File "SL-paper1.html"

Path: /IB QUESTIONBANKS/4 Fourth Edition - PAPER/HTML/Mathematical Studies/Topic 4/SL-paper1html
File size: 441.13 KB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-746ec5d03ead8d9e8b3bb7d32173f2b4e2e22a05f0c5278e086ab55b3c9c238e.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-3c91afd8a2942c18d21ed2700e1bdec14ada97f1d3788ae229315e1276d81453.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../index.html">Home</a>
</li>
<li class="active dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Questionbanks
<b class="caret"></b>
</a><ul class="dropdown-menu">
<li>
<a href="../../geography.html" target="_blank">DP Geography</a>
</li>
<li>
<a href="../../physics.html" target="_blank">DP Physics</a>
</li>
<li>
<a href="../../chemistry.html" target="_blank">DP Chemistry</a>
</li>
<li>
<a href="../../biology.html" target="_blank">DP Biology</a>
</li>
<li>
<a href="../../furtherMath.html" target="_blank">DP Further Mathematics HL</a>
</li>
<li>
<a href="../../mathHL.html" target="_blank">DP Mathematics HL</a>
</li>
<li>
<a href="../../mathSL.html" target="_blank">DP Mathematics SL</a>
</li>
<li>
<a href="../../mathStudies.html" target="_blank">DP Mathematical Studies</a>
</li>
</ul></li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">

<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">



</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="images/logo.jpg" alt="Ib qb 46 logo">
</div>
</div>
</div><h2>SL Paper 1</h2><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">A researcher consulted 500 men and women to see if the colour of the car they drove was independent of gender. A \(\chi^2\) test for independence was carried out.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the null hypothesis.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The colours of the cars were red, green, blue, black and silver.</span></p>
<p><span>Find the number of degrees of freedom for this test.<br></span></p>
<p><span> </span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>At the 5 % significance level the \(\chi_{calc}^2\) was found to be 8.73.</span></p>
<p><span>Write down the critical value, \(\chi_{crit}^2\), for this test.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">\(180\) spectators at a swimming championship were asked which, of four swimming styles, was the one they preferred to watch.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The results of their responses are shown in the table.</span></p>
<p style="font: normal normal normal 20px/normal 'Times New Roman'; text-align: center; margin: 0px;"><br><span style="font-family: 'times new roman', times; font-size: medium;"><img src="images/Schermafbeelding_2014-09-03_om_06.29.26.png" alt></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 20.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">A \({\chi ^2}\) test was conducted at the \(5\%\) significance level.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the null hypothesis for this test.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the number of degrees of freedom.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the value of \(\chi _{calc}^2\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The critical value, at the \(5\%\) significance level, is \(7.815\).</span></p>
<p><span>State, giving a reason, the conclusion to the test.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 16.0px 'Times New Roman'; color: #3f3f3f;"><span style="font-family: 'times new roman', times; font-size: medium;">The heights of apple trees in an orchard are normally distributed with a mean of&nbsp;\({\text{3.42 m}}\)&nbsp;and a standard deviation of \({\text{0.21&nbsp;m}}\).</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the probability that a randomly chosen tree has a height greater than \({\text{3.42 m}}\).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the probability that a randomly chosen tree will be within 2 standard deviations of the mean of \({\text{3.42 m}}\).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Use your graphic display calculator to calculate the probability that a randomly chosen tree will have a height greater than \({\text{3.35 m}}\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The probability that a particular tree is less than \(x\) metres high is \(0.65\). Find the value of \(x\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Members of a certain club are required to register for one of three sports, badminton, volleyball or table tennis. The number of club members of each gender choosing each sport in a particular year is shown in the table below.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">A \({\chi ^2}\) (Chi-squared) test at the \(5\% \) significance level is used to determine whether the choice of sport is independent of gender.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the expected number of female volleyball players under this hypothesis.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the \(p\)-value for the test.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>State, with a reason, the conclusion of the test.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium;"><span style="font-family: times new roman,times;">Tony wants to carry out a \({\chi ^2}\)</span> <span style="font-family: times new roman,times;">test to determine whether or not a person&rsquo;s choice</span> <span style="font-family: times new roman,times;">of one of the three professions; engineering, medicine or law is influenced by the</span> <span style="font-family: times new roman,times;">person&rsquo;s sex (gender).</span></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>State the null hypothesis, H<sub>0</sub>, for this test.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the number of degrees of freedom.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Of the 400 people Tony interviewed, 220 were male and 180 were female.</span> <span>80 of the people had chosen engineering as a profession.</span></p>
<p><span>Calculate the expected number of female engineers.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Tony used a 5 % level of significance for his test and obtained a <em>p</em>-value of 0.0634 correct to 3 significant figures.</span></p>
<p><span>State Tony’s conclusion to the test. Give a reason for this conclusion.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The producer of a TV dancing show asked a group of <span class="s1">150 </span>viewers their age and the type of Latin dance they preferred. The types of Latin dances in the show were Argentine tango, Samba, Rumba and Cha-cha-cha. The data obtained were organized in the following table.</p>
<p class="p1" style="text-align: center;"><img src="images/Schermafbeelding_2015-12-20_om_14.07.46.png" alt></p>
<p class="p1">A \({\chi ^2}\) <span class="s1">test was carried out, at the 5</span>% significance level.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Write down the null hypothesis for this test.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Write down the observed number of viewers who preferred Rumba <strong>and </strong>were older than <span class="s1">20 </span>years old.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Use your graphic display calculator to find the \(p\)-value for this test.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">The producer claims that the type of Latin dance a viewer preferred is independent of their age.</p>
<p class="p1">Decide whether this claim is justified. Give a reason for your decision.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">A market researcher consulted males and females to determine whether the type of coffee they drink is associated with gender. The types of coffee are Cappuccino, Latte, Americano, Macchiato and Espresso. A \({\chi ^2}\) test was conducted, at the 5 % significance level and the \({\chi ^2}\) value was found to be 8.73.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down</span><span> the null hypothesis</span><span>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the alternative hypothesis.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the number of degrees of freedom for this test.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the critical value for this test.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>State whether the type of coffee drunk is independent of gender. Give a reason for your answer.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">A study was carried out to determine whether the country chosen by students for their university studies was influenced by a person&rsquo;s gender. A random sample was taken. The results are shown in the following table.</span></p>
<p style="font: normal normal normal 21px/normal 'Times New Roman'; min-height: 25px; text-align: center; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;"><br><img src="images/Schermafbeelding_2014-09-20_om_07.38.20.png" alt><br></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">A \({\chi ^2}\) test was performed at the 1% significance level.</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">The critical value for this test is 9.210.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>State the null hypothesis.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the number of degrees of freedom.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down</span></p>
<p><span>(i)     the \({\chi ^2}\) statistic;</span></p>
<p><span>(ii)     the associated <em>p</em>-value.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>State, giving a reason, whether the null hypothesis should be accepted.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">The number of calories a person burns during a walk depends on the time they spend walking. The table below shows the number of calories, y, burned by a person in relation to the time they spend walking, <em>x</em>, in minutes.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Use your graphic display calculator to write down the equation of the regression line for <em>y</em> on <em>x</em> in the form <em>y</em> = <em>ax</em> + <em>b </em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Use your equation to estimate the number of calories that a person will burn during a 17 minute walk.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>State whether your answer to part (b) is reliable. Give a reason for your answer.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>The mass of a certain type of Chilean corncob follows a normal distribution with a mean of 400 grams and a standard deviation of 50 grams.</p>
</div>

<div class="specification">
<p>A farmer labels one of these corncobs as premium if its mass is greater than \(a\) grams. 25% of these corncobs are labelled as premium.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the probability that the mass of one of these corncobs is greater than 400 grams.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of \(a\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate the interquartile range of the distribution.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">A group of 100 students gave the following responses to the question of how they get to school.</span></p>
<p style="font: normal normal normal 21px/normal 'Times New Roman'; text-align: center; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;"><br><img src="images/Schermafbeelding_2014-09-02_om_14.46.51.png" alt><br></span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">A \({\chi ^2}\) test for independence was conducted at the \(5\%\) significance level. The null hypothesis was defined as</span></p>
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">&nbsp;</span></p>
<p style="font: normal normal normal 21px/normal 'Times New Roman'; text-align: center; margin: 0px;"><span style="font-family: 'times new roman', times; font-size: medium;">\({{\text{H}}_0}\): Method of getting to school is independent of gender.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the expected frequency for the females who use public transport to get to school.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the \({\chi ^2}\) statistic.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The \({\chi ^2}\) critical value is \(7.815\) at the \(5\%\) significance level.</span></p>
<p><span>State whether or not the null hypothesis is accepted. Give a reason for your answer.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>A survey was carried out to investigate the relationship between a person&rsquo;s age in years ( \(a\)) and the number of hours they watch television per week (\(h\)). The scatter diagram represents the results of the survey.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2018-02-12_om_18.00.45.png" alt="N17/5/MATSD/SP1/ENG/TZ0/05"></p>
<p>The mean age of the people surveyed was 50.</p>
<p>For these results, the equation of the regression line \(h\) on \(a\) is \(h = 0.22a + 15\).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the mean number of hours that the people surveyed watch television per week.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the regression line on the scatter diagram.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>By placing a tick (✔) in the correct box, determine which of the following statements is true:</p>
<p><img src="images/Schermafbeelding_2018-02-13_om_07.09.18.png" alt="N17/5/MATSD/SP1/ENG/TZ0/05.c"></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Diogo is 18 years old. Give a reason why the regression line should not be used to estimate the number of hours Diogo watches television per week.</p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">A market researcher surveyed men and women about their preferred holiday destination. The holiday destinations were Antigua, Barbados, Cuba, Guadeloupe and Jamaica. A \(\chi^2\) test for independence was conducted at the 5 % significance level. </span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">The </span><span style="font-size: medium; font-family: times new roman,times;"><span style="font-size: medium; font-family: times new roman,times;">\(\chi^2\)</span> calculated value was found to be 8.73.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the null hypothesis.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the number of degrees of freedom for this test.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the critical value for this test.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>State the conclusion of this test. Give a reason for your decision.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p style="margin: 0.0px 0.0px 0.0px 0.0px; font: 21.0px 'Times New Roman';"><span style="font-family: 'times new roman', times; font-size: medium;">A survey investigated the relationship between the number of cleaners,&nbsp;\(n\), and the amount of time, \(t\), it takes them to clean a school.</span></p>
<div style="text-align: center;"><br><img src="images/Schermafbeelding_2014-09-02_om_15.05.16.png" alt></div>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Use your graphic display calculator to write down the equation of the regression line \(t\) on \(n\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the value of the Pearson’s product–moment correlation coefficient, \(r\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Use your regression equation to find the amount of time 4 cleaners take to clean the school.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">The marks obtained by 8 candidates in Physics and Chemistry tests are given below.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the product moment correlation coefficient, \(r\).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down, in the form \(y = mx + c\) , the equation of the regression line \(y\) on \(x\) for the \(8\) candidates.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>A ninth candidate obtained a score of \(7\) in the Physics test but was absent for the Chemistry test.</span></p>
<p><span>Use your answer to (b) to estimate the score he would have obtained on the Chemistry test.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Give a reason why it is valid to use this regression line to estimate the score on the Chemistry test in part (c).</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>Applicants for a job had to complete a mathematics test. The time they took to complete the test is normally distributed with a mean of 53 minutes and a standard deviation of 16.3. One of the applicants is chosen at random.</p>
</div>

<div class="specification">
<p>For 11% of the applicants it took longer than \(k\) minutes to complete the test.</p>
</div>

<div class="specification">
<p>There were 400 applicants for the job.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that this applicant took at least 40 minutes to complete the test.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the value of \(k\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Estimate the number of applicants who completed the test in less than 25 minutes.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">Tania wishes to see whether there is any correlation between a person&rsquo;s age and the number of objects on a tray which could be remembered after looking at them for a certain time.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">She obtains the following table of results.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Use your graphic display calculator to find the equation of the regression line of <em>y</em> on <em>x</em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Use your equation to estimate the number of objects remembered by a person aged 28 years.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Use your graphic display calculator to find the correlation coefficient <em>r</em>.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Comment on your value for <em>r</em>.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">A factory makes metal bars. Their lengths are assumed to be normally distributed with a mean of <span class="s1">180 cm </span>and a standard deviation of <span class="s1">5 cm</span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">On the following diagram, shade the region representing the probability that a metal bar, chosen at random, will have a length less than <span class="s1">175 cm</span>.</p>
<p class="p1"><img src="images/Schermafbeelding_2015-12-20_om_17.53.42.png" alt></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">A metal bar is chosen at random.</p>
<p class="p2"><span class="s1">(i) <span class="Apple-converted-space">    </span>The probability that the length of the metal bar is less than 175 cm </span>is equal to the probability that the length is greater than \(h\) <span class="s1">cm</span>. Write down the value of \(h\).</p>
<p class="p2">(ii) <span class="Apple-converted-space">    </span>Find the probability that the length of the metal bar is greater than one standard deviation above the mean.</p>
<div class="marks">[4]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Minta surveyed students from her school about their preferred morning snack from a choice of an apple, a fruit salad or a smoothie.</p>
<p class="p1">She surveyed 350 students, of whom 210 are female.</p>
<p class="p1">She performed a \({\chi ^2}\) test at the 5% significance level to determine whether there is a relationship between the choice of morning snack and gender.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State Minta’s null hypothesis.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State the number of degrees of freedom.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">150 students showed a preference for a smoothie.</p>
<p class="p1">Calculate the expected number of female students who chose a smoothie.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Minta found that the calculated value of the \({\chi ^2}\) test was 3.576. The critical value at the 5% significance level is \(5.99\).</p>
<p class="p1">State Minta’s conclusion. Give a reason for your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>In a school, students in grades 9 to 12 were asked to select their preferred drink. The choices were milk, juice and water. The data obtained are organized in the following table.</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-08-15_om_11.06.16.png" alt="M17/5/MATSD/SP1/ENG/TZ1/06"></p>
<p>A \({\chi ^2}\) test is carried out at the 5% significance level with hypotheses:</p>
<p>\[\begin{array}{*{20}{l}} {{{\text{H}}_{\text{0}}}{\text{: the preferred drink is independent of the grade}}} \\ {{{\text{H}}_{\text{1}}}{\text{: the preferred drink is not independent of the grade}}} \end{array}\]</p>
<p>The \({\chi ^2}\) critical value for this test is 12.6.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the value of \(x\).</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Write down the number of degrees of freedom for this test.</p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use your graphic display calculator to find the \({\chi ^2}\) statistic for this test.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the conclusion for this test. Give a reason for your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">A shop keeper recorded daily sales <em>s</em> of ice cream along with the daily maximum temperature <em>t</em> &deg;C. The results for one week are shown below.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the equation of the regression line for <em>s</em> on <em>t</em>.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Use your equation to predict the ice cream sales on a day when the maximum temperature is 24 °C. Give your answer correct to the nearest whole number.</span></p>
<div class="marks">[3]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">The scores obtained by five candidates in Mathematics and Physics examinations are given below.</span></p>
<p><img src="" alt></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the correlation coefficient, \(r\) , for the examination scores.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the equation of the regression line, \(y\) on \(x\) , for the examination</span> <span>scores of the five candidates.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>A sixth candidate scored 72 in the Mathematics examination. Use the regression line, \(y\) on \(x\), to estimate his score on the Physics examination.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">Identical mosquito traps are placed at different distances from a lake. On one day the number of mosquitoes caught in 10 <span class="s1">of the traps is recorded.</span></p>
<p class="p2" style="text-align: center;"><img src="images/Schermafbeelding_2015-12-18_om_17.36.55.png" alt></p>
<p class="p2">It is believed the number of mosquitoes caught varies linearly with the distance, in metres, of the trap from the lake.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find</p>
<p class="p1">(i) <span class="Apple-converted-space">    </span>Pearson’s product–moment correlation coefficient, \(r\);</p>
<p class="p1">(ii) <span class="Apple-converted-space">    </span>the equation of the regression line \(y\) on \(x\).</p>
<div class="marks">[4]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Use the equation of the regression line \(y\) on \(x\) to estimate the number of mosquitoes caught in a trap that is \(28\)<span class="s1"> m </span>from the lake.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">\(200\) people of different ages were asked to choose their favourite type of music from the choices Popular, Country and Western and Heavy Metal. The results are shown in the table below.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;">It was decided to perform a chi-squared test for independence at the \(5\% \) level on the data.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the null hypothesis.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the number of degrees of freedom.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the chi-squared value.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>State whether or not you will reject the null hypothesis, giving a clear reason for your answer.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">A questionnaire was given to all members of a school community to find out which drink was the most popular to have with breakfast. The results are given in the table below, classified by age.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt></span></p>
<p><span style="font-size: medium; font-family: times new roman,times;">A \(\chi^2\) test was conducted to decide whether the type of drink was independent of age.</span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Find the number of degrees of freedom for the \(\chi^2\) test.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the null hypothesis for the \(\chi^2\) test.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The critical value for the </span><span><span>\(\chi^2\)</span> test at the 5% significance level is 12.59. The \(\chi^2\) test statistic is calculated to be 146 with a <em>p</em>-value of 6.62 × 10<sup>−29</sup> (both numbers given correct to 3 significant figures).</span></p>
<p><span>Write down the conclusion reached at the 5 % significance level. Give a clear reason for your answer.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">A hospital collected data from <span class="s1">1000 </span>patients in four hospital wards to review the quality of its healthcare. The data, showing the number of patients who became infected during their stay in hospital, was recorded in the following table.</p>
<p class="p1" style="text-align: center;"><img src=""></p>
<p class="p1">A \({\chi ^2}\)-test was performed at the <span class="s1">5% </span>significance level.</p>
<p class="p1">The critical value for this test is <span class="s1">7.815</span>.</p>
<p class="p1">The null hypothesis for the test is</p>
<p class="p1">\({{\text{H}}_0}\): Becoming infected during a stay in the hospital is independent of the ward.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the expected frequency of the patients who became infected whilst in <span class="s1">Nightingale ward.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">For this test, write down the \({\chi ^2}\) statistic.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">State, giving a reason, whether the null hypothesis should be rejected.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The daily January temperature of Cairns is normally distributed with a mean of 34<span class="s1">&deg;</span>C and a standard deviation of 3.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the probability that the temperature on a randomly chosen day in January is less than 39<span class="s1">°</span>C.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Calculate the expected number of days in January that the temperature will be more than 39<span class="s1">°</span>C.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">On a randomly chosen day in January, the probability that the temperature is above \(T\) <span class="s1">°</span>C is 0.7.</p>
<p class="p1">Find the value of \(T\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-family: times new roman,times; font-size: medium;">Consider the following set of data which is plotted on the scatter diagram below.</span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
<p><span style="font-family: times new roman,times; font-size: medium;"><img src="" alt></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the coordinates of the mean point \((\bar x{\text{, }}\bar y)\).</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the value of \(r\), the Pearson’s product-moment correlation coefficient for this set of data.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Draw the regression line for \(y\) on \(x\) on the set of axes above.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The manager of a travel agency surveyed 1200 travellers. She wanted to find out whether there was a relationship between a traveller’s age and their preferred destination. The travellers were asked to complete the following survey.</p>
<p><img src="" alt></p>
<p>A \(\chi {\,^2}\) test was carried out, at the \(5\% \) significance level, on the data collected.</p>
<p>Write down the null hypothesis.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the number of degrees of freedom.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The critical value of this \(\chi {\,^2}\) test is \(21.026\).</p>
<p>Use this information to write down the values of the \(\chi {\,^2}\) statistic for which the null hypothesis is rejected.</p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>From the travellers taking part in the survey, 285 were 61 years or older and 420 preferred Tokyo.</p>
<p>Calculate the expected number of travellers who preferred Tokyo and were 61 years or older.</p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="specification">
<p>A scientist measures the concentration of dissolved oxygen, in milligrams per litre (<em>y</em>) , in a river. She takes 10 readings at different temperatures, measured in degrees Celsius (<em>x</em>).</p>
<p>The results are shown in the table.</p>
<p><img src=""></p>
<p>It is believed that the concentration of dissolved oxygen in the river varies linearly with the temperature.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For these data, find Pearson’s product-moment correlation coefficient, <em>r.</em></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>For these data, find the equation of the regression line <em>y</em> on <em>x</em>.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using the equation of the regression line, estimate the concentration of dissolved oxygen in the river when the temperature is 18 °C.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A survey was conducted among a random sample of people about their favourite TV show. People were classified by gender and by TV show preference (Sports, Documentary, News and Reality TV).</p>
<p>The results are shown in the contingency table below.</p>
<p><img src="" alt></p>
<p>Find the expected number of females who prefer documentary shows.</p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A \({\chi ^{\,2}}\) test at the \(5\,\% \) significance level is used to determine whether TV show preference is independent of gender.</p>
<p>Write down the \(p\)-value for the test.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>State the conclusion of the test. Give a reason for your answer.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">Consider the following values of <em>x</em> and <em>y</em> and the scatter diagram which represents the information given in the table.</span></p>
<p><img src="" alt></p>
<p><img src="" alt></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the value of</span></p>
<p><span>(i) <em>a</em> ;</span></p>
<p><span>(ii) <em>b</em> .</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The mean of the <em>x</em> values is 5 and the mean of the <em>y</em> values is 4. Draw the line of best fit on the scatter diagram above.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Use your line of best fit to estimate the value of <em>y</em> when </span><span><span><em>x</em> = </span>6.5.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p><span style="font-size: medium; font-family: times new roman,times;">The local park is used for walking dogs. The sizes of the dogs are observed at different times of the day. The table below shows the numbers of dogs present, classified by size, at three different times last Sunday.</span></p>
<p><span style="font-size: medium; font-family: times new roman,times;"><img src="" alt width="299" height="112"></span></p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write a suitable null hypothesis for a \(\chi^2\) test on this data.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>Write down the value of \(\chi^2\) for this data.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The number of degrees of freedom is 4. Show how this value is calculated.</span></p>
<div class="marks">[1]</div>
<div class="question_part_label">c.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p><span>The critical value, at the 5% level of significance, is 9.488.</span></p>
<p><span>What conclusion can be drawn from this test? Give a reason for your answer.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">d.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The lifetime, \(L\) , of light bulbs made by a company follows a normal distribution.<br>\(L\) is measured in hours. The normal distribution curve of \(L\) is shown below.</p>
<p><img src="" alt></p>
<p>Write down the mean lifetime of the light bulbs.</p>
<div class="marks">[1]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The standard deviation of the lifetime of the light bulbs is \(850\) hours.</p>
<p>Find the probability that \(5000 \leqslant L \leqslant 6000\) , for a randomly chosen light bulb.</p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>The company states that \(90\% \) of the light bulbs have a lifetime of at least \(k\) hours.</p>
<p>Find the value of \(k\) . Give your answer correct to the nearest hundred.</p>
<div class="marks">[3]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p class="p1">The weight, \(W\), of bags of rice follows a normal distribution with mean <span class="s1">1000 g </span>and standard deviation <span class="s1">4 g</span>.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">Find the probability that a bag of rice chosen at random weighs between <span class="s1">990 g </span><span class="s2">and </span>1004 g<span class="s2">.</span></p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1"><span class="s1">95% </span>of the bags of rice weigh less than \(k\) grams.</p>
<p class="p1">Find the value of \(k\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p class="p1">For a bag of rice chosen at random, \({\text{P}}(1000 - a &lt; W &lt; 1000 + a) = 0.9\).</p>
<p class="p2">Find the value of \(a\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="specification">
<p>Malthouse school opens at 08:00 every morning.</p>
<p>The daily arrival times of the 500 students at Malthouse school follow a normal distribution. The mean arrival time is 52 minutes after the school opens and the standard deviation is 5 minutes.</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that a student, chosen at random arrives at least 60 minutes after the school opens.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.i.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Find the probability that a student, chosen at random arrives between 45 minutes and 55 minutes after the school opens.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.ii.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>A second school, Mulberry Park, also opens at 08:00 every morning. The arrival times of the students at this school follows exactly the same distribution as Malthouse school.</p>
<p>Given that, on one morning, 15 students arrive at least 60 minutes after the school opens, estimate the number of students at Mulberry Park school.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<br><hr><br><div class="specification">
<p>The following scatter diagram shows the scores obtained by seven students in their mathematics test, <em>m</em>, and their physics test, <em>p</em>.</p>
<p style="text-align: left;"><img src=""></p>
<p style="text-align: left;">The mean point, M, for these data is (40, 16).</p>
</div>

<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Plot and label the point M\(\left( {\bar m,\,\,\bar p} \right)\) on the scatter diagram.</p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the line of best fit, by eye, on the scatter diagram.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Using your line of best fit, estimate the physics test score for a student with a score of 20 in their mathematics test.</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br><div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Each day a supermarket records the midday temperature and how many cold drinks are sold on that day. The following table shows the supermarket’s data for the last 6 days. This data is also shown on a scatter diagram.</p>
<p><img src="" alt></p>
<p><img src="" alt></p>
<p>Write down</p>
<p>i)     the mean temperature, \({\bar x}\) ;</p>
<p>ii)    the mean number of cold drinks sold, \({\bar y}\) .</p>
<p> </p>
<div class="marks">[2]</div>
<div class="question_part_label">a.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Draw the line of best fit on the scatter diagram.</p>
<div class="marks">[2]</div>
<div class="question_part_label">b.</div>
</div>
<div class="question" style="padding-left: 20px; padding-right: 20px;">
<p>Use the line of best fit to estimate the number of cold drinks that are sold on a day when the midday temperature is \(10\,^\circ {\text{C}}\).</p>
<div class="marks">[2]</div>
<div class="question_part_label">c.</div>
</div>
<br><hr><br>