File "HL-paper1.html"

Path: /IB QUESTIONBANKS/4 Fourth Edition - PAPER/HTML/Chemistry/Topic 19/HL-paper1html
File size: 116.14 KB
MIME-type: text/html
Charset: utf-8

 
Open Back
<!DOCTYPE html>
<html>


<meta http-equiv="content-type" content="text/html;charset=utf-8">
<head>
<meta charset="utf-8">
<title>IB Questionbank</title>
<link rel="stylesheet" media="all" href="css/application-746ec5d03ead8d9e8b3bb7d32173f2b4e2e22a05f0c5278e086ab55b3c9c238e.css">
<link rel="stylesheet" media="print" href="css/print-6da094505524acaa25ea39a4dd5d6130a436fc43336c0bb89199951b860e98e9.css">
<script src="js/application-3c91afd8a2942c18d21ed2700e1bdec14ada97f1d3788ae229315e1276d81453.js"></script>
<script type="text/javascript" async src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/MathJax.js?config=TeX-MML-AM_CHTML-full"></script>
<!--[if lt IE 9]>
<script src='https://cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv.min.js'></script>
<![endif]-->
<meta name="csrf-param" content="authenticity_token">
<meta name="csrf-token" content="iHF+M3VlRFlNEehLVICYgYgqiF8jIFlzjGNjIwqOK9cFH3ZNdavBJrv/YQpz8vcspoICfQcFHW8kSsHnJsBwfg==">
<link href="favicon.ico" rel="shortcut icon">

</head>
<body class="teacher questions-show">
<div class="navbar navbar-fixed-top">
<div class="navbar-inner">
<div class="container">
<div class="brand">
<div class="inner"><a href="http://ibo.org/">ibo.org</a></div>
</div>
<ul class="nav">
<li>
<a href="../../index.html">Home</a>
</li>
<li class="active dropdown">
<a class="dropdown-toggle" data-toggle="dropdown" href="#">
Questionbanks
<b class="caret"></b>
</a><ul class="dropdown-menu">
<li>
<a href="../../geography.html" target="_blank">DP Geography</a>
</li>
<li>
<a href="../../physics.html" target="_blank">DP Physics</a>
</li>
<li>
<a href="../../chemistry.html" target="_blank">DP Chemistry</a>
</li>
<li>
<a href="../../biology.html" target="_blank">DP Biology</a>
</li>
<li>
<a href="../../furtherMath.html" target="_blank">DP Further Mathematics HL</a>
</li>
<li>
<a href="../../mathHL.html" target="_blank">DP Mathematics HL</a>
</li>
<li>
<a href="../../mathSL.html" target="_blank">DP Mathematics SL</a>
</li>
<li>
<a href="../../mathStudies.html" target="_blank">DP Mathematical Studies</a>
</li>
</ul></li>
<!-- - if current_user.is_language_services? && !current_user.is_publishing? -->
<!-- %li= link_to "Language services", tolk_path -->
</ul>
<ul class="nav pull-right">

<li>
<a href="https://06082010.xyz">IB Documents (2) Team</a>
</li></ul>
</div>
</div>
</div>

<div class="page-content container">
<div class="row">
<div class="span24">



</div>
</div>

<div class="page-header">
<div class="row">
<div class="span16">
<p class="back-to-list">
</p>
</div>
<div class="span8" style="margin: 0 0 -19px 0;">
<img style="width: 100%;" class="qb_logo" src="images/logo.jpg" alt="Ib qb 46 logo">
</div>
</div>
</div><h2>HL Paper 1</h2><div class="question">
<p>What is the standard half-cell potential of copper if the &ldquo;zero potential reference electrode&rdquo; is&nbsp;changed from the standard hydrogen electrode to a standard zinc electrode?</p>
<p style="text-align: center;"><img src="images/Schermafbeelding_2017-09-22_om_15.19.51.png" alt="M17/4/CHEMI/HPM/ENG/TZ2/30"></p>
<p>A. &nbsp; &nbsp; &ndash;1.1</p>
<p>B. &nbsp; &nbsp; &ndash;0.34</p>
<p>C. &nbsp; &nbsp; +0.34</p>
<p>D. &nbsp; &nbsp; +1.1</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Four electrolytic cells are constructed. Which cell would produce the greatest mass of metal at the negative electrode (cathode)?</p>
<p class="p1"><img src="images/Schermafbeelding_2016-11-02_om_13.16.22.png" alt="N11/4/CHEMI/HPM/ENG/TZ0/31"></p>
</div>
<br><hr><br><div class="question">
<p>What are the major products of electrolysing concentrated aqueous potassium iodide, KI(aq)?</p>
<p><img src="images/Schermafbeelding_2018-08-08_om_11.32.44.png" alt="M18/4/CHEMI/HPM/ENG/TZ2/31"></p>
</div>
<br><hr><br><div class="question">
<p class="p1">Which signs for both <em>E</em><sup>&theta;</sup><sub><span class="s2">cell </span></sub>and &Delta;<em>G</em><sup>&theta;<span class="s1">&nbsp;</span></sup>result in a spontaneous redox reaction occurring under standard conditions?</p>
<p class="p1"><img src="" alt></p>
</div>
<br><hr><br><div class="question">
<div class="page" title="Page 3">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 4">
<div class="section">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 5">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 5">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 7">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 11">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 12">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 12">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 13">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 13">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 13">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 14">
<div class="layoutArea">
<div class="column">Which compound forms both hydrogen and oxygen at the electrodes when a concentrated aqueous solution is electrolyzed?</div>
<div class="column">&nbsp;</div>
<div class="column">A. &nbsp;KI<br>B. &nbsp;NaCl<br>C. &nbsp;H<sub>2</sub>SO<sub>4</sub><br>D. &nbsp;AgNO<sub>3</sub></div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<br><hr><br><div class="question">
<p class="p1">An aqueous solution of a metal salt is electrolysed. Which factor will have no effect on the mass of the metal deposited on the negative electrode (cathode), if all other variables remain constant?</p>
<p class="p2">A.&nbsp; &nbsp; &nbsp;Size of metal ion</p>
<p class="p2">B.&nbsp; &nbsp; &nbsp;Relative atomic mass of metal</p>
<p class="p2">C.&nbsp; &nbsp; &nbsp;Current</p>
<p class="p2">D.&nbsp; &nbsp; &nbsp;Charge on metal ion</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Consider these standard electrode potentials.</p>
<p class="p2">\[\begin{array}{*{20}{l}} {{\text{M}}{{\text{g}}^{2 + }}{\text{(aq)}} + {\text{2}}{{\text{e}}^ - } \rightleftharpoons {\text{Mg(s)}}}&amp;{{E^\Theta } = - 2.36{\text{ V}}} \\ {{\text{Z}}{{\text{n}}^{2 + }}{\text{(aq)}} + {\text{2}}{{\text{e}}^ - } \rightleftharpoons {\text{Zn(s)}}}&amp;{{E^\Theta } = - 0.76{\text{ V}}} \end{array}\]</p>
<p class="p1">What is the cell potential for the voltaic cell produced when the two half-cells are connected?</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>&ndash;1.60 V</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>+1.60 V</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>&ndash;3.12 V</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>+3.12 V</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Which are necessary conditions for the standard hydrogen electrode to have an \({E^\Theta }\) of exactly zero?</p>
<p class="p1">I. <span class="Apple-converted-space">&nbsp; &nbsp; </span>Temperature = 298 K</p>
<p class="p1">II. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({\text{[}}{{\text{H}}^ + }{\text{]}} = 1{\text{ mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\)</p>
<p class="p1">III. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({\text{[}}{{\text{H}}_2}{\text{]}} = 1{\text{ mol}}\,{\text{d}}{{\text{m}}^{ - 3}}\)</p>
<p class="p1">&nbsp;</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>I and II only</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>I and III only</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>II and III only</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>I, II and III</p>
</div>
<br><hr><br><div class="question">
<div class="page" title="Page 3">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 4">
<div class="section">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 5">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 5">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 6">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 7">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 11">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 12">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 12">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 13">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 13">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 13">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 14">
<div class="layoutArea">
<div class="column">
<div class="page" title="Page 14">
<div class="layoutArea">
<div class="column"><em>z</em> mol of copper is deposited from CuSO<sub>4</sub> (aq) by a current, <em>I,</em> in time <em>t.</em> What is the amount of silver, in mol, deposited by electrolysis from AgNO<sub>3</sub> (aq) by a current,&nbsp;\(\frac{I}{2}\), in time 2<em>t</em>?</div>
<div class="column">&nbsp;</div>
<div class="column">A. &nbsp;\(\frac{z}{4}\)</div>
<div class="column">B.&nbsp; \(\frac{z}{2}\)</div>
<div class="column">C. <em>z</em></div>
<div class="column">
<div class="page" title="Page 14">
<div class="layoutArea">
<div class="column">
<p>D. 2<em>z</em></p>
</div>
</div>
</div>
</div>
<div class="column">&nbsp;</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
</div>
<br><hr><br><div class="question">
<p>A number of molten metal chlorides are electrolysed, using the same current for the same length of time. Which metal will be produced in the greatest amount, in mol?</p>
<p>A.&nbsp; &nbsp; &nbsp;Mg</p>
<p>B.&nbsp; &nbsp; &nbsp;Al</p>
<p>C.&nbsp; &nbsp; &nbsp;K</p>
<p>D.&nbsp; &nbsp; &nbsp;Ca</p>
</div>
<br><hr><br><div class="question">
<p>The standard electrode potentials of some half-reactions are given below.</p>
<p>&nbsp;&nbsp; &nbsp; \({\text{S}}{{\text{n}}^{4 + }}{\text{(aq)}} + {\text{2}}{{\text{e}}^ - } \rightleftharpoons {\text{S}}{{\text{n}}^{2 + }}{\text{(aq)}}\) &nbsp; &nbsp; \({E^\Theta } =&nbsp; + 0.15{\text{ V}}\)</p>
<p>&nbsp; &nbsp; \(\frac{1}{2}{{\text{I}}_2}{\text{(s)}} + {{\text{e}}^ - } \rightleftharpoons {{\text{I}}^ - }{\text{(aq)}}\) &nbsp; &nbsp; \({E^\Theta } =&nbsp; + 0.54{\text{ V}}\)</p>
<p>&nbsp;&nbsp; &nbsp; \({\text{F}}{{\text{e}}^{3 + }}{\text{(aq)}} + {{\text{e}}^ - } \rightleftharpoons {\text{F}}{{\text{e}}^{2 + }}{\text{(aq)}}\) &nbsp; &nbsp; \({E^\Theta } =&nbsp; + 0.77{\text{ V}}\)</p>
<p>Which of the following reactions will occur spontaneously?</p>
<p>A. &nbsp; &nbsp; Iodine reduces \({\text{F}}{{\text{e}}^{3 + }}\) to \({\text{F}}{{\text{e}}^{2 + }}\)</p>
<p>B. &nbsp; &nbsp; Iodine reduces \({\text{S}}{{\text{n}}^{4 + }}\)to \({\text{S}}{{\text{n}}^{2 + }}\)</p>
<p>C. &nbsp; &nbsp; Iodine oxidizes \({\text{F}}{{\text{e}}^{2 + }}\)to \({\text{F}}{{\text{e}}^{3 + }}\)</p>
<p>D. &nbsp; &nbsp; Iodine oxidizes \({\text{S}}{{\text{n}}^{2 + }}\) to \({\text{S}}{{\text{n}}^{4 + }}\)</p>
</div>
<br><hr><br><div class="question">
<p>Which combination would electroplate an object with copper?</p>
<p><img style="margin-right:auto;margin-left:auto;display: block;" src="images/Schermafbeelding_2018-08-07_om_10.07.27.png" alt="M18/4/CHEMI/HPM/ENG/TZ1/30_01"></p>
<p><img src="images/Schermafbeelding_2018-08-07_om_10.08.26.png" alt="M18/4/CHEMI/HPM/ENG/TZ1/30_02"></p>
</div>
<br><hr><br><div class="question">
<p>Two cells undergoing electrolysis are connected in series.</p>
<p><img src="images/Schermafbeelding_2018-08-08_om_11.27.51.png" alt="M18/4/CHEMI/HPM/ENG/TZ2/30"></p>
<p>If \(x\)<em> </em>g of silver are deposited in cell 1, what volume of oxygen, in dm<sup>3</sup> at STP, is given off in cell 2?</p>
<p><em>A</em><sub>r</sub>(Ag) = 108; Molar volume of an ideal gas at STP = 22.7 dm<sup>3</sup> mol<sup>−1</sup></p>
<p>A.    \(\frac{x}{{108}} \times \frac{1}{4} \times 22.7\)</p>
<p>B.    \(\frac{x}{{108}} \times 4 \times 22.7\)</p>
<p>C.    \(\frac{x}{{108}} \times \frac{1}{2} \times 22.7\)</p>
<p>D.    \(\frac{x}{{108}} \times 2 \times 22.7\)</p>
</div>
<br><hr><br><div class="question">
<p class="p1">The standard electrode potentials for two metals are given below.</p>
<p class="p1">\[\begin{array}{*{20}{l}} {{\text{A}}{{\text{l}}^{3 + }}{\text{(aq)}} + {\text{3}}{{\text{e}}^ - } \rightleftharpoons {\text{Al(s)}}}&amp;{{E^\Theta } = - 1.66{\text{ V}}} \\ {{\text{N}}{{\text{i}}^{2 + }}{\text{(aq)}} + {\text{2}}{{\text{e}}^ - } \rightleftharpoons {\text{Ni(s)}}}&amp;{{E^\Theta } = - 0.23{\text{ V}}} \end{array}\]</p>
<p class="p1">What is the equation and cell potential for the spontaneous reaction that occurs?</p>
<p class="p1">\(\begin{array}{*{20}{l}} {{\text{A.}}}&amp;{2{\text{A}}{{\text{l}}^{3 + }}({\text{aq)}} + 3{\text{Ni(s)}} \to {\text{2Al(s)}} + 3{\text{N}}{{\text{i}}^{2 + }}({\text{aq)}}}&amp;{{E^\Theta } = 1.89{\text{ V}}} \\ {{\text{B.}}}&amp;{2{\text{Al(s)}} + 3{\text{N}}{{\text{i}}^{2 + }}({\text{aq)}} \to {\text{2A}}{{\text{l}}^{3 + }}({\text{aq)}} + 3{\text{Ni(s)}}}&amp;{{E^\Theta } = 1.89{\text{ V}}} \\ {{\text{C.}}}&amp;{2{\text{A}}{{\text{l}}^{3 + }}({\text{aq)}} + 3{\text{Ni(s)}} \to {\text{2Al(s)}} + 3{\text{N}}{{\text{i}}^{2 + }}({\text{aq)}}}&amp;{{E^\Theta } = 1.43{\text{ V}}} \\ {{\text{D.}}}&amp;{2{\text{Al(s)}} + 3{\text{N}}{{\text{i}}^{2 + }}({\text{aq)}} \to {\text{2A}}{{\text{l}}^{3 + }}({\text{aq)}} + 3{\text{Ni(s)}}}&amp;{{E^\Theta } = 1.43{\text{ V}}} \end{array}\)</p>
</div>
<br><hr><br><div class="question">
<p>Consider the following standard electrode potentials.</p>
<p>&nbsp;&nbsp; &nbsp; \({\text{S}}{{\text{n}}^{2 + }}{\text{(aq)}} + {\text{2}}{{\text{e}}^ - } \rightleftharpoons {\text{Sn(s)}}\) &nbsp; &nbsp; \({E^\Theta } =&nbsp; - 0.14{\text{ V}}\)</p>
<p>&nbsp;&nbsp; &nbsp; \({{\text{H}}^ + }{\text{(aq)}} + {{\text{e}}^ - } \rightleftharpoons \frac{{\text{1}}}{{\text{2}}}{{\text{H}}_{\text{2}}}{\text{(g)}}\) &nbsp; &nbsp; \({E^\Theta } = 0.00{\text{ V}}\)</p>
<p>&nbsp;&nbsp; &nbsp; \({\text{F}}{{\text{e}}^{3 + }}{\text{(aq)}} + {{\text{e}}^ - } \rightleftharpoons {\text{F}}{{\text{e}}^{2 + }}{\text{(aq)}}\) &nbsp; &nbsp; \({E^\Theta } =&nbsp; + 0.77{\text{ V}}\)</p>
<p>Which species will reduce H\(^ + \)(aq) to H\(_2\) (g) under standard conditions?</p>
<p>A. Fe\(^{2 + }\)(aq)</p>
<p>B. Sn\(^{2 + }\)(aq)</p>
<p>C. Sn(s)</p>
<p>D. Fe\(^{3 + }\)(aq)</p>
</div>
<br><hr><br><div class="question">
<p>What happens during the electrolysis of concentrated aqueous potassium chloride?</p>
<p>I.&nbsp; &nbsp; &nbsp;Reduction takes place at the negative electrode (cathode).</p>
<p>II.&nbsp; &nbsp; &nbsp;Hydrogen gas is evolved at the negative electrode (cathode).</p>
<p>III.&nbsp; &nbsp; &nbsp;The pH of the electrolyte increases.</p>
<p>A.&nbsp; &nbsp; &nbsp;I and II only</p>
<p>B.&nbsp; &nbsp; &nbsp;I and III only</p>
<p>C.&nbsp; &nbsp; &nbsp;II and III only</p>
<p>D.&nbsp; &nbsp; &nbsp;I, II and III</p>
</div>
<br><hr><br><div class="question">
<p>The standard electrode potentials for three reactions involving copper and copper ions are:</p>
<p>&nbsp;&nbsp; &nbsp; \({\text{C}}{{\text{u}}^{2 + }}{\text{(aq)}} + {{\text{e}}^ - } \rightleftharpoons {\text{C}}{{\text{u}}^ + }{\text{(aq) &nbsp; &nbsp; }}{E^\Theta } =&nbsp; + 0.15{\text{ V}}\)</p>
<p>&nbsp;&nbsp; &nbsp; \({\text{C}}{{\text{u}}^{{\text{2}} + }}{\text{(aq)}} + {\text{2}}{{\text{e}}^ - } \rightleftharpoons {\text{Cu(s) &nbsp; &nbsp; }}{E^\Theta } =&nbsp; + {\text{0.34 V}}\)</p>
<p>&nbsp;&nbsp;&nbsp;&nbsp; \({\text{C}}{{\text{u}}^ + }{\text{(aq)}} + {{\text{e}}^ - } \rightleftharpoons {\text{Cu(s) &nbsp; &nbsp; }}{E^\Theta } =&nbsp; + {\text{0.52 V}}\)</p>
<p>Which statement is correct?</p>
<p>A. &nbsp; &nbsp; \({\text{C}}{{\text{u}}^{{\text{2}} + }}\) ions are a better oxidizing agent than \({\text{C}}{{\text{u}}^ + }\) ions.</p>
<p>B. &nbsp; &nbsp; Copper metal is a better reducing agent than \({\text{C}}{{\text{u}}^ + }\) ions.</p>
<p>C. &nbsp; &nbsp; \({\text{C}}{{\text{u}}^ + }\) ions will spontaneously form copper metal and \({\text{C}}{{\text{u}}^{{\text{2}} + }}\) ions in solution.</p>
<p>D. &nbsp; &nbsp; Copper metal can be spontaneously oxidized by \({\text{C}}{{\text{u}}^{{\text{2}} + }}\) ions to form \({\text{C}}{{\text{u}}^ + }\) ions.</p>
</div>
<br><hr><br><div class="question">
<p>What are the relative volumes of gas given off at E and F during electrolysis of the two cells in&nbsp;series? Assume all electrodes are inert.</p>
<p style="text-align: center;"><img src=""></p>
<p>A. &nbsp; &nbsp; 1:1</p>
<p>B. &nbsp; &nbsp; 1:2</p>
<p>C. &nbsp; &nbsp; 2:1</p>
<p>D. &nbsp; &nbsp; 5:2</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Two half-cells are connected via a salt bridge to make a voltaic cell. Which statement about this cell is correct?</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>Oxidation occurs at the positive electrode (cathode).</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>It is also known as an electrolytic cell.</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>Ions flow through the salt bridge.</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>It requires a power supply to operate.</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Which signs are correct for a spontaneous redox reaction?</p>
<p class="p1"><img src="images/Schermafbeelding_2016-08-01_om_19.30.32.png" alt="M15/4/CHEMI/HPM/ENG/TZ1/32"></p>
</div>
<br><hr><br><div class="question">
<p class="p1">An iron rod is electroplated with silver. Which is a correct condition for this process?</p>
<p class="p1">A. The silver electrode is the positive electrode.</p>
<p class="p1">B. The iron rod is the positive electrode.</p>
<p class="p1">C. The electrolyte is iron(II) sulfate.</p>
<p class="p1">D. Oxidation occurs at the negative electrode.</p>
</div>
<br><hr><br><div class="question">
<p>What is the cell potential, in V, of the reaction below?</p>
<p>\[{{\text{I}}_2} + {\text{2}}{{\text{S}}_2}{\text{O}}_3^{2 - } \to {\text{2}}{{\text{I}}^ - } + {{\text{S}}_4}{\text{O}}_6^{2 - }\]</p>
<p>&nbsp;&nbsp; &nbsp; \(\frac{1}{2}{{\text{S}}_4}{\text{O}}_6^{2 - }{\text{(aq)}} + {{\text{e}}^ - } \rightleftharpoons {{\text{S}}_2}{\text{O}}_3^{2 - }{\text{(aq)}}\) &nbsp; &nbsp; \({E^\Theta } =&nbsp; + 0.09{\text{ V}}\)</p>
<p>&nbsp;&nbsp; &nbsp; \({{\text{I}}_2}{\text{(aq)}} + {\text{2}}{{\text{e}}^ - } \rightleftharpoons {\text{2}}{{\text{I}}^ - }{\text{(aq)}}\) &nbsp; &nbsp; \({E^\Theta } =&nbsp; + 0.54{\text{ V}}\)</p>
<p>A. &nbsp; &nbsp; \( + 0.63\)</p>
<p>B. &nbsp; &nbsp; \( + 0.45\)</p>
<p>C. &nbsp; &nbsp; \( - 0.45\)</p>
<p>D. &nbsp; &nbsp; \( - 0.63\)</p>
</div>
<br><hr><br><div class="question">
<p>What are the products when an aqueous solution of copper(II) sulfate is electrolysed using inert&nbsp;graphite electrodes?</p>
<p><img src=""></p>
</div>
<br><hr><br><div class="question">
<p class="p1">What is the cell potential, in V, for the reaction that occurs when the following two half-cells are connected?</p>
<p class="p2">\[\begin{array}{*{20}{l}} {{\text{F}}{{\text{e}}^{2 + }}{\text{(aq)}} + {\text{2}}{{\text{e}}^ - } \rightleftharpoons {\text{Fe(s)}}}&amp;{{E^\Theta } = - 0.44{\text{ V}}} \\ {{\text{C}}{{\text{r}}_2}{\text{O}}_7^{2 - }({\text{aq)}} + 14{{\text{H}}^ + }({\text{aq)}} + 6{{\text{e}}^ - } \rightleftharpoons 2{\text{C}}{{\text{r}}^{3 + }}{\text{(aq)}} + {\text{7}}{{\text{H}}_2}{\text{O(l)}}}&amp;{{E^\Theta } = + 1.33{\text{ V}}} \end{array}\]</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>+0.01</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>+0.89</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>+1.77</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>+2.65</p>
</div>
<br><hr><br><div class="question">
<p>In the electrolysis of aqueous potassium nitrate, KNO<sub>3</sub>(aq), using inert electrodes, 0.1 mol of a gas&nbsp;was formed at the cathode (negative electrode).</p>
<p>Which is correct?</p>
<p><img src=""></p>
</div>
<br><hr><br><div class="question">
<p>Consider the standard electrode potentials:</p>
<p>\[{\text{F}}{{\text{e}}^{{\text{2 + }}}}{\text{(aq)}} + {\text{2}}{{\text{e}}^ - } \rightleftharpoons {\text{Fe(s) &nbsp; &nbsp; }}&nbsp; {E^\Theta } =&nbsp; - {\text{0.45 V}}\]</p>
<p>\[\frac{1}{2}{\text{C}}{{\text{l}}_{\text{2}}}{\text{(g)}} + {{\text{e}}^ - } \rightleftharpoons {\text{C}}{{\text{l}}^ - }{\text{(aq) &nbsp; &nbsp; }}&nbsp; {E^\Theta } = {\text{ }} + {\text{1.36 V}}\]</p>
<p>What is the standard cell potential, in V, for the reaction?</p>
<p>\[{\text{C}}{{\text{l}}_{\text{2}}}{\text{(g)}} + {\text{Fe(s)}} \to {\text{2C}}{{\text{l}}^ - }{\text{(aq)}} + {\text{F}}{{\text{e}}^{2 + }}{\text{(aq)}}\]</p>
<p>A. &nbsp; &nbsp; \( + {\text{0.91}}\)</p>
<p>B. &nbsp; &nbsp; \( + {\text{1.81}}\)</p>
<p>C. &nbsp; &nbsp; \( + {\text{2.27}}\)</p>
<p>D. &nbsp; &nbsp; \( + {\text{3.17}}\)</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Which statement is correct for electroplating an object with gold?</p>
<p class="p1">A.&nbsp; &nbsp; &nbsp;The object must be the negative electrode (cathode).</p>
<p class="p1">B.&nbsp; &nbsp; &nbsp;The negative electrode (cathode) must be gold.</p>
<p class="p1">C.&nbsp; &nbsp; &nbsp;The object must be the positive electrode (anode).</p>
<p class="p1">D.&nbsp; &nbsp; &nbsp;The gold electrode must be pure.</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Consider the following standard electrode potentials:</p>
<p class="p2">\[\begin{array}{*{20}{l}} {{\text{S}}{{\text{n}}^{4 + }}{\text{(aq)}} + {\text{2}}{{\text{e}}^ - } \rightleftharpoons {\text{S}}{{\text{n}}^{2 + }}{\text{(aq)}}}&amp;{{E^\Theta } = + 0.13{\text{ V}}} \\ {{\text{P}}{{\text{b}}^{2 + }}{\text{(aq)}} + {\text{2}}{{\text{e}}^ - } \rightleftharpoons {\text{Pb(s)}}}&amp;{{E^\Theta } = - 0.13{\text{ V}}} \end{array}\]</p>
<p class="p1">What is the value of the cell potential, in V, for the spontaneous reaction that occurs when the two half-cells are connected together?</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\( - 0.26\)</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>0.00</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\( + 0.13\)</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\( + 0.26\)</p>
</div>
<br><hr><br><div class="question">
<p class="p1">The same quantity of electricity is passed through separate dilute aqueous solutions of sulfuric acid and copper(II) sulfate using platinum electrodes under the same conditions. Which statement is correct?</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>The same volume of oxygen is obtained in both cases.</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>The same volume of hydrogen is obtained in both cases.</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>The amount of copper deposited at the negative electrode in the copper(II) sulfate solution is half the amount of hydrogen gas formed at the negative electrode in the sulfuric acid solution.</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>The pH of both solutions increases as the electrolysis proceeds.</p>
</div>
<br><hr><br><div class="question">
<p>Which statement is correct for the overall reaction in a voltaic cell?</p>
<p style="text-align: center;">2AgNO<sub>3</sub>(aq) + Ni(s) &rarr; 2Ag(s) + Ni(NO<sub>3</sub>)<sub>2</sub>(aq) &nbsp; &nbsp; &nbsp; &nbsp;&nbsp;<em>E</em>&thinsp;<sup>&theta;</sup>= +1.06 V</p>
<p>A. &nbsp; &nbsp; Electrons flow from Ag electrode to Ni electrode.</p>
<p>B. &nbsp; &nbsp; Ni is oxidized to Ni<sup>2+</sup> at the cathode (negative electrode).</p>
<p>C. &nbsp; &nbsp; Ag<sup>+</sup> is reduced to Ag at the anode (positive electrode).</p>
<p>D. &nbsp; &nbsp; Ag has a more positive standard electrode potential value than Ni.</p>
</div>
<br><hr><br><div class="question">
<p class="p1">Two electrolytic cells are connected <strong>in series </strong>and the same current passes through each cell. The first cell contains silver electrodes in silver nitrate solution. The second cell contains copper electrodes in copper(II) sulfate solution. In one experiment 1.00 g of silver is deposited in the first cell. What mass of copper, in g, is deposited in the second cell?</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(\frac{{1.00}}{{107.87}}\)</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(\frac{{1.00}}{{63.55}}\)</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(\frac{{1.00}}{{107.87}} \times \frac{{63.55}}{2}\)</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\(\frac{{1.00}}{{107.87}} \times 63.55\)</p>
</div>
<br><hr><br><div class="question">
<p>Which components are used to make the standard hydrogen electrode?</p>
<p>A. &nbsp; &nbsp; \({{\text{H}}_{\text{2}}}{\text{(g), }}{{\text{H}}^ + }{\text{(aq), Pt(s)}}\)</p>
<p>B. &nbsp; &nbsp; \({{\text{H}}_{\text{2}}}{\text{(g), }}{{\text{H}}^ + }{\text{(aq), Ni(s)}}\)</p>
<p>C. &nbsp; &nbsp; \({{\text{H}}_{\text{2}}}{\text{(g), H}}{{\text{O}}^ - }{\text{(aq), Pt(s)}}\)</p>
<p>D. &nbsp; &nbsp; \({{\text{H}}_{\text{2}}}{\text{(g), H}}{{\text{O}}^ - }{\text{(aq), Ni(s)}}\)</p>
</div>
<br><hr><br><div class="question">
<p>A voltaic cell is made by connecting two half-cells represented by the half-equations below.</p>
<p>\[\begin{array}{*{20}{l}} {{\text{M}}{{\text{n}}^{2 + }}{\text{(aq)}} + {\text{2}}{{\text{e}}^ - } \to {\text{Mn(s)}}}&amp;{{E^\Theta } =&nbsp; - 1.19{\text{ V}}} \\ {{\text{P}}{{\text{b}}^{2 + }}{\text{(aq)}} + {\text{2}}{{\text{e}}^ - } \to {\text{Pb(s)}}}&amp;{{E^\Theta } =&nbsp; - 0.13{\text{ V}}} \end{array}\]</p>
<p>Which statement is correct about this voltaic cell?</p>
<p>A. &nbsp; &nbsp; Mn is oxidized and the voltage of the cell is 1.06 V.</p>
<p>B. &nbsp; &nbsp; Pb is oxidized and the voltage of the cell is 1.06 V.</p>
<p>C. &nbsp; &nbsp; Mn is oxidized and the voltage of the cell is 1.32 V.</p>
<p>D. &nbsp; &nbsp; Pb is oxidized and the voltage of the cell is 1.32 V.</p>
</div>
<br><hr><br><div class="question">
<p>The overall equation of a voltaic cell is:</p>
<p>\[{\text{Ni(s)}} + {\text{2A}}{{\text{g}}^ + }{\text{(aq)}} \rightleftharpoons {\text{N}}{{\text{i}}^{2 + }}{\text{(aq)}} + {\text{2Ag(s)}}\;\;\;\;\;{E^\Theta } = {\text{1.06 V}}\]</p>
<p>The standard electrode potential for \({\text{N}}{{\text{i}}^{2 + }}{\text{(aq)}} + {\text{2}}{{\text{e}}^ - } \rightleftharpoons {\text{Ni(s)}}\), is \( - 0.26{\text{ V}}\). What is the standard electrode potential for the silver half-cell, \({\text{A}}{{\text{g}}^ + }{\text{(aq)}} + {{\text{e}}^ - } \rightleftharpoons {\text{Ag(s)}}\), in V?</p>
<p>A. &nbsp; &nbsp; \( - 1.32\)</p>
<p>B. &nbsp; &nbsp; \( - 0.80\)</p>
<p>C. &nbsp; &nbsp; \( + 0.80\)</p>
<p>D. &nbsp; &nbsp; \( + 1.32\)</p>
</div>
<br><hr><br><div class="question">
<p class="p1">The same quantity of electricity was passed through separate molten samples of sodium bromide, NaBr, and magnesium chloride, \({\text{MgC}}{{\text{l}}_{\text{2}}}\). Which statement is true about the amounts, in mol, that are formed?</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>The amount of Mg formed is equal to the amount of Na formed.</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>The amount of Mg formed is equal to the amount of \({\text{C}}{{\text{l}}_{\text{2}}}\) formed.</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>The amount of Mg formed is twice the amount of \({\text{C}}{{\text{l}}_{\text{2}}}\) formed.</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>The amount of Mg formed is twice the</p>
</div>
<br><hr><br><div class="question">
<p>What does <strong>not </strong>affect the mass of products formed in electrolysis of an aqueous solution?</p>
<p>A.     Current</p>
<p>B.     Duration of electrolysis</p>
<p>C.     Initial mass of cathode</p>
<p>D.     Charge on the ions</p>
</div>
<br><hr><br><div class="question">
<p>Consider the following two standard electrode potentials at 298 K.</p>
<p>&nbsp;&nbsp; &nbsp; \({\text{S}}{{\text{n}}^{2 + }}{\text{(aq)}} + {\text{2}}{{\text{e}}^ - } \rightleftharpoons {\text{Sn(s)}}\) &nbsp; &nbsp; \({E^\Theta } =&nbsp; - 0.14{\text{ V}}\)</p>
<p>&nbsp;&nbsp; &nbsp; \({\text{F}}{{\text{e}}^{3 + }}{\text{(aq)}} + {{\text{e}}^ - } \rightleftharpoons {\text{F}}{{\text{e}}^{2 + }}{\text{(aq)}}\) &nbsp; &nbsp; \({E^\Theta } =&nbsp; + 0.77{\text{ V}}\)</p>
<p>What is the equation and cell potential for the spontaneous reaction that occurs?</p>
<p>A. &nbsp; &nbsp; \({\text{2F}}{{\text{e}}^{2 + }}{\text{(aq)}} + {\text{S}}{{\text{n}}^{2 + }}{\text{(aq)}} \to {\text{2F}}{{\text{e}}^{3 + }}{\text{(aq)}} + {\text{Sn(s)}}\) &nbsp; &nbsp; \({E^\Theta } =&nbsp; - 0.91{\text{ V}}\)</p>
<p>B. &nbsp; &nbsp; \({\text{2F}}{{\text{e}}^{3 + }}{\text{(aq)}} + {\text{Sn(s)}} \to {\text{2F}}{{\text{e}}^{2 + }}{\text{(aq)}} + {\text{S}}{{\text{n}}^{2 + }}{\text{(aq)}}\) &nbsp; &nbsp; \({E^\Theta } =&nbsp; + 0.91{\text{ V}}\)</p>
<p>C. &nbsp; &nbsp; \({\text{2F}}{{\text{e}}^{2 + }}{\text{(aq)}} + {\text{S}}{{\text{n}}^{2 + }}{\text{(aq)}} \to {\text{2F}}{{\text{e}}^{3 + }}{\text{(aq)}} + {\text{Sn(s)}}\) &nbsp; &nbsp; \({E^\Theta } =&nbsp; + 0.91{\text{ V}}\)</p>
<p>D. &nbsp; &nbsp; \({\text{2F}}{{\text{e}}^{3 + }}{\text{(aq)}} + {\text{Sn(s)}} \to {\text{2F}}{{\text{e}}^{2 + }}{\text{(aq)}} + {\text{S}}{{\text{n}}^{2 + }}{\text{(aq)}}\) &nbsp; &nbsp; \({E^\Theta } =&nbsp; + 1.68{\text{ V}}\)</p>
</div>
<br><hr><br><div class="question">
<p class="p1">For the electrolysis of aqueous copper(II) sulfate, which of the following statements is correct?</p>
<p class="p1">A. <span class="Apple-converted-space">&nbsp; &nbsp; </span>Cu and \({{\text{O}}_{\text{2}}}\) are produced in a mol ratio of 1:1</p>
<p class="p1">B. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({{\text{H}}_{\text{2}}}\) and \({{\text{O}}_{\text{2}}}\) are produced in a mol ratio of 1:1</p>
<p class="p1">C. <span class="Apple-converted-space">&nbsp; &nbsp; </span>Cu and \({{\text{O}}_{\text{2}}}\) are produced in a mol ratio of 2:1</p>
<p class="p1">D. <span class="Apple-converted-space">&nbsp; &nbsp; </span>\({{\text{H}}_{\text{2}}}\) and \({{\text{O}}_{\text{2}}}\) are produced in a mol ratio of 2:1</p>
</div>
<br><hr><br><div class="question">
<p>What are the products of electrolysis when concentrated calcium bromide solution is electrolysed using graphite electrodes?</p>
<p><img src=""></p>
</div>
<br><hr><br>