \(N\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the expected frequency of students choosing the Science category and obtaining 31 to 40 correct answers.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the null hypothesis for this test;</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the number of degrees of freedom.</p>
<div class="marks">[1]</div>
<div class="question_part_label">e.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the \(p\)-value for the test;</p>
<div class="marks">[1]</div>
<div class="question_part_label">f.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the \({\chi ^2}\) statistic.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the result of the test. Give a reason for your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<h1><span style="font-family: times new roman,times; font-size: medium;">Part A</span></h1>
<p><span style="font-family: times new roman,times; font-size: medium;">100 students are asked what they had for breakfast on a particular morning.</span> <span style="font-family: times new roman,times; font-size: medium;">There were three choices: cereal (<em>X</em>) , bread (<em>Y</em>) and fruit (<em>Z</em>). It is found that</span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">10 students had all three</span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">17 students had bread and fruit only</span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">15 students had cereal and fruit only</span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">12 students had cereal and bread only</span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">13 students had only bread</span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">8 students had only cereal</span></p>
<p style="margin-left: 30px;"><span style="font-family: times new roman,times; font-size: medium;">9 students had only fruit</span></p>
</div>

<div class="specification">
<h1><span style="font-family: times new roman,times; font-size: medium;">Part B</span></h1>
<p><span style="font-family: times new roman,times; font-size: medium;">The same 100 students are also asked how many meals on average they have per day. The data collected is organized in the following table.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">A \({\chi ^2}\) test is carried out at the 5 % level of significance.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Represent this information on a Venn diagram.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">A.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the number of students who had none of the three choices for breakfast.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">A.b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the percentage of students who had fruit for breakfast.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">A.c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Describe in words what the students in the set \(X \cap Y'\) had for breakfast.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">A.d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the probability that a student had <strong>at least</strong> two of the three choices for breakfast.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">A.e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Two students are chosen at random. Find the probability that both students had all three choices for breakfast.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">A.f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the null hypothesis, H<sub>0</sub>, for this test.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">B.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the number of degrees of freedom for this test.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">B.b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the critical value for this test.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">B.c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Show that the expected number of females that have more than 5 meals per day is 13, correct to the nearest integer.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">B.d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Use your graphic display calculator to find the \(\chi _{calc}^2\) for this data.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">B.e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Decide whether H<sub>0</sub> must be accepted. Justify your answer.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">B.f.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The table shows the distance, in km, of eight regional railway stations from a city centre terminus and the price, in \($\), of a return ticket from each regional station to the terminus.</span></p>
<p style="font: normal normal normal 21px/normal 'Times New Roman'; text-align: center; margin: 0px;"><br><span style="font-family: 'times new roman', times; font-size: medium;"><img src="images/Schermafbeelding_2014-09-03_om_09.54.14.png" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Draw a scatter diagram for the above data. Use a scale of \(1\) cm to represent \(10\) km on the \(x\)-axis and \(1\) cm to represent \(\$10\) on the \(y\)-axis.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Use your graphic display calculator to find</span></p>
<p><span>(i)     \(\bar x\), the mean of the distances;</span></p>
<p><span>(ii)     \(\bar y\), the mean of the prices.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Plot and label the point \({\text{M }}(\bar x,{\text{ }}\bar y)\) on your scatter diagram.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Use your graphic display calculator to find</span></p>
<p><span>(i)     the product–moment correlation coefficient, \(r\,;\)</span></p>
<p><span>(ii)     the equation of the regression line \(y\) on \(x\).</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Draw the regression line \(y\) on \(x\) on your scatter diagram.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>A ninth regional station is \(76\) km from the city centre terminus.</span></p>
<p><span><span><span>Use the equation of the regression line to estimate the price of a return ticket to the city centre terminus from this regional station. </span></span><span><span><strong>Give your answer correct to the nearest </strong></span><span><span>\({\mathbf{\$ }}\).</span></span></span></span></p>
<div class="marks">[3]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Give a reason why it is valid to use your regression line to estimate the price of this return ticket.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The actual price of the return ticket is \(\$80\).</span></p>
<p><span><strong>Using your answer to part (f)</strong>, calculate the percentage error in the estimated price of the ticket.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">h.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">In a debate on voting, a survey was conducted. The survey asked people&rsquo;s opinion on whether or not the minimum voting age should be reduced to 16 <span class="s1">years of age. The results are shown as follows.</span></p>
<p class="p2" style="text-align: center;"><img src="images/Schermafbeelding_2015-12-21_om_06.08.52.png" alt></p>
<p class="p2">A \({\chi ^2}\) <span class="s2">test at the 1% </span>significance level was conducted. The \({\chi ^2}\) <span class="s2">critical value of the test is 9.21</span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State</p>
<p class="p1">(i) <span class="Apple-converted-space">    </span>\({{\text{H}}_0}\), the null hypothesis for the test;</p>
<p class="p2"><span class="s1">(ii) <span class="Apple-converted-space">    </span>\({{\text{H}}_1}\)</span>, the alternative hypothesis for the test.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Write down the number of degrees of freedom.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Show that the expected frequency of those between the ages of <span class="s1">26 </span>and <span class="s1">40 </span>who oppose the reduction in the voting age is <span class="s1">21.5</span>, correct to three significant figures.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find</p>
<p class="p1">(i) <span class="Apple-converted-space">    </span>the \({\chi ^2}\) statistic;</p>
<p class="p1">(ii) <span class="Apple-converted-space">    </span>the associated \(p\)-value for the test.</p>
<div class="marks">[3]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Determine, giving a reason, whether \({{\text{H}}_0}\) <span class="s1">should be accepted.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">The seniors from Gulf High School are required to participate in exactly one after-school sport. Data were gathered from a sample of 120 students regarding their choice of sport. The following data were recorded.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">A \({\chi ^2}\) test was carried out at the 5 % significance level to analyse the relationship between gender and choice of after-school sport.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the null hypothesis, H<sub>0</sub>, for this test.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the expected value of female footballers.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the number of degrees of freedom.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the critical value of \(\chi ^2\), at the 5 % level of significance.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Use your graphic display calculator to determine the \(\chi _{calc}^2\) value.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Determine whether H<sub>0</sub> should be accepted. Justify your answer.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>One student is chosen at random from the 120 students.</span></p>
<p><span>Find the probability that this student</span></p>
<p><span>(i) is male;</span></p>
<p><span>(ii) plays tennis.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Two students are chosen at random from the 120 students.</span></p>
<p><span>Find the probability that</span></p>
<p><span>(i) both play football;</span></p>
<p><span>(ii) neither play basketball.</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">h.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Daniel grows apples and chooses at random a sample of <span class="s1">100 </span>apples from his harvest.</p>
<p class="p1">He measures the diameters of the apples to the nearest <span class="s1">cm</span>. The following table shows the distribution of the diameters.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2015-12-22_om_08.48.03.png" alt></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Using your graphic display calculator, write down the value of</p>
<p class="p1">(i)     the mean of the diameters in this sample;</p>
<p class="p1">(ii)     the standard deviation of the diameters in this sample.</p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Daniel assumes that the diameters of all of the apples from his harvest are normally distributed with a mean of <span class="s1">7 cm </span>and a standard deviation of <span class="s1">1.2 cm</span>. He classifies the apples according to their diameters as shown in the following table.</p>
<p class="p1"><img src="images/Schermafbeelding_2015-12-22_om_08.50.32.png" alt></p>
<p class="p1">Calculate the percentage of <strong>small </strong>apples in Daniel’s harvest.</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Daniel assumes that the diameters of all of the apples from his harvest are normally distributed with a mean of <span class="s1">7 cm </span>and a standard deviation of <span class="s1">1.2 cm</span>. He classifies the apples according to their diameters as shown in the following table.</p>
<p class="p1"><img src="images/Schermafbeelding_2015-12-22_om_08.50.32.png" alt></p>
<p class="p1">Of the apples harvested, <span class="s1">5</span>% are <strong>large </strong>apples.</p>
<p class="p1">Find the value of \(a\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Daniel assumes that the diameters of all of the apples from his harvest are normally distributed with a mean of <span class="s1">7 cm </span>and a standard deviation of <span class="s1">1.2 cm</span>. He classifies the apples according to their diameters as shown in the following table.</p>
<p class="p1"><img src="images/Schermafbeelding_2015-12-22_om_08.50.32.png" alt></p>
<p class="p1">Find the percentage of <strong>medium </strong>apples.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Daniel assumes that the diameters of all of the apples from his harvest are normally distributed with a mean of <span class="s1">7 cm </span>and a standard deviation of <span class="s1">1.2 cm</span>. He classifies the apples according to their diameters as shown in the following table.</p>
<p class="p1"><img src="images/Schermafbeelding_2015-12-22_om_08.50.32.png" alt></p>
<p class="p1">This year, Daniel estimates that he will grow <span class="s1">\({\text{100}}\,{\text{000}}\) </span>apples.</p>
<p class="p1">Estimate the number of <strong>large </strong>apples that Daniel will grow this year.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">An agricultural cooperative uses three brands of fertilizer, A, B and C, on 120 different crops. The crop yields are classified as High, Medium or Low.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">The data collected are organized in the table below.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">The agricultural cooperative decides to conduct a chi-squared test at the 1 % significance level using the data.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>State the null hypothesis, H<sub>0</sub>, for the test.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the number of degrees of freedom.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the critical value for the test.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Show that the expected number of Medium Yield crops using Fertilizer C is 17, correct to the nearest integer.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Use your graphic display calculator to find for the data</span></p>
<p><span>(i) the \(\chi^2\) calculated value, </span><span>\(\chi _{calc}^2\)</span><span>;</span></p>
<p><span>(ii) the <em>p</em>-value.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>State the conclusion of the test. Give a reason for your decision.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The number of bottles of water sold at a railway station on each day is given in the following table.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down</span></p>
<p><span>(i)     the mean temperature;</span></p>
<p><span>(ii)    the standard deviation of the temperatures.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the correlation coefficient, \(r\), for the variables \(n\) and \(T\).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Comment on your value for \(r\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The equation of the line of regression for \(n\) on \(T\) is \(n = dT - 100\).</span></p>
<p><span>(i)     Write down the value of \(d\).</span></p>
<p><span>(ii)    Estimate how many bottles of water will be sold when the temperature is \({19.6^ \circ }\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>On a day when the temperature was \({36^ \circ }\) Peter calculates that \(314\) bottles would be sold. Give one reason why his answer might be unreliable.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A speed camera on Peterson Road records the speed of each passing vehicle. The speeds are found to be normally distributed with a mean of \(67\,{\text{km}}\,{{\text{h}}^{ - 1}}\) and a standard deviation of \(3.4\,{\text{km}}\,{{\text{h}}^{ - 1}}\).</p>
<p>Sketch a diagram of this normal distribution and shade the region representing the probability that the speed of a vehicle is between \(60\) and \(70\,{\text{km}}\,{{\text{h}}^{ - 1}}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A vehicle on Peterson Road is chosen at random.</p>
<p>Find the probability that the speed of this vehicle is</p>
<p>(i)      more than \(60\,{\text{km}}\,{{\text{h}}^{ - 1}}\);</p>
<p>(ii)     less than \(70\,{\text{km}}\,{{\text{h}}^{ - 1}}\);</p>
<p>(iii)    between \(60\) and \(70\,{\text{km}}\,{{\text{h}}^{ - 1}}\).</p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>It is found that \(19\,\% \) of the vehicles are exceeding the speed limit of \(s\,{\text{km}}\,{{\text{h}}^{ - 1}}\).</p>
<p>Find the value of \(s\) , correct to the nearest integer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>There is a fine of \({\text{US}}\$ 65\) for exceeding the speed limit on Peterson Road. On a particular day the total value of fines issued was \({\text{US}}\$ 14\,820\).</p>
<p>(i)     Calculate the number of fines that were issued on this day.</p>
<p>(ii)    Estimate the total number of vehicles that passed the speed camera on Peterson Road on this day.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">One day the numbers of customers at three caf&eacute;s, &ldquo;Alan&rsquo;s Diner&rdquo; ( \(A\) ), &ldquo;Sarah&rsquo;s Snackbar&rdquo; ( \(S\) ) and &ldquo;Pete&rsquo;s Eats&rdquo; ( \(P\) ), were recorded and are given below.</span></p>
<p><br><span style="font-family: times new roman,times; font-size: medium;">&nbsp;&nbsp;&nbsp;&nbsp; 17 were customers of Pete&rsquo;s Eats only</span><br><span style="font-family: times new roman,times; font-size: medium;">&nbsp;&nbsp;&nbsp;&nbsp; 27 were customers of Sarah&rsquo;s Snackbar only</span><br><span style="font-family: times new roman,times; font-size: medium;">&nbsp;&nbsp;&nbsp;&nbsp; 15 were customers of Alan&rsquo;s Diner only</span><br><span style="font-family: times new roman,times; font-size: medium;">&nbsp;&nbsp;&nbsp;&nbsp; 10 were customers of Pete&rsquo;s Eats <strong>and</strong> Sarah&rsquo;s Snackbar <strong>but not</strong> Alan&rsquo;s Diner</span><br><span style="font-family: times new roman,times; font-size: medium;">&nbsp;&nbsp;&nbsp;&nbsp; 8 were customers of Pete&rsquo;s Eats <strong>and</strong> Alan&rsquo;s Diner <strong>but not</strong> Sarah&rsquo;s Snackbar</span></p>
</div>

<div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Some of the customers in each caf&eacute; were given survey forms to complete to find out if they were satisfied with the standard of service they received.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Draw a Venn Diagram, using sets labelled \(A\) , \(S\) and \(P\) , that shows this information.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">A.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>There were 48 customers of Pete’s Eats that day. Calculate the number of people who were customers of all three cafés.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">A.b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>There were 50 customers of Sarah’s Snackbar that day. Calculate the total number of people who were customers of Alan’s Diner.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">A.c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the number of customers of Alan’s Diner that were also customers of Pete’s Eats.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">A.d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find \(n[(S \cup P) \cap A']\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">A.e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>One of the survey forms was chosen at random, find the probability that the form showed “Dissatisfied”;</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">B.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>One of the survey forms was chosen at random, find the probability that the form showed “Satisfied” and was completed at Sarah’s Snackbar;</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">B.b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>One of the survey forms was chosen at random, find the probability that the form showed “Dissatisfied”, given that it was completed at Alan’s Diner.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">B.c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>A \({\chi ^2}\) test at the \(5\% \) significance level was carried out to determine whether there was any difference in the level of customer satisfaction in each of the cafés.</span></p>
<p><span> Write down the null hypothesis, \({{\text{H}}_0}\) , for the \({\chi ^2}\) test.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">B.d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>A \({\chi ^2}\) test at the \(5\% \) significance level was carried out to determine whether there was any difference in the level of customer satisfaction in each of the cafés.</span></p>
<p><span>Write down the number of degrees of freedom for the test.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">B.e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>A \({\chi ^2}\) test at the \(5\% \) significance level was carried out to determine whether there was any difference in the level of customer satisfaction in each of the cafés.</span></p>
<p><span>Using your graphic display calculator, find \({\chi ^2}_{calc}\) .<br></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">B.f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>A \({\chi ^2}\) test at the \(5\% \) significance level was carried out to determine whether there was any difference in the level of customer satisfaction in each of the cafés.</span></p>
<p><span>State, giving a reason, the conclusion to the test.<br></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">B.g.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The Brahma chicken produces eggs with weights in grams that are normally distributed about a mean of \(55{\text{ g}}\) with a standard deviation of \(7{\text{ g}}\). The eggs are classified as small, medium, large or extra large according to their weight, as shown in the table below.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Sketch a diagram of the distribution of the weight of Brahma chicken eggs. On your diagram, show clearly the boundaries for the classification of the eggs.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>An egg is chosen at random. Find the probability that the egg is</span><br><span>(i)     medium;</span><br><span>(ii)    extra large.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>There is a probability of \(0.3\) that a randomly chosen egg weighs more than \(w\) grams.</span></p>
<p><span>Find \(w\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The probability that a Brahma chicken produces a large size egg is \(0.121\). Frank’s Brahma chickens produce \(2000\) eggs each month.</span></p>
<p><span>Calculate an estimate of the number of large size eggs produced by Frank’s chickens each month.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The selling price, in US dollars (USD), of each size is shown in the table below.</span><br><span><img src="" alt></span><br><span>The probability that a Brahma chicken produces a small size egg is \(0.388\).</span></p>
<p><span>Estimate the monthly income, in USD, earned by selling the \(2000\) eggs. Give your answer correct to two decimal places.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">Alex and Kris are riding their bicycles together along a bicycle trail and note the following distance markers at the given times.</span></p>
<p><img src="" alt></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Draw a scatter diagram of the data. Use 1 cm to represent 1 hour and 1 cm to represent 10 km.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down for this set of data </span><span>the mean time, \(\bar t\).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down for this set of data the mean distance, \(\bar d\).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Mark and label the point \(M(\bar t,{\text{ }}\bar d)\) on your scatter diagram.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Draw the line of best fit on your scatter diagram.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span><strong>Using your graph</strong>, estimate the time when Alex and Kris pass the 85 km distance marker. Give your answer correct to <strong>one decimal place</strong>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the equation of the regression line for the data given.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span><strong>Using your equation</strong> calculate the distance marker passed by the cyclists at 10.3 hours.<br></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">g.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Is this estimate of the distance reliable? Give a reason for your answer.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">g.ii.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">A store recorded their sales of televisions during the 2010 football World Cup. They looked at the numbers of televisions bought by gender and the size of the television screens.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">This information is shown in the table below; S represents the size of the television screen in inches.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">The store wants to use this information to predict the probability of selling these sizes of televisions for the 2014 football World Cup.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Use the table to find the probability that</span></p>
<p><span>(i) a television will be bought by a female;</span></p>
<p><span>(ii) a television with a screen size of 32 &lt; <em>S</em> ≤ 46 will be bought;</span></p>
<p><span>(iii) a television with a screen size of 32 &lt; <em>S</em> ≤ 46 will be bought by a female;</span></p>
<p><span>(iv) a television with a screen size greater than 46 inches will be bought, given that it is bought by a male.</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span><strong></strong>The manager of the store wants to determine whether the screen size is independent of gender. A Chi-squared test is performed at the 1 % significance level.</span></p>
<p><span>Write down the null hypothesis.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span><span>The manager of the store wants to determine whether the screen size is independent of gender. A Chi-squared test is performed at the 1 % significance level.</span></span></p>
<p><span>Show that the expected frequency for females who bought a screen size of 32 &lt; <em>S</em> ≤ 46, is 79, correct to the nearest integer.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span><span>The manager of the store wants to determine whether the screen size is independent of gender. A Chi-squared test is performed at the 1 % significance level.</span></span></p>
<p><span>Write down the number of degrees of freedom.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span><span>The manager of the store wants to determine whether the screen size is independent of gender. A Chi-squared test is performed at the 1 % significance level.</span></span></p>
<p><span>Write down the \({\chi ^2}\) calculated value.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span><span>The manager of the store wants to determine whether the screen size is independent of gender. A Chi-squared test is performed at the 1 % significance level.</span></span></p>
<p><span>Write down the critical value for this test.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span><span>The manager of the store wants to determine whether the screen size is independent of gender. A Chi-squared test is performed at the 1 % significance level.</span></span></p>
<p><span>Determine if the null hypothesis should be accepted. Give a reason for your answer.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">Pam has collected data from a group of 400 IB Diploma students about the Mathematics course they studied and the language in which they were examined (English, Spanish or French). The summary of her data is given below.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>A student is chosen at random from the group. Find the probability that the student</span></p>
<p><span>(i)     studied Mathematics HL;</span></p>
<p><span>(ii)    was examined in French;</span></p>
<p><span>(iii)   studied Mathematics HL and was examined in French;</span></p>
<p><span>(iv)   did not study Mathematics SL and was not examined in English;</span></p>
<p><span>(v)    studied Mathematical Studies SL given that the student was examined in Spanish.</span></p>
<div class="marks">[8]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Pam believes that the Mathematics course a student chooses is independent of the language in which the student is examined.</span></p>
<p><span>Using your answers to parts (a) (i), (ii) and (iii) above, state whether there is any evidence for Pam’s belief. Give a reason for your answer.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Pam decides to test her belief using a Chi-squared test at the \(5\% \) level of significance.</span></p>
<p><span>(i)     State the null hypothesis for this test.</span></p>
<p><span>(ii)    Show that the expected number of Mathematical Studies SL students who took the examination in Spanish is \(41.3\), correct to 3 significant figures.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down</span></p>
<p><span>(i)     the Chi-squared calculated value;</span></p>
<p><span>(ii)    the number of degrees of freedom;</span></p>
<p><span>(iii)   the Chi-squared critical value.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>State, giving a reason, whether there is sufficient evidence at the \(5\% \) level of significance that Pam’s belief is correct.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Jorge conducted a survey of \(200\) drivers. He asked two questions:</span></p>
<p style="margin-left: 60px;"><span style="font-family: times new roman,times; font-size: medium;">How long have you had your driving licence?</span><br><span style="font-family: times new roman,times; font-size: medium;">Do you wear a seat belt when driving?</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">The replies are summarized in the table below.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Jorge applies a \({\chi ^2}\) test at the \(5\% \) level to investigate whether wearing a seat belt is associated with the time a driver has had their licence.</span></p>
<p><span>(i)     Write down the null hypothesis, \({{\text{H}}_0}\).</span></p>
<p><span>(ii)    Write down the number of degrees of freedom.</span></p>
<p><span>(iii)   Show that the expected number of drivers that wear a seat belt and have had their driving licence for more than \(15\) years is \(22\), correct to the nearest whole number.</span></p>
<p><span>(iv)   Write down the \({\chi ^2}\) test statistic for this data.</span></p>
<p><span>(v)    Does Jorge accept \({{\text{H}}_0}\) ? Give a reason for your answer.</span></p>
<div class="marks">[8]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Consider the \(200\) drivers surveyed. One driver is chosen at random. Calculate the probability that</span></p>
<p><span>(i)     this driver wears a seat belt;</span></p>
<p><span>(ii)    the driver does not wear a seat belt, <strong>given that</strong> the driver has held a licence for more than \(15\) years.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Two drivers are chosen at random. Calculate the probability that</span></p>
<p><span>(i)     both wear a seat belt.</span></p>
<p><span>(ii)    at least one wears a seat belt.</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">The figure below shows the lengths in centimetres of fish found in the net of a small trawler.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the total number of fish in the net.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find (i) the modal length interval,</span></p>
<p><span>(ii) the interval containing the median length,</span></p>
<p><span>(iii) an estimate of the mean length.</span></p>
<div class="marks">[5]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>(i) Write down an estimate for the standard deviation of the lengths.</span></p>
<p><span>(ii) How many fish (if any) have length <strong>greater than</strong> three standard deviations <strong>above</strong> the mean?</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The fishing company must pay a fine if more than 10% of the catch have lengths less than 40cm.</span></p>
<p><span>Do a calculation to decide whether the company is fined.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>A sample of 15 of the fish was weighed. The weight, <em>W</em> was plotted against length, <em>L</em> as shown below.</span></p>
<p><span><img src="" alt></span></p>
<p><span>Exactly <strong>two</strong> of the following statements about the plot could be correct. Identify the two correct statements. </span></p>
<p><span><strong>Note:</strong> You do <strong>not</strong> need to enter data in a GDC <strong>or</strong> to calculate <em>r</em> exactly.</span></p>
<p><span>(i) The value of <em>r</em>, the correlation coefficient, is approximately 0.871.</span></p>
<p><span>(ii) There is an exact linear relation between <em>W</em> and <em>L</em>.</span></p>
<p><span>(iii) The line of regression of <em>W</em> on <em>L</em> has equation <em>W</em> = 0.012<em>L</em> + 0.008 .</span></p>
<p><span>(iv) There is negative correlation between the length and weight.</span></p>
<p><span>(v) The value of <em>r</em>, the correlation coefficient, is approximately 0.998.</span></p>
<p><span>(vi) The line of regression of <em>W</em> on <em>L</em> has equation <em>W</em> = 63.5<em>L</em> + 16.5.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p>On one day 180 flights arrived at a particular airport. The distance travelled and the arrival status for each incoming flight was recorded. The flight was then classified as on time, slightly delayed, or heavily delayed.</p>
<p>The results are shown in the following table.</p>
<p><img src=""></p>
<p>A <em>&chi;</em><sup>2</sup> test is carried out at the 10 % significance level to determine whether the arrival status of incoming flights is independent of the distance travelled.</p>
</div>

<div class="specification">
<p>The critical value for this test is 7.779.</p>
</div>

<div class="specification">
<p>A flight is chosen at random from the 180 recorded flights.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the alternative hypothesis.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate the expected frequency of flights travelling at most 500 km and arriving slightly delayed.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the number of degrees of freedom.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the <em>χ</em><sup>2</sup> statistic.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the associated <em>p</em>-value.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State, with a reason, whether you would reject the null hypothesis.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the probability that this flight arrived on time.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that this flight was not heavily delayed, find the probability that it travelled between 500 km and 5000 km.</p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Two flights are chosen at random from those which were slightly delayed.</p>
<p>Find the probability that each of these flights travelled at least 5000 km.</p>
<div class="marks">[3]</div>
<div class="question_part_label">h.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">A random sample of 167 people who own mobile phones was used to collect data on the amount of time they spent per day using their phones. The results are displayed in the table below.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
</div>

<div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">Manuel conducts a survey on a random sample of 751 people to see which television programme type they watch most from the following: Drama, Comedy, Film, News. The results are as follows.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">Manuel decides to ignore the ages and to test at the 5 % level of significance whether the most watched programme type is independent of <strong>gender.</strong></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>State the modal group.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">i.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Use your graphic display calculator to calculate approximate values of the mean and standard deviation of the time spent per day on these mobile phones.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">i.b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>On graph paper, draw a fully labelled histogram to represent the data.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">i.c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Draw a table with 2 rows and 4 columns of data so that Manuel can perform a chi-squared test.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">ii.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>State Manuel’s null hypothesis and alternative hypothesis.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">ii.b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the expected frequency for the number of females who had ‘Comedy’ as their most-watched programme type. Give your answer to the nearest whole number.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">ii.c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Using your graphic display calculator, or otherwise, find the chi-squared statistic for Manuel’s data.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">ii.d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>(i) State the number of degrees of freedom available for this calculation.</span></p>
<p><span>(ii) State his conclusion.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">ii.e.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">Francesca is a chef in a restaurant. She cooks eight chickens and records their masses and cooking times. The mass <em>m</em> of each chicken, in kg, and its cooking time <em>t</em>, in minutes, are shown in the following table.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Draw a scatter diagram to show the relationship between the mass of a chicken and its cooking time. Use 2 cm to represent 0.5 kg on the horizontal axis and 1 cm to represent 10 minutes on the vertical axis.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down for this set of data</span></p>
<p><span>(i) the mean mass, \(\bar m\) ;</span></p>
<p><span>(ii) the mean cooking time, </span><span><span>\(\bar t\)</span> .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Label the point \({\text{M}}(\bar m,\bar t)\) on the scatter diagram.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Draw the line of best fit on the scatter diagram.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Using your line of best fit, estimate the cooking time, in minutes, for a 1.7 kg chicken.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the Pearson’s product–moment correlation coefficient, <em>r</em> .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Using your value for <em>r</em> , comment on the correlation.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The cooking time of an additional 2.0 kg chicken is recorded. If the mass and cooking time of this chicken is included in the data, the correlation is weak.</span></p>
<p><span>(i) Explain how the cooking time of this additional chicken might differ from that of the other eight chickens.</span></p>
<p><span>(ii) Explain how a new line of best fit might differ from that drawn in part (d).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">h.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">A survey of \(400\) people is carried out by a market research organization in two different cities, Buenos Aires and Montevideo. The people are asked which brand of cereal they prefer out of Chocos, Zucos or Fruti. The table below summarizes their responses.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>

<div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The following table shows the cost in \({\text{AUD}}\) of seven paperback books chosen at random, together with the number of pages in each book.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>One person is chosen at random from those surveyed. Find the probability that this person</span></p>
<p><span>(i) does not prefer Zucos;</span></p>
<p><span>(ii) prefers Chocos, given that they live in Montevideo.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">i.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Two people are chosen at random from those surveyed. Find the probability that they both prefer Fruti.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">i.b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The market research organization tests the survey data to determine whether the brand of cereal preferred is associated with a city. A chi-squared test at the \(5\% \) level of significance is performed.</span></p>
<p><span>State the null hypothesis.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">i.c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The market research organization tests the survey data to determine whether the brand of cereal preferred is associated with a city. A chi-squared test at the \(5\% \) level of significance is performed.</span></p>
<p><span>State the number of degrees of freedom.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">i.d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The market research organization tests the survey data to determine whether the brand of cereal preferred is associated with a city. A chi-squared test at the \(5\% \) level of significance is performed.</span></p>
<p><span>Show that the expected frequency for the number of people who live in Montevideo and prefer Zucos is \(63\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">i.e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The market research organization tests the survey data to determine whether the brand of cereal preferred is associated with a city. A chi-squared test at the \(5\% \) level of significance is performed.</span></p>
<p><span>Write down the chi-squared statistic for this data.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">i.f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The market research organization tests the survey data to determine whether the brand of cereal preferred is associated with a city. A chi-squared test at the \(5\% \) level of significance is performed.</span></p>
<p><span>State whether the market research organization would accept the null hypothesis. Clearly justify your answer.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">i.g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Plot these pairs of values on a scatter diagram. Use a scale of \(1{\text{ cm}}\) to represent \(50\) pages on the horizontal axis and </span><span><span>\(1{\text{ cm}}\)</span> to represent \(1{\text{ AUD}}\) on the vertical axis.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">ii.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the linear correlation coefficient, \(r\), for the data.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">ii.b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Stephen wishes to buy a paperback book which has \(350\) pages in it. He plans to draw a line of best fit to determine the price. State whether or not this is an appropriate method in this case and justify your answer.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">ii.c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;"><strong>Part A</strong></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">A university required all Science students to study one language for one year. A survey was carried out at the university amongst the 150 Science students. These students all studied one of either French, Spanish or Russian. The results of the survey are shown below.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">Ludmila decides to use the \({\chi ^2}\) test at the \(5\% \) level of significance to determine whether the choice of language is independent of gender.</span></p>
</div>

<div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">At the end of the year, only seven of the female Science students sat examinations in Science and French. The marks for these seven students are shown in the following table.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>State Ludmila’s null hypothesis.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">A.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the number of degrees of freedom.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">A.b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the expected frequency for the females studying Spanish.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">A.c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Use your graphic display calculator to find the \({\chi ^2}\) test statistic for this data.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">A.d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>State whether Ludmila accepts the null hypothesis. Give a reason for your answer.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">A.e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Draw a labelled scatter diagram for this data. Use a scale of \(2{\text{ cm}}\) to represent \(10{\text{ marks}}\) on the \(x\)-axis (\(S\)) and \(10{\text{ marks}}\) on the \(y\)-axis (\(F\)).</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">B.a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Use your graphic calculator to find</span></p>
<p><span></span></p>
<p><span>(i)     \({\bar S}\), the mean of \(S\) ;</span></p>
<p><span>(ii)    \({\bar F}\), the mean of \(F\) .</span></p>
<p><span> </span></p>
<div class="marks">[2]</div>
<div class="question_part_label">B.b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Plot the point \({\text{M}}(\bar S{\text{, }}\bar F)\) on your scatter diagram.</span></p>
<p><span></span></p>
<div class="marks">[1]</div>
<div class="question_part_label">B.c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Use your graphic display calculator to find the equation of the regression line of \(F\) on \(S\) .</span></p>
<p><span></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">B.d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Draw the regression line on your scatter diagram.</span></p>
<p><span></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">B.e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Carletta’s mark on the Science examination was \(44\). She did not sit the French examination. </span></p>
<p><span>Estimate Carletta’s mark for the French examination.</span></p>
<p><span></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">B.f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span></span><span>Monique’s mark on the Science examination was 85. She did not sit the French examination. Her French teacher wants to use the regression line to estimate Monique’s mark.</span></p>
<p><span> State whether the mark obtained from the regression line for Monique’s French examination is reliable. Justify your answer.</span></p>
<p><span></span></p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">B.g.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For an ecological study, Ernesto measured the average concentration \((y)\) of the fine dust, \({\text{PM}}10\), in the air at different distances \((x)\) from a power plant. His data are represented on the following scatter diagram. The concentration of \({\text{PM}}10\) is measured in micrograms per cubic metre and the distance is measured in kilometres.</p>
<p><img src="" alt></p>
<p>His data are also listed in the following table.</p>
<p><img src="" alt></p>
<p>Use the scatter diagram to find the value of \(a\) and of \(b\) in the table.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Calculate</p>
<p>i)      \({\bar x}\) , the mean distance from the power plant;</p>
<p>ii)     \({\bar y}\) , the mean concentration of \({\text{PM}}10\) ;</p>
<p>iii)    \(r\) , the Pearson’s product–moment correlation coefficient.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the equation of the regression line \(y\) on \(x\) .</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Ernesto’s school is located \(14\,{\text{km}}\) from the power plant. He uses the equation of the regression line to estimate the concentration of \({\text{PM}}10\) in the air at his school.</p>
<p>i)     Calculate the value of Ernesto’s estimate.</p>
<p>ii)    State whether Ernesto’s estimate is reliable. Justify your answer.</p>
<div class="marks">[4]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">A manufacturer claims that fertilizer has an effect on the height of rice plants. He measures the height of fertilized and unfertilized plants. The results are given in the following table.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">A chi-squared test is performed to decide if the manufacturer&rsquo;s claim is justified</span> <span style="font-size: medium; font-family: times new roman,times;">at the<strong> 1 %</strong> level of significance.</span></p>
</div>

<div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">The population of fleas on a dog after <em>t</em> days, is modelled by</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">\[N = 4 \times {(2)^{\frac{t}{4}}},{\text{ }}t \geqslant 0\]</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">Some values of<em> N</em> are shown in the table below.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the null and alternative hypotheses for this test.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">i, a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>For the number of fertilized plants with height greater than 75 cm,</span> <span>show that the expected value is 97.5.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">i, b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the value of \(\chi_{calc}^2\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">i, c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the number of degrees of freedom.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">i, d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Is the manufacturer’s claim justified? Give a reason for your answer.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">i, f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the value of </span><span><em>p</em>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">ii, a, i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the value of <em>q</em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">ii, a, ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Using the values in the table above, draw the graph of <em>N</em> for 0 ≤ <em>t</em> ≤ 20. Use 1 cm to represent 2 days on the horizontal axis and 1 cm to represent 10 fleas on the vertical axis.</span></p>
<div class="marks">[6]</div>
<div class="question_part_label">ii, b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span><strong>Use your graph</strong> to estimate the number of days for the population of fleas to reach 55.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">ii, c.</div>
</div>
<br><hr><br><div class="specification">
<p>The weight, <em>W</em>, of basketball players in a tournament is found to be normally distributed with a mean of 65 kg and a standard deviation of 5 kg.</p>
</div>

<div class="specification">
<p>The probability that a basketball player has a weight that is within 1.5 standard deviations of the mean is <em>q</em>.</p>
</div>

<div class="specification">
<p>A basketball coach observed 60 of her players to determine whether their performance and their weight were independent of each other. Her observations were recorded as shown in the table.</p>
<p style="text-align: center;"><img src=""></p>
<p>She decided to conduct a <em>&chi;&thinsp;</em><sup>2</sup> test for independence at the 5% significance level.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that a basketball player has a weight that is less than 61 kg.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>In a training session there are 40 basketball players.</p>
<p>Find the expected number of players with a weight less than 61 kg in this training session.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Sketch a normal curve to represent this probability.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of <em>q</em>.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Given that P(<em>W</em> &gt; <em>k</em>) = 0.225 , find the value of <em>k</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For this test state the null hypothesis.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For this test find the<em> p</em>-value.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State a conclusion for this test. Justify your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The heat output in thermal units from burning \(1{\text{ kg}}\) of wood changes according to the wood&rsquo;s percentage moisture content. The moisture content and heat output of \(10\) blocks of the same type of wood each weighing </span><span style="font-family: times new roman,times; font-size: medium;"><span style="font-family: times new roman,times; font-size: medium;">\(1{\text{ kg}}\)</span> were measured. These are shown in the table.</span></p>
<p><img src="" alt></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Draw a scatter diagram to show the above data. Use a scale of \(2{\text{ cm}}\) to represent \(10\% \) on the <em>x</em>-axis and a scale of \(2{\text{ cm}}\) to represent \(10\) thermal units on the <em>y</em>-axis.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down</span><br><span>(i)     the mean percentage moisture content, \(\bar x\) ;</span><br><span>(ii)    the mean heat output, \(\bar y\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Plot the point \((\bar x{\text{, }}\bar y)\) on your scatter diagram and label this point M .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the product-moment correlation coefficient, \(r\) .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The equation of the regression line \(y\) on \(x\) is \(y = - 0.470x + 83.7\) . Draw the regression line \(y\) on \(x\) on your scatter diagram.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The equation of the regression line \(y\) on \(x\) is \(y = - 0.470x + 83.7\) . Estimate the heat output in thermal units of a \(1{\text{ kg}}\) block of wood that has \(25\% \) moisture content.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The equation of the regression line \(y\) on \(x\) is \(y = - 0.470x + 83.7\) . State, with a reason, whether it is appropriate to use the regression line \(y\) on \(x\) to estimate the heat output in part (f).<br></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">In an environmental study of plant diversity around a lake, a biologist collected</span> <span style="font-family: times new roman,times; font-size: medium;">data about the number of different plant species (<em>y</em>) that were growing at different </span><span style="font-family: times new roman,times; font-size: medium;">distances (<em>x</em>) in metres from the lake shore.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Draw a scatter diagram to show the data. Use a scale of 2 cm to represent 10 metres on the <em>x</em>-axis and 2 cm to represent 10 plant species on the<em> y</em>-axis.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Using your scatter diagram, describe the correlation between the number of different plant species and the distance from the lake shore.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Use your graphic display calculator to write down</span><span> \(\bar x\), the mean of the distances from the lake shore.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Use your graphic display calculator to write down \(\bar y\), the mean number of plant species.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Plot the point (\(\bar x\), \(\bar y\)) on your scatter diagram. <strong>Label this point M.</strong></span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the equation of the regression line <em>y</em> on <em>x</em> for the above data.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Draw the regression line <em>y</em> on <em>x</em> on your scatter diagram.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Estimate the number of plant species growing 30 metres from the lake shore.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">g.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">George leaves a cup of hot coffee to cool and measures its temperature every minute. His results are shown in the table below.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the decrease in the temperature of the coffee</span></p>
<p><span>(i) during the first minute (between <em>t</em> = 0 and <em>t</em> =1) ;</span></p>
<p><span>(ii) during the second minute;</span></p>
<p><span>(iii) during the third minute.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Assuming the pattern in the answers to part (a) continues, show that \(k = 19\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Use the <strong>seven</strong> results in the table to draw a graph that shows how the temperature of the coffee changes during the first six minutes.</span></p>
<p><span>Use a scale of 2 cm to represent 1 minute on the horizontal axis and 1 cm to represent 10 °C on the vertical axis.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span><span>The function that models the change in temperature of the coffee is <em>y</em> = <em>p</em> (2<sup>−<em>t</em></sup> )+ <em>q</em>.</span></span></p>
<p><span>(i) Use the values <em>t</em> = 0 and <em>y</em> = 94 to form an equation in <em>p</em> and <em>q</em>.</span></p>
<p><span>(ii) Use the values <em>t</em> =1 and <em>y</em> = 54 to form a second equation in <em>p</em> and <em>q</em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Solve the equations found in part (d) to find the value of <em>p</em> and the value of <em>q</em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The graph of this function has a horizontal asymptote.</span></p>
<p><span>Write down the equation of this asymptote.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>George decides to model the change in temperature of the coffee with a linear function using correlation and linear regression.</span></p>
<p><span>Use the <strong>seven</strong> results in the table to write down</span></p>
<p><span>(i) the correlation coefficient;</span></p>
<p><span>(ii) the equation of the regression line <em>y</em> on <em>t</em>.</span></p>
<div class="marks">[4]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Use the equation of the regression line to estimate the temperature of the coffee at <em>t</em> = 3.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">h.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the percentage error in this estimate of the temperature of the coffee at <em>t</em> = 3.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">i.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">A biologist is studying the relationship between the number of chirps of the Snowy Tree cricket and the air temperature. He records the chirp rate, \(x\), of a cricket, and the corresponding air temperature, \(T\), in degrees Celsius.</p>
<p class="p1">The following table gives the recorded values.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2015-12-04_om_08.39.25.png" alt></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Draw the scatter diagram for the above data. Use a scale of 2 cm for 20 chirps on the horizontal axis and 2 cm for 4<span class="s1"><strong>°</strong></span>C on the vertical axis.</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Use your graphic display calculator to write down the Pearson’s product–moment correlation <span class="s1">coefficient, \(r\)</span>, between \(x\) and \(T\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Interpret the relationship between \(x\) and \(T\) using your value of \(r\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Use your graphic display calculator to write down the equation of the regression line \(T\) on \(x\). Give the equation in the form \(T = ax + b\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the air temperature when the cricket’s chirp rate is \(70\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">e.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Given that \(\bar x = 70\), draw the regression line \(T\) on \(x\) on your scatter diagram.</p>
<div class="marks">[2]</div>
<div class="question_part_label">f.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">A forest ranger uses her own formula for estimating the air temperature. She counts the number of chirps in 15 seconds, \(z\), multiplies this number by \(0.45\) and then she adds \(10\).</p>
<p class="p1">Write down the formula that the forest ranger uses for estimating the temperature, \(T\).</p>
<p class="p1">Give the equation in the form \(T = mz + n\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">g.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">A cricket makes 20 chirps in <strong>15</strong> seconds.</p>
<p class="p1">For this chirp rate</p>
<p class="p1">(i) <span class="Apple-converted-space">    </span>calculate an estimate for the temperature, \(T\), <strong>using the forest ranger’s formula</strong>;</p>
<p class="p1">(ii) <span class="Apple-converted-space">    </span>determine the actual temperature recorded by the biologist, <strong>using the table above</strong>;</p>
<p class="p1">(iii) <span class="Apple-converted-space">    </span>calculate the percentage error in the forest ranger’s estimate for the temperature, compared to the actual temperature recorded by the biologist.</p>
<div class="marks">[6]</div>
<div class="question_part_label">h.</div>
</div>
<br><hr><br>